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Abstract

Learning new motor tasks from physical interactions is an important goal for both robotics and
machine learning. However, when moving beyond basic skills, most monolithic machine learning
approaches fail to scale. For more complex skills, methods that are tailored for the domain of skill
learning are needed. In this paper, we take the task of learning table tennis as an example and present
a new framework that allows a robot to learn cooperative table tennis from physical interaction with a
human. The robot first learns a set of elementary table tennis hitting movements from a human table
tennis teacher by kinesthetic teach-in, which is compiled into a set of motor primitives represented
by dynamical systems. The robot subsequently generalizes these movements to a wider range of
situations using our mixture of motor primitives approach. The resulting policy enables the robot to
select appropriate motor primitives as well as to generalize between them. Finally, the robot plays
with a human table tennis partner and learns online to improve its behavior. We show that the
resulting setup is capable of playing table tennis using an anthropomorphic robot arm.

1 Introduction

Humans perform complex motor tasks in uncertain and changing environments with little apparent effort.
They are able to generalize and, as a consequence, to adapt to new tasks based on their motor abilities.
In contrast, current robots rely strongly on well-modeled environments with accurately estimated param-
eters. Therefore, changes in the environment or task require an expert to program new rules of motor
behaviors. To alleviate this problem, robots need to autonomously learn new motor skills and improve
their abilities. While this problem has been recognized by the robotics community (Schaal et al., 2002),
it is far from being solved. Instead, learning new motor tasks autonomously and adapting motor skills
online while interacting with the environment has become an important goal in robotics as well as ma-
chine learning. In recent years, it has become well accepted that for coping with the complexity involved
in motor skill learning for robots, we need to rely on the insight that humans decompose motor tasks
into smaller subtasks. These subtasks can be solved using a small number of generalizable movement
pattern generators, also called movement primitives (Giszter et al., 2000; Billard et al., 2008; Flash and
Hogan, 1985). Movement primitives are sequences of motor commands executed in order to accomplish
a given motor task. Efficient learning of movement primitives is crucial as the state space can be high
dimensional and the number of scenarios that may need to be explored grows exponentially with the
number of dimensions and time-steps (Schaal, 1999). Here, learning from demonstrations can provide a
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good starting point for motor skill learning as it allows the efficient acquisition of single movement primi-
tives (Guenter et al., 2007; Peters and Schaal, 2008b; Kober et al., 2008; Peters and Schaal, 2008a; Bitzer
et al., 2010). Most approaches for robot imitation learning are either based on physical demonstrations of
a motion sequence to the robot by kinesthetic teach-in (Guenter et al., 2007; Peters and Schaal, 2008b,a;
Bitzer et al., 2010) or through the use of a motion capture system such as a VICON setup (Kober et al.,
2008). We refer to (Schaal et al., 2003a; Billard et al., 2008; Argall et al., 2009) for a review of imitation
learning methods.

To represent movement primitives such that they can adapt trajectories obtained by imitation learning
to the requirements of the current task, several methods have been suggested. Several approaches make
use of via-point based formulations using splines to interpolate between the via-points (Miyamoto et al.,
1996), Hidden Markov Models (HMMs) (Williams et al., 2008) or Gaussian Mixture Models (GMMs)
(Calinon et al., 2007). While these approaches are favorable in many situations, spline-based via-point
models are difficult to use in new situations while HMMs und GMMs are difficult to train for high-
dimensional systems. Hence, an alternative approach based on dynamical systems was suggested by
Ijspeert et al. (2002) and called DMPs (Dynamical system Motor Primitives). DMPs are robust against
perturbations, allow changing the final state, speed, and duration of the motion without altering the
overall shape of the movement. Furthermore, they are straightforward to learn by imitation learning
(Ijspeert et al., 2002) and well suited for reward driven self-improvement (Kober and Peters, 2009). DMPs
have been successfully used to learn a variety of motor skills in robotics, including planar biped walking
(Schaal et al., 2003b; Nakanishi et al., 2004), tennis-like swings to a static end-point (Ijspeert et al., 2002),
T-ball batting (Peters and Schaal, 2006), constrained reaching tasks (Guenter et al., 2007), and Ball-in-a-
cup (Kober et al., 2008). However, up to now, most applications of learning and self-improving Ijspeert’s
DMPs use only individual movement primitives to represent the whole motor skill. An exception is the
work of Ude et al. (2010), in which the internal parameters of the DMPs are recomputed from a library
of movement primitives in each trial using locally weighted regression. However, complex motor tasks
require several movement primitives which are used in response to an environmental stimulus and the
usage needs to be adapted according to the performance.

