
Learning Table Tennis with a Mixture of Motor Primitives

Katharina Muelling, Jens Kober, Jan Peters

Abstract— Table tennis is a sufficiently complex motor task
for studying complete skill learning systems. It consists of sev-
eral elementary motions and requires fast movements, accurate
control, and online adaptation. To represent the elementary
movements needed for robot table tennis, we rely on dynamic
systems motor primitives (DMP). While such DMPs have been
successfully used for learning a variety of simple motor tasks,
they only represent single elementary actions. In order to select
and generalize among different striking movements, we present
a new approach, called Mixture of Motor Primitives that uses
a gating network to activate appropriate motor primitives. The
resulting policy enables us to select among the appropriate
motor primitives as well as to generalize between them. In
order to obtain a fully learned robot table tennis setup, we
also address the problem of predicting the necessary context
information, i.e., the hitting point in time and space where
we want to hit the ball. We show that the resulting setup
was capable of playing rudimentary table tennis using an
anthropomorphic robot arm.

I. INTRODUCTION

While humans are able to perform a variety of complex
motor tasks with changing environmental conditions, current
robots mostly rely strongly on well-modeled environments
in order to perform simple motor skills. In order to cope
with the complexity involved in motor skill learning for
humanoid robots, we rely on the insight that humans use
a smaller number of generalizable movement patterns, also
called motor primitives.

Motor primitives that are based on dynamic systems have
been suggested by Ijspeert [1]. They have been successfully
used in robotics in a variety of different application, includ-
ing planar biped walking [2] [3], tennis-like swings to a static
end-point [1], T-ball batting [4], constrained reaching tasks
[5], and Ball-in-a-cup [6]. Nevertheless, most work on motor
primitive learning to date has focused on learning single
motor primitives. Complex motor tasks, such as table tennis,
require many different motor primitives for accomplishing
the task. Usually, we have to select the appropriate motor
primitive based on an environmental stimulus and, to gener-
alize between several motor primitives to synthesize a new
appropriate movement.

Here, we will present an approach for learning complex
motor tasks that allows us to select and generalize among
motor primitives. This approach relies on a library of motor
primitives which are used as components in a Mixture of
Motor Primitives (MoMP). The MoMP is activated by a
gating network based on external stimuli associated with
a single motor primitive. The general setup of our motor

All authors are with the Department of Empirical Inference, Max Planck
Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen,
Germany, email: firstname.lastname@tuebingen.mpg.de

learning system is illustrated in Figure 1. To validate our
approach we use table tennis as a benchmark task as it
requires all complex parts needed. The goal is to create a
robot skill learning system that is able to return a ball served
by a table tennis ball launcher to the opponent’s courts.
Therefore, we will also address the question of predicting
the necessary context parameters of a motor primitive such as
the interception point and time as well as the corresponding
joint angles and velocities of the robot at the hitting point.
Another work dealing with motion generation using a library
of striking motions is the work of Zordan and Hodgins [7].
They simulated human table tennis using motion capture data
from table tennis and a balance controller. For frameworks
dealing with ball juggling and hitting an object the reader
may be interested in the work of Aboaf et al. [8], Kober et
al. [9], Frese et al. [10], Andersson [11] and Fässler [12].

In this paper, we will proceed as follows. In Section II,
we will present the Mixture of Motor Primitives framework.
Therefore, we first introduce the general idea of dynamic
systems motor primitives. Subsequently, we described the
learning methods needed to learn such a MoMP. The methods
used for learning the mapping from context information to
MoMP meta-parameters is described in Section II-C. We
evaluate the MoMP approach in a robot table tennis scenario
in Section III. Here, we will use all components of the
presented motor skill learning framework to achieve this task.
In Section IV, we will summarize our approach as well as
our results and give an outlook on the next steps ahead.

II. MIXTURE OF MOTOR PRIMITIVES (MOMP)

Up to now most work on the application of Ispeert’s dy-
namic systems motor primitives has employed single motor
primitives with the notable exceptions of [13], [14]. However,
complex motor tasks require several motor primitives that
are used in response to certain environmental stimuli. For
example, in table tennis many different strikes exist that
return the ball to the opponent’s court as we can play a
smash, a flip, a loop drive, a chop, a block, etc.