In this paper, we attempt to create such a framework based on the idea that complex motor tasks
can frequently be solved using a relatively small number of movement primitives (Flash and Hogan,
1985) and do not require a complex monolithic approach. The goal of the paper is to acquire a library
of movement primitives from demonstration (to which we will refer as movement library), to improve
the performance of the stored movements with respect to the current situation as well as to select and
generalize among these movement primitives to adapt to new situations. Each movement primitive
stored in the library is associated with a set of parameters to which we refer as the augmented state that
describes the situation present during demonstration. The primitives in the movement library are used
as components in our mixture of motor primitives (MoMP) algorithm. The MoMP algorithm activates
components (i.e., single movement primitives) using a gating network based on the augmented state and
generates a new movement using the activated components. Our approach is validated using robot table
tennis as a benchmark task. In table tennis, the robot has to interact in real-time with a human partner.
Thus, it has to adapt to the humans variable behavior. A typical movement in table tennis consists of
the preparation of the stroke by moving backwards, hitting the ball at a desired position, with the right
orientation and velocity and moving the arm back to a rest posture. The hitting movement itself may
vary depending on the point of impact relative to the base of the robot, the time available until impact
or the kind of stroke that should be performed. Furthermore, small inaccuracies in timing can lead to
large deviations in the final bouncing point of the returned ball that can result in unsuccessful attempts
to return the ball to the opponent’s court. The goal of this physical human-robot interaction task is to
learn autonomously from and with a human to return a table tennis ball to the opponent’s court and
to adapt its movements accordingly. Therefore, the robot first learns a set of striking movements from
a human teacher from physical human robot guiding, known as kinesthetic teach-in. Thus, the system
recorded the demonstrated movement of the arm and the position of the ball. From this stream of data,
the movement primitives were extracted. Secondly, the learning system needs to identify the augmented
state that includes where, when and how the ball should be hit. Subsequently, the system generalizes
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Figure 1: General setup for learning a motor task using the mixture of motor primitives (MoMP). A
supervisory level creates the augmented state x containing the relevant information of the task based
on the state of the system. MoMP selects and generalizes among the movement templates in a library
according to the augmented state x which is provided by the supervisory level. As a result we obtain a
new motor policy that can be executed. A teacher provides learning signals to the supervisory level as
well as the movement generation level such that the system is able to adapt both the generation of the
task relevant information and the generation of the movement.

these movements to a wider range of situations using the proposed MoMP algorithm. Here, generalizing
refers to the ability to generate striking movements for an arbitrary incoming ball that was not seen
during the demonstrations. The resulting system is able to return balls served by a ball launcher as well
as to play in a match against a human.

In the remainder of the paper, we will proceed as follows. In Section 2, we present our general
framework for learning complex motor skills. We show (i) how to initialize the library using imitation
learning, (ii) how to derive the augmented state from the state of the system and (iii) how to adapt
the setup to new situations using the MoMP algorithm. We evaluate the MoMP approach in a robot
table tennis scenario in Section 3. Here, we will use all components of the presented motor skill learning
framework to achieve this task. In Section 4, we will present our results and summarize our approach.
A glossary with the definition for the technical terms used in this paper can be found in Appendix B.
A review of robot table tennis is presented in Appendix F. The overall performance of our approach is
illustrated in the attached video (Extension 1).

2 Learning and Generalizing Motor Behaviors

In a complex motor task such as table tennis, we need to coordinate different movements which highly
depend on a changing context. Unlike in many classical examples (Peters and Schaal, 2008a; Pongas
et al., 2005; Nakanishi et al., 2004), single movement primitives which were demonstrated to work well in
a certain situation do not necessarily perform equally well in other situations that might occur throughout
the task. In table tennis, the movement profile depends strongly on where, when and how the ball has
to be hit, as well as the velocity of the incoming ball and the desired target on the opponent’s court.
As it is not feasible to demonstrate all possibly required movements to the robot, the system needs to
generalize from a small number of movement primitives. Hence, we propose an algorithm called mixture
of motor primitives (MoMP) which generates a generalized movement for a given augmented state that
can be executed by a robot. Therefore, a set of movement primitives and their corresponding augmented
states are extracted from a set of demonstrations and stored in a library.

To generate a movement for a new augmented state x (that was not presented during demonstration),
the system selects movement primitives from the library. Therefore, a parametrized gating network is
used in the MoMP algorithm to activate movement primitives based on the presented augmented state. In
some cases, the augmented state might be directly available as part of the state of the system. However,
in table tennis, additionally parameters δ need to be estimated from the state by a supervisory system.
The state of the system s consists of all variables necessary to model the system, e.g., in our table tennis
task, the position and velocity of the ball moving towards the robot and the current joint configuration of
the robot itself. The additional parameters δ of the augmented state x are given by the point of impact,
the velocity and orientation of the racket at the hitting point, and the time until hitting the ball.
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Figure 2: The learning process in the presented MoMP framework. Given a set of demonstrations recorded
by kinesthetic teach-in, the system generates the movement library, initializes the gating network as well
as the estimation of the augmented states used in the MoMP. The resulting initial system can be used to
perform a given motor task. During the execution, the gating network, the augmented states estimation
and the primitives are further improved using reinforcement learning.

The supervisory system which generates the augmented state, as well as the gating network of the
MoMP algorithm that selects and mixes the movement primitives according to the augmented state need
to be adapted to improve the performance of the system. Figure 1 illustrates the general setup for
executing a motor task based on the current state of the system and the relation between the state, the
augmented state and the movement generation. The learning structures involved in the MoMP algorithm
are shown in Figure 2.

In the remainder of this section, we will first present the MoMP framework (Section 2.1). Subsequently,
we explain how to compute the augmented state (Section 2.2). Finally, we show how to use and initialize
DMPs as elementary motor policies in the MoMP framework (Section 2.3).

2.1 Learning a Motor Task using the Mixture of Motor Primitives

A movement performed by an artificial or biological system can be formalized as a policy

u = π(x,w)

that maps the state of the system, described by vector x = [s, δ], to a control vector u. The vector w
contains task-specific adjustable parameters. In the following, we will refer to such a policy as motor
policy π(x). The state of the system x corresponds here to the augmented state.

We generate the motor policy π(x) based on a library consisting of L movement primitives. Each
movement primitive i ∈ {1, ..., L} in the library is stored in a motor policy πi. Additionally, for each
motor policy πi, the augmented state xi associated with this movement primitive is stored. The movement
library can be initialized using movements demonstrated in different situations of the task (more details
on the acquisition of single primitives will follow in Section 2.3.3).

The MoMP generates a new movement for the current situation, represented by the augmented state
x by computing the weighted average of all movement primitives πi (see Figure 3). The resulting motor
policy generated by MoMP is given by

π(x) =
∑L
i=1 γi(δ)πi(x)∑L
j=1 γj(δ)

, (1)

where the function γi(δ) generates the weight of πi(x) given the augmented state x = [s, δ]. All weights
γi together form the gating network of the MoMP similar to a gating network in a mixture of experts
(Jacobs et al., 1991).

The weights of the gating network ensure that only movement primitives that are well-suited for the
current situation contribute to the resulting behavior. It appears reasonable to assume that movement
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Figure 3: An illustration of the mixture of motor primitive framework. The gating network weights the
single movement templates stored in a movement library based on an augmented state. The weighted
sum of these primitives defines the new motor policy which produces the joint positions, velocities and
accelerations for one degree of freedom. The resulting movement is then executed using a control law for
execution which generates the required motor torques.

primitives associated with augmented states similar to the currently observed one are more likely to
produce successful movements than movement primitives whose augmented states differ significantly
from the observation. However, any large set of demonstrations will include rather poor attempts and,
thus, some demonstrations are more suitable for generalization than others. Therefore, the gating network
has to weight the movement primitives based on their expected performance within the current context.
Such weights can be modeled by an exponential family distribution

γi(x) = ξ exp{θTi φi(x)}, (2)

where φi(x) denotes the feature vector of x, θi is a vector containing internal parameters, and ξ is a
normalization constant. The weight γi corresponds to the probability that the motor policy πi is the
right policy in the context described by x, i.e., γi(x) = p(πi|x). In an ideal world, there would be just one
motor policy in the library that is perfectly suited for the current context. However, in practice, usually
several motor policies correspond to this context imperfectly. Therefore, the MoMP needs to generalize
among these motor policies, i.e., it mixes these movement primitives according to their weights γi in order
to yield a motor policy that can be used in a broader context.