As we cannot demonstrate every single trajectory the robot
is supposed to execute, we need to generalize between a
smaller number of motor primitives. We employ several
motor primitives using a central supervisory process that
selects the motor primitive and its parameters according
to the current context information (Figure 1). To select
and generalize the motor primitives, we have developed
the MoMP which was inspired by the mixture of experts
[15] approach. Skill representation in MoMP is presented in
Section II-A and the corresponding learning algorithms are
discussed in Section II-B.

2010 IEEE-RAS International Conference on Humanoid Robots
Nashville, TN, USA, December 6-8, 2010

978-1-4244-8690-8/10/$26.00 ©2010 IEEE 411

Fig. 1. The Mixture of Motor Primitives motor learning setup. The
supervisor level creates a mixture of motor primitives based on a state
parameter and sets the task parameter such as goal, timing and selects
the motor primitives we want to use. The resulting movement is executed
using control law which generates the required motor torques. The teacher
provides learning signals on all levels.

A. Skill Representation with MoMP

The MoMP framework is a new approach to build a motor
primitive library and select the right movement depending on
the external stimuli or create a new elementary movement
by mixing several motor primitives that corresponds to this
external signal. Here we first describe the dynamic systems
motor primitives which are the components of the library.
Then, we present how to combine the single motor primitives
to select the appropriate motor primitive or to obtain a new
movement policy.

1) Dynamic Systems Motor Primitives as Mixture Com-
ponents: dynamic systems motor primitives (DMP), as sug-
gested by Ijspeert [1], [16], are a particular kind of dynamic
systems that is well-suited for learning. It can be understood
as a set of two differential equations that are referred to as
the canonical and the transformed system. The canonical
system h acts as a phase z of the movement generated by

ż = h(z). (1)

Intuitively, one could say that the canonical systems drives
the transformed system. The transformed system

ẏ = b(y, z,w), (2)

is a function of the internal state y, the phase variable z and
internal parameters w. The formulation of the DMP allows
us to represent arbitrarily shaped smooth movements by w
which can be estimated by locally weighted regression (see
Section II-B.1).

For discrete movements, i.e., movements between fixed
start and end points like reaching, pointing, grasping and
striking movements, the canonical system can be chosen as

τ ż = αzz, (3)

where τ is a time constant and αz is a pre-determined
constant parameter which is chosen such that the system
is stable [1], [16]. For hitting movements, the appropriate
transformed system can be expressed by

τ v̇ = (1− z)αy (βy(gm − y) + ġ − ẏτ) + ηf(z),

τ ẏ = v, gm = g0
m − ġτ

ln(z)
αh

,
(4)

where y and v are the position and velocity of the system,
η = (gf−y0)a, y0 is the start position, gf and ġ are the final
position and the final velocity of the system, gm is a moving
target and g0

m is the initial position of the moving target [9].
Here, αy and βy are system parameters which are chosen
such that the system is critically damped, a is an amplitude
modifier and f is a transformation function which is given
by

f =
∑
i wiψi(z)z∑
i ψi(z)

, (5)

where ψi(z) = exp(−ρi(z − µi)2) is a Gaussian basis
function characterized by a center µi and a bandwith ρi,
see [1], [16]. As z (which has a similar function as a clock)
converges to zero at the end of the movement, the influence
of the non-linear function f will vanish and the system has
only goal gm as an equilibrium point. We will refer to the
acceleration yielded by the DMP as π.

2) Composition with MoMP: Assume we have acquired
a skill library consisting of c motor primitives. For each of
these motor primitives πi we save the corresponding external
signal xi which is a part of its goal parameters. For a new
external stimulus x, we calculate the similarity to the external
stimuli xi of the motor primitive πi in the library. The new
motor primitive π(x) is then determined by computing the
weighted average of all motor primitives πi where the weight
is defined by a gating network. Thus, we obtain

π(x) =
∑c
i=1 πiγik(x− xi)∑c
i=1 γik(x− xi)

, (6)

where γi are weight parameters which can be used to
prioritize certain motor primitives, and k(x−xi) is the kernel
which defines the contribution of the motor primitive πi to
the resulting motor policy π (see Figure 2).