The choice of φi(x) depends on the task. In our experiments however, a Gaussian basis function
where the center is given by the augmented state xi proved to be a good choice. The parameters θi of
the probability distribution γi(x) are unknown and have to be determined. If good features φ(x) are
known, linear regression methods are well suited to learn the parameters θi given examples of γi and the
corresponding φ(x). Hence, we use linear Bayesian regression (Bishop, 2006) to update the mean and
variance of the parameters of the distribution online for each motor policy in the library (see Appendix
D for a short review of linear Bayesian regression). The parameters are updated during the execution
of the task based on the performance of the system. The performance can be measured by the reward
r which is provided by a teacher to the system and corresponds in table tennis to the distance of the
returned ball to the desired goal on the opponent’s court. As a result, the system is able to adapt the
choice of the used motor policies.

Altogether, the mixture of motor primitives selects and generalizes between movement primitives
in the library based on the current augmented state x. The resulting motor policy π(x) is composed
of several primitives weighted by their suitability in the given context of the task. The weights are
determined by a gating network and adapted to the task based on the outcome of previous trials.

2.2 Computation of the Augmented State

Some parameters required for the task are not part of the state and need to be computed. In table
tennis, these parameters include the temporal and spacial interception point of the ball and the racket,
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Algorithm 1 Generalizing Movements
Initialize:

Initiate movement library from demonstrations
Determine initial states S0, costs C0 and meta-parameters D0 from demonstrations
Choose a kernel k, k, K and scaling parameter λ
Choose basis function φ(x), reward function r

For each trial
Determine current state sN+1

Choose δN+1 ∼ N (δ|δ(s),Σ(s)) with CrKR, where
δ(s) = k(s)T (K + λC)−1D
Σ(s) = k(s, s) + λ− k(s)T (K + λC)−1k(s)

Set xN+1 = [sN+1, δN+1]
Calculate motor policy with MoMP

π(x) =
PL

i=1 γi(δ)πi(x)PL
j=1 γj(δ)

Execute motor policy π(x)
Determine reward r for executing π(x)
Update S, D and C according to s, δ and r
For all πi in library update θi with LBR
ci = γi/

∑L
j γj

VN+1
i =

((
VN
i

)−1

+ βφ(xN+1)T ciφ(xN+1)
)−1

θN+1
i = VN+1

i

((
VN
i

)−1

θNi + βφ(xN+1)T cir
)

end

as well as the velocity and orientation of the racket while hitting the ball. When planning in joint space,
this corresponds to finding the position and velocity at the interception point for each joint. These
parameters are an essential part of the generation of a desired movement with the motor policy π(x) as
they define the final state and duration of the movement. We refer to these additional parameters as the
meta-parameter δ. The augmented state x is given by x = [s, δ].

One possibility of computing the meta-parameters is to predict the trajectory of the ball using an
extended Kalman predictor starting with the current state of the system. Subsequently, we can determine
a well suited hitting point on the trajectory and compute the desired velocity and orientation of the racket
given a target on the opponent’s court. Using inverse kinematics is one way to compute the corresponding
joint configuration (see Muelling et al. (2011) for a detailed description).

An alternative possibility is to use an episodic reinforcement learning approach to acquire the mapping
from s to the meta-parameter δ directly. Here, Cost-regularized Kernel Regression (CrKR), see (Kober
et al., 2012), has also proven to be suitable for learning meta-parameters for motor policies as used in this
project. CrKR uses a stochastic policy from which it draws the meta-parameters. The initial policy is
obtained by training the algorithm with the demonstrations. The cost is used to weight the training data
points down based on the reward r. See Appendix C for a detailed description of the CrKR algorithm.

In Algorithm 1, we show the complete approach of computing the meta-parameters δ using CrKR,
the generation of a generalized motor policy using the MoMP, and the corresponding update according
to the system’s performance.

2.3 Representation of Behavior with Movement Primitives

To represent a single motor policy πi used in the MoMP, we employ motor primitives represented by
dynamical systems (DMPs). DMPs, as suggested in (Ijspeert et al., 2002; Schaal et al., 2007), are a
particular kind of dynamical systems that is well-suited for imitation and reinforcement learning. It
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can be understood as a set of two differential equations that are referred to as the canonical and the
transformed system. The canonical system h determines the phase z of the movement generated by

ż = h(z). (3)

Intuitively, one could state that the canonical systems drives the transformed system similar to a clock.
The transformed system

u = π(x) = d(y, gf , z,w), (4)

generates the desired movement for a single degree of freedom (DoF). It is a function of the current
position y of the system, the final goal position gf , the phase variable z and the internal parameter
vector w. The movement can be specified in joint or task space. The desired movement is specified by a
dynamical system for each DoF, linked together by one shared canonical system.