In this way, we can both select and generalize the corre-
sponding motor primitives to synthesize a new movement.
The resulting policy is based on motor primitives with the
most similar input signal xi that is most similar to the current
stimulus x. An implementation of the MoMP movement
generation is presented in Algorithm 1. Note, that θ, θ̇ and
θ̈ denote the joint position, velocity and acceleration.

Fig. 2. An illustration of the mixture of motor primitives. The gating
network weights the single motor primitives based on the external signal.
The weighted sum of these primitives defines the movement.

412

Algorithm 1 Mixture of Motor Primitives (MoMP)
Input: stimulus x
for t = 1 to T do

for i = 1 to c do
Compute the phase variable z

żt = αzzt
and the transformed system
τ v̇ = (1− zt)αθ

(
βθ(gm − θ) + ġ − θ̇τ

)
+(gf − θ0)afi(zt)

τ θ̇i = v̇
gm = g0

m − ġτ
ln(z)
αh

end for
Mixture of motor primitives output

π(x) =
Pc

i=1 θ̈iγik(x−xi)Pc
i=1 γik(x−xi)

end for

B. Learning Skills with MoMP

To generate the motor primitive library we rely on demon-
strated movements. Therefore, we have to learn the internal
parameters w of the DMP as well as the gating network
parameters. To improve the quality of the single motor prim-
itives, the quality of the gating network and to eliminate bad
demonstrations from the library, we use the reinforcement
learning approaches described in Sections II-B.2 and II-B.3.

1) Imitation Learning for Component Initialization: To
build up the library of the different motor primitives, we
rely on imitation learning. Imitation learning allows us to
learn policies from a given demonstration (for example, by
a teacher) and reproduce the movement. We assume that we
can learn each primitive separately. Redundant primitives can
be eliminated [17].

Assume we have recorded a movement m for one DoF
consisting of joint angles θt, velocities θ̇t, and accelerations
θ̈t over a time interval t ∈ {1, ..., T}. Integrating the
canonical system (Equation 3), we can compute a reference
transformation function based on Equation (4) by

f ref
t =

τ2θ̈t − (1− z)αy(βy(gm − θt) + θ̇T − τ θ̇t)
(θT − θ1)a

, (7)

where gm has to be computed in each time step according
to Equation (4). To determine w, we have to minimize the
squared error

e2i =
T∑
t=1

ψi(f ref
t − ztwi)2, (8)

which can be solve with locally weighted regression as in [1],
[18]. The detailed algorithm for learning motor primitives
with imitation learning for one DoF is shown in Algorithm
2.

2) Primitive Adaptation by Trial and Error: Imitation
learning suffices for initializing the internal parameters w.
For subsequent self-improvement of one DMP, we can adapt
the motor primitives parameters w using the Policy Learn-
ing by Weighting Exploration with the Return (PoWER)
algorithm [19]. PoWER is an EM-inspired policy learning

method that has been successfully applied to learning single
dynamic system motor primitive policies. To update the
parameters w with PoWER, we use

wN+1
i = wN

i +

∑N
j=1 ε

j
i

k(xj−xi)Pc
l=1 k(xj−xl)

rj∑N
j=1 r

j
, (9)

where ε ∼ N (0,Σ) denotes the normally distributed explo-
ration, Σ is meta-parameter that can also be optimized, ri
is the reward and N is the number of samples. Note, this
algorithm enables us to improve one single DMP.

3) Reinforcement Learning for Responsibility Adaptation:
Any large set of demonstrations will include attempts that
went badly. To make matters worse, the combination of a
set of good demonstrations may not necessarily result in
good behavior, e.g., when two motor primitives circumvent
an obstacle, their weighted combination is likely to drive
right into it. Hence, the primitives need to be pruned and
adjusted using reinforcement learning.