DMPs allow us to represent arbitrarily shaped smooth movements by the parameter vector w, which
can be learned from demonstration by locally weighted regression (see Section 2.3.3). Furthermore, it
is straightforward to adapt the DMPs with respect to the final position, movement amplitude and du-
ration of the movement without changing the overall shape. In contrast to non-autonomous movement
representations such as splines, DMPs are robust against perturbations in the environment, because time
is not used explicitly. Furthermore, the DMP representation allows us to mimic a presented movement
shape and, to represent arbitrary movements instead of only one special kind of movement. As a con-
sequence, we can adapt the movement during execution to new movement goals and time constraints
without re-planing the whole movement. However, the original formulation cannot be used for striking
movements in a straightforward manner as the formulation does not account for non-zero end-velocities
or via-points without changing the shape of the movement. Thus, the use of movement primitives for the
whole striking movement with zero end-velocity is not suitable. The generated movements from such an
approach will fail to return the ball successfully, since the trajectory is not guaranteed to cross the hitting
point with the desired end-effector velocity at the right point in time. As a result, the success-rate of
returning a ball to the opponent’s court would decrease drastically. Hence, we need movement primitives
that allow for different movement stages where the stages are switched based on features of the state.
To achieve this goal, we introduce a type of two-stage movement primitive suited for hitting movements
and use the feature of ball-racket contact to allow the system to switch the stage. Using the ball-based
features, it becomes straightforward to compute the hitting point and therefore, the point were we have
to switch between the two movement stages. While Kober et al. (2010) augmented Ijspeert’s approach
to make it possible to strike moving objects with an arbitrary velocity at the hitting point, we will show
in the following the shortcomings of their approach and present an improved alternative form.

2.3.1 Movement Primitives for Striking Motions

For discrete movements (i.e., movements between fixed start and end positions such as reaching, pointing,
grasping and striking movements) the canonical system is defined as

τ ż = −αzz, (5)

where τ is a temporal scaling factor and αz is a pre-defined constant which is chosen such that the
behavior is stable (Ijspeert et al., 2002; Schaal et al., 2007). Initially z is set to 1 and converges to zero
at the end of the movement. Please note that as long as the time parameter of the movement does
not change, we can integrate with respect to the time directly and use the solution z(t) = exp(−αz/τt)
instead. However, implementing a change of the hitting time, slowing down or speeding up is not straight
forward anymore. Therefore, when such parameter changes are essential (as in our setup), the phase
should be computed as described in Equation 5.

For hitting movements, Kober et al. (2010) proposed the transformed system

τ v̇ = (1− z)αy (βy(g − y) + ġfτ − v) + ηf(z),

τ ẏ = v, g = g0 − ġτ ln(z)
αz

,
(6)
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Figure 4: Changing the goal position and velocity is essential for adapting the demonstration to new
situations. This figure illustrates how the different versions of the dynamical system based movement
primitives are modulated by changing the goal position and velocity of the movement as they frequently
occur in striking sports. The demonstration of a striking movement was obtained by kinesthetic teach-in
in table tennis. After learning, all movement primitive formulations presented were able to reproduce the
demonstration to a certain extend. However, the three formulations are differently robust against changes
in the desired goal position and velocity. We changed the position by 0.15 m and the velocity by 0.4 m/s.
The original formulation of Ijspeert is not able to reach the desired velocity as the system ends with zero
velocity. The formulation of Kober et al. (2010) is able to adapt to a new final velocity. However, the
accuracy of the adapted movement does not suffice for practical problems. The reformulation presented
in this paper reduces this inaccuracy drastically and stays closer to the desired movement shape.

where y and v are the desired position and velocity generated by the policy, η = (gf − y0) defines the
amplitude of the movement, y0 is the start position, gf is the desired final position, ġf the desired final
velocity of the system, g is the current goal position defined by a moving target, g0= gf − τ ġf is the initial
position of the moving target and τ ln(z)/αz corresponds to the time. At the end of the movement, g
is equal to the desired final goal gf . For each new movement g and ġ are computed based on the new
desired goal position gf and the desired final velocity ġf . The pre-defined spring-damper constants αy
and βy are chosen such that the system is critically damped. The transformation function

f =

∑N
j=1 wjψj(z)z∑N
j=1 ψj(z)

, (7)

employs Gaussian basis functions ψj(z) = exp(−ρj(z−µj)2) characterized by a center µj and a bandwidth
ρj . N is the number of adjustable parameters wj . The transformation function f alters the output of the
spring damper model and thereby allows the generation of arbitrarily shaped movements. As z converges
to zero at the end of the movement, the influence of the non-linear function f will vanish. The augmented
form of the DMP enables us to pull the DoF simultaneously to a desired goal position and an arbitrary
end velocity without changing the overall shape of the movement or its duration. If ġ is set to zero, the
formulation corresponds to the original formulation of Ijspeert except for the first term (1 − z) which
prevents large jumps in the acceleration at the beginning of the movement. A proof of the stability of
the system can be found in Appendix E.