We created a reinforcement learning algorithm which
was inspired by [20]. The responsibility parameter γi in
Equation (6) is initialized with 1 and is updated according to
its contribution to successful and un-successful movements
according to

γN+1
i = exp

(
κ
si − ni
ζni + 1

)
, (10)

where

ni =
∑N
t=1 γ

N
i k(xt − xi)∑c

j=1 γ
N
j k(xi − xj)

,

si =
∑N
t=0 γ

N
i k(xt − xi)rt∑c

j=1 γ
N
j k(xi − xj)

,

(11)

indicates the amount of how often the motor primitive i is
used and how often it is successfully used, respectively. The
parameter κ is the counterpart to a learning rate, ζ is a trade-
off parameter between exploration and exploitation, r ∈ [0, 1]
is a reward and N is the number of the executed sample.

Simply put, we re-weight the contribution of motor prim-
itives according to their capability to produce successful
movements and even to remove bad demonstrations from the
library. Both, the adaptation of one single motor primitive
and the adaptation of the gating network to select and
combine single DMPs are represented in Algorithm 3.

Algorithm 2 Imitation Learning of one DMP for MoMP

Input: mi = (θt, θ̇t, θ̈t), t ∈ {1, ..., T} for one DoF
Compute wi using locally weighted regression.

Determine amplitude a.
Compute f ref

f ref
t = τ2θ̈t−(1−z)αy(βy(gm−θt)+θ̇T−τθ̇(j))

(θT−θ1)a
Compute diagonal matrix Ψ = diag(ψ1, ..., ψM).
Compute Z = {z1, ..., zT }.
Compute weights
wi = (ZTΨZ)−1ZTΨf ref

413

Algorithm 3 Primitive and Responsibility Adaptation
Initialize γ1

i = 1, s1i = 0, n1
i = 0 ∀i ∈ {1, ..., c}

repeat
Get stimulus x
Compute π(x) using MoMP with parameter wN

i for all
mixture components i ∈ {1, ..., c}.
Perform movement given by π(x)
Compute reward rN

Set εNi ∼ N (0,Σ) ∀i
for each DMP i contributing to π(x) do

Update weights for DMP

wN+1
i = wN

i +
PN

j=1 ε
j
i

k(xj−xi)Pc
l=1 k(xj−xl)

rjPN
j=1 r

j

Update responsibility parameter γN+1
i

sN+1
i = sNi + γN

i k(xi−x)rtPc
j=1 γ

N
j k(x−xj)

nN+1
i = nNi + γN

i k(xi−x)Pc
j=1 γ

N
j k(x−xj)

γN+1
i = exp

(
κ si−ni

ζni+1

)
if γN+1

i ≤ γmax is below a threshold γmax

Delete motor primitive i from library
end if

end for
until Converges wN+1 ≈ wN and γN+1 ≈ γN

C. Learning the Task Parameters

The MoMP has open task parameters that are given by
the supervisor. Striking movements are likely to be similar
for many hitting sports and may be adapted straightforwardly
from table tennis to real tennis. However, the task parameters
may be vastly different.

To return an incoming table tennis ball to the opponent’s
court, we have to determine when and where the robot has to
hit the ball to select the corresponding motor primitive with
MoMP. Furthermore, we need to know which joint angles
and joint velocities are required at the virtual hitting point to
determine the goal parameters of the hitting primitives. Both
problems will be adressed in the following. First, we describe
how to predict the virtual hitting point, i.e., the position and
time at which to hit the ball. In this context, we also predict
the velocity of the ball at the virtual hitting point which is
part of the external signal for the MoMP. Second, we learn
the appropriate mapping to configuration space, i.e., the joint
angles and velocities of the virtual hitting point.

1) Predicting the Virtual Hitting Point: For stroke move-
ment generation, we rely on the theory that humans identify
virtual targets [21], i.e., the hitting point phit = [px, py, pz]T ,
the velocity of the ball vhit = [vx, vy, vz]T and the time
to contact thit are already determined when the movement
is initiated. To predict these parameters, we use Gaussian
process regression (GPR) with a Gaussian kernel based on
vision information on the ball’s movement.

The prediction is based on the position and velocity of
the ball at four time points after passing a virtual plane s.
The output is given by the point where the ball is hit by the

racket, the velocity of the ball, and the hitting time at ball-
racket impact. Since the dimensions of the hitting point and
the ball velocity are independent, we have seven independent
output values and can model each of these seven parameters
independently with GPR models.

2) Learning the Stimuli to Configuration Space Mapping:
To generate the arm trajectories, we have to determine
the constraints, i.e., start and end position, velocity and
acceleration, for the movements on each joint of the arm
in each stage. While desired configurations suffice for the
awaiting, preparation and follow through stages, the final
joint configuration of the hitting stage depends on the task
parameters which are determined during the stroke. Thus,
we have to update the hitting configuration consisting of
joint state θhit and joint velocity θ̇hit efficiently but also
compatible with the executed movement.

We decided to learn to predict the joint configuration (θhit,
θ̇hit) at the intersection point. Unfortunately, there exist
multiple solutions since we have a redundant system and
not all of them are compatible with the movement. This part
may become problematic for a supervised learning system
as it would average over a non-convex combination of joint
configurations.

To deal with this non-convexity issue, we learn the map-
ping using Cost-regularized Kernel Regression as suggested
in [22]. This approach forces the learning system to choose a
particular kind of solution among the different incompatible
possibilities, as we do not trust solutions that differ too much
from the typical hitting posture. Since we want to have a
human-like striking motion, we search for a solution that
looks comfortable for the human observer. Therefore, we
define a hitting comfort posture of the arm [23]. The cost
function for the Cost-regularized Kernel Regression is given
by the sum of the squared error of the joint angles and the
hitting comfort posture.

III. EVALUATION

Here, we evaluate the presented concept of MoMP using
hitting movements executed by an analytical table tennis
robot as described in [24]. Therefore, we give an overview
of the table tennis task and evaluate the setup for learning
the context parameters for motor primitives, compare the
results with the analytical player and show that the MoMP
framework can be used to learn a hitting movement and that
the setup enhances the performance of the player.

A. Table Tennis Task

For the table tennis task, we developed an environment
using the SL framework [25] consisting of a real-world setup
and a sufficiently realistic simulation. The setup includes
a Barrett WAM arm with seven DoFs that is capable of
high speed motion and a vision system with four 200 Hz
Procsilica Gigabit GE640C cameras. A racket is attached to
the end-effector. Table, racket and ball are compliant with
the international rules of human table tennis. The ball is
served by a ping pong ball launcher to the forehand of
the robot with a randomly chosen velocity covering an area

414

(a) A series of frames depicting a forehand of the Barrett WAM arm using hitting primitives [19].

(b) Generalization to various targets with a set of primitives from MoMP.

Fig. 3. A sequence of the Barrett WAM arm striking table tennis balls using hitting primitives [19] and the generalization of hitting a table tennis ball.

of approximately 1 m2. The ball is visually tracked with a
sampling rate of 60 Hz. We use a simplified model of the
flight and bouncing behavior of the ping pong ball, i.e., we
consider gravity but neglect the air drag and spin acting on
the ball. The coefficients of restitution of both racket-ball
and ball-table interactions were determined empirically.

If the system detects a ping pong ball that is moving
towards the robot the preparation stage is initiated and the
goal parameters, i.e., the time and position until intersection
as well as the velocity of the ball at impact time is estimated.
The racket of the player moves backwards in order to
prepare the stroke. The preparation stage is executed until the
estimated time to impact is smaller or equals the time for the
hitting stage. In the hitting stage the racket moves towards
the virtual hitting point until it hits the ball in a circular
movement with a specific velocity. After the hitting stage is
completed, the follow through stage is executed where the
racket continues to move upwards with decreasing velocity.
In the awaiting stage the arm moves back to a default position
where the system is waiting until a new ball is detected.

B. Evaluation of the Task Parameter Model

To evaluate the models for the task parameters we compute
the normalized mean squared error (nMSE) defined as the
ratio of the mean squared error (MSE) and the variance of
the target, and investigate the performance of the resulting
player in the simulated environment. For all evaluations, the
ball was served 10,000 times.

1) Modeling the Virtual Hitting Point: To estimate the hy-
perparameters and train each model, we used 1000 observed
input-output pairs of an analytical table tennis player [24].
All seven models were trained offline.

The GPR model was evaluated with a data set consisting
of 3500 trials. The MSE of the position estimation are below
1 mm. The MSE of the estimated velocity is below 2 mm/s
and of the time estimation below 1 ms. The nMSE of all
models is below 0.01. The performance is identical with the
performance of a manually programmed player which uses
a physical model to predict the goal parameters.

2) Learning the Hitting Configuration: To learn a model
to map the movement stimuli to configuration space, we use

2500 input-output pairs of a manually programmed table
tennis player. For each DoF we learn the corresponding
joint angles and velocities offline in an independent model.
From the resulting system we sampled again 2500 input-
output pairs to train the model again. We repeated this policy
iteration until the policy converges.

The model from the first iteration is able to return 94% of
the balls and 48% of the balls successfully to the opponent’s
court. We used the data generated with this player to train
the model again. The improved model had a significantly
improved performance. The player was able to return 95%
of the balls to the opponent’s court where 63 % hit the desired
location. Further iterations did not improve the performance
as the nMSE for all joint angles was already below 0.01.
The failures to return the ball successfully are the result of
an inaccurate model for the joint velocities of the wrist joints.

C. Learning the Motor Task using MoMP

The movements for all four stages were generated using
DMPs as described in Section II-A.1. For the awaiting,
preparation and follow through stage we used single motor
primitives. Trajectories of these movements were sampled
from an analytical table tennis player. The parameters of the
movement of the hitting stage depends on the task parameters
and vary in their overall shape. To generate a movement that
is able to cope with the varying conditions, we use the MoMP
with the virtual hitting point and the estimated ball velocities
as external signal. Therefore, we built a movement library
for the stroke consisting of 300 motor primitives sampled
from successful strokes of the analytical player. We collected
arm, racket and ball trajectories and extracted the duration of
the stages and the Cartesian ball positions and velocities at
the hitting point. The parameters w of all motor primitives
are learned offline by imitation learning as described in
Algorithm 2. All DoFs are modeled independently in the
transformed system but are synchronous as they start all at
the same time, have the same duration and are driven by the
same canonical system.

First, we evaluated the single mixture components (i.e.,
the motor primitives learned by imitation learning) alone.
The performance varied as much as the quality of the used

415

Fig. 4. Trajectories for the end-effector of the Barrett WAM in the
hitting stage. Starting point and goals are marked with a green and red
dot, respectively.

demonstration for the motor primitive for the hitting stage.
Testing selected motor primitives, we observed a success
rate between 23 % – 89 %. We combine these components
in a mixture of motor primitives with initial weights of
γi = 1 for the hitting stage. The resulting player resulted
in 67 % successful returns. Learning the weight parameters
γi as suggested in Section II-B.3 resulted in an improved
performance of 94 %. Analyzing the weight parameters for
all motor primitives allowed understanding the results as all
primitives i where γi converged to zero were effectively
removed from the policy. We observed that about 27 % of
the primitives were removed and that these primitives had
an average performance of 30 %.

IV. CONCLUSION AND FUTURE WORK

We presented a novel approach for using motor primitives
for complex tasks in a MoMP framework. We evaluated
the approach in a table tennis setup where we were able
to improve the performance of the player. Furthermore, we
learned the goal parameters used to select and initiate the
appropriate motor primitives. This step included a learned
model for the inverse kinematics of a redundant robot arm.
As a result, we obtain a fully learned robot system that is
able to return balls served randomly with a ball launcher to
the opponent’s court.

Note, this framework is more challenging as previous work
on robot table tennis [11], [12], [26] as it does not use smart
engineering to overcome inherent problems like movement
generation and the orientation of the racket. In contrast to
these approaches, we use an anthropomorphic robot arm with
seven DoFs. We concentrate on learning smooth movements
that properly distribute the forces over the different DoFs
yielding an human like movement pattern.

Implementing the table tennis framework on an humanoid
robot would enable the system to move sideways as well
as forward and backward. These additional DoFs would
enable the system to apply the motor primitives for different
positions without drasticly changing the overall shape for
the arm movement. However, applying the framework on
an humanoid robot has the consequence that we have to
deal with the balance of the system, the coordination of the
additional DoFs and the increasing complexity of the strategy
in table tennis.

In future work we will integrate a strategy using context
information and thus, select a specific striking movement that
returns the ball such that the opponent cannot return it.

REFERENCES

[1] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlnear dynamical systems in humanoid robots,” in Proc. Int. Conf.
on Robotics and Automation (ICRA), 2002.

[2] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Control planing,
learning and imitation with dynamic movement primitives,” in Proc.
Workshop Bilateral Paradigms on Humans & Humanoids IROS, 2003.

[3] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “Learning from demonstration and adaption of biped
locomotion,” Robotics and Autonomous Systems (RAS), vol. 47, no.
2-3, pp. 79 – 91, 2004.

[4] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in
Proc. Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

[5] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” Advanced
Robotics, Special Issue on Imitative Robots, vol. 21, no. 13, 2007.

[6] J. Kober, B. Mohler, and J. Peters, “Learning peceptual coupling
for motor primitives,” in Proc. Int. Conf. on Intelligent RObots and
Systems (IROS), 2008.

[7] V. Zordan and J. Hodgins, “Motion capture-driven simulations that hit
and react,” in SIGGRAPH Symp. on Computer Animation, 2002.

[8] E. Aboaf, S. Drucker, and C. Atkeson, “Task-level robot learning:
Juggling a tennis ball more accurately,” in Proceedings of IEEE
International Conference on Robotics and Automation, 1989.

[9] J. Kober, K. Muelling, O. Kroemer, C. Lampert, B. Schölkopf, and
J. Peters, “Movement templates for learning of hitting and batting,” in
Proc. Int. Conf. on Robotics and Automation (ICRA), 2010.

[10] U. Frese, B. Bäuml, S. Haidacher, G. Schreiber, I. Schaefer,
M. Hähnle, and G. Hirzinger, “Off-the-shelf vision for a robotic ball
catcher,” in Proc. Int. Conf. on Intelligent Robots and Systems, 2001.

[11] R. Andersson, A robot ping-pong player: experiment in real-time
intelligent control. Cambridge, MA, USA: MIT Press, 1988.

[12] H. Fassler, H. Vasteras, and J. Zurich, “A robot ping pong player:
optimized mechanics, high performance 3d vision, and intelligent
sensor control,” Robotersysteme, pp. 161–170, 1990.

[13] A. Gams and A. Ude, “Generalization of example movements with
dynamic systems,” in Humanoids, 2009.

[14] T. Matsubara, S. Hyon, and J. Morimoto, “Learning stylistic dynamic
movement primitives from multiple demonstrations,” in Proc. Int.
Conf. on Intelligent RObots and Systems, 2010.

[15] M. Jordan and R. Jacobs, “Hierarchical mixures of experts and the em
algorithm,” Neural Computation, vol. 6, pp. 181 – 214, 1994.

[16] S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs.
optimal control – a unifying view,” Progress in Brain Research, vol.
165, no. 1, pp. 425 – 445, 2007.

[17] S. Chiappa, J. Kober, and J. Peters, “Using bayesian dynamical sys-
tems for motion template libraries,” in Advances in Neural Information
Processing Systems 22 (NIPS), 2008.

[18] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning motor
primitives,” in International Symposium on Robotics Research, 2003.

[19] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems 21, 2009.

[20] J. Peters, K. Muelling, and Y. Altun, “Relative entropy policy search,”
in Proceedings of the Twenty-Fourth National Conference on Articial
Intelligence (AAAI-10), 2010.

[21] M. Ramanantsoa and A. Durey, “Towards a stroke construction
model,” International Journal of Table Tennis Science, vol. 2, 1994.

[22] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to adjust
robot movements to new situations,” in R:SS, 2010.

[23] H. Cruse, M. Brüwer, P. Brockfeld, and A. Dress, “On the cost
functions for the control of the human arm movement,” Biological
Cybernetics, vol. 62, pp. 519–528, 1990.

[24] K. Muelling and J. Peters, “A computational model of human table
tennis for robot application,” in Autonome Mobile Systeme 2009, 2009.

[25] S. Schaal, “The SL simulation and real-time control software package,”
Tech. Rep., in preparation.

[26] F. Miyazaki, M. Matsushima, and M. Takeuchi, “Learning to dynam-
ically manipulate: A table tennis robot controls a ball and rallies with
a human being,” in Advances in Robot Control. Springer, 2005.

416