2.3.2 Modified Hitting Primitives

The formulation of Kober et al. (2010) with a linear velocity allows to directly incorporate the desired
velocity such that the desired final velocity can be adapted (in addition to the desired initial and final
position in Ijspeert’s formulation). However, this formulation has two drawbacks. First, fast movement
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changes of the final position and velocity can lead to inaccuracies in the final velocity (see Figure 4). In
table tennis, such errors at the hitting point can cause the returned ball to miss the opponent’s court.
Second, if (gf − y0) is close to zero, the scaling of f with η = (gf − y0) can cause huge accelerations when
gf is changed (see Figure 5). Using a polynomial target velocity, we modified the transformed system to

τ v̇ = αy (βy(g − y) + ġτ − v) + g̈τ2 + ηf(z),

τ ẏ = v, η =
exp (gf − y0)

exp(a)
,

g =
5∑
i=0

bi

(
−τ ln(z)

αz

)i
, ġ =

5∑
i=1

ibi

(
−τ ln(z)

αz

)i−1

,

g̈ =
5∑
i=2

(i2 − i)bi
(
−τ ln(z)

αz

)i−2

,

(8)

where g, ġ and g̈ are the current position, velocity and acceleration defined by the moving target and
a is a reference amplitude. If the internal parameters w are estimated by imitation learning as in the
experiments performed in this paper, a will correspond to the amplitude of the demonstrated movement.
The parameters bj are computed by applying the bounding conditions, i.e., the condition that the fifth
order polynomial starts with the initial position, velocity and acceleration and ends at the desired goal
gf with the desired velocity ġf and zero acceleration. Thus, using a fifth order polynomial allows us
to control the initial and final position, velocity and acceleration more accurately. The new scaling
term η = exp(gf − y0)/ exp(a) ensures that f does not cause infeasible acceleration. To avoid infeasible
acceleration profiles the velocity and acceleration is set constant outside the interval [0, Tf ]. The term
(1−z) is not necessary anymore, as jumps in the acceleration are avoided by incorporating the polynomial
position profile starting at y0. Note that Ning et al. (2011) also used splines in a DMP setting. However,
while Ning et al. (2011) always try to follow the reference trajectory and adapt only the beginning and
ending of the trajectory, we attempt to adapt the whole trajectory. A proof of the stability of the system
can be found in Appendix E.

The complete algorithm for generalizing DMPs using MoMP is given in Algorithm 2.

2.3.3 Initialization of the Behaviors

A library of movement primitives can be built using demonstrated motor behaviors. Imitation learning for
DMPs, as suggested in (Ijspeert et al., 2002; Schaal et al., 2003b), enables us to learn initial DMPs from
observed trajectories and to reproduce these movements. The observed trajectories are captured using
kinesthetic teach-in. To learn the DMP from a demonstration, we assume that the policy that produced
the observed trajectory can be represented by a DMP as described in Equation (8). Consequently, the
problem reduces to inferring the set of internal parameters w such that the error between the reproduced
and demonstrated behavior is minimized. Therefore, the problem can be solved straightforwardly by a
regression algorithm.

In the following, we will assume that each DoF is independent and that we can learn each primitive
separately. Redundant primitives can be eliminated (Chiappa et al., 2008). For a recorded trajectory
Γ = [θt, θ̇t, θ̈t] over a time interval t ∈ {1, ..., Tf}, we can compute the reference signal of a striking
movement based on Equation (8) by

f ref
t = τ2θ̈t − αy(βy(g − θt) + τ ġ − τ θ̇t)− g̈τ2. (9)

The appropriate cost function to be minimized for each parameter wn is the weighted squared error

e2n =
Tf∑
t=1

ψnt (f ref
t − ztwn)2, (10)

9
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Figure 5: A key problem of the previous movement primitive formulation is the highly uneven distributed
accelerations with a peak at the beginning of the movement. Such jumps can affect the position and
velocity drastically as shown in this figure. They may result in the attempt to generate infeasible tra-
jectories for real robots. Kober et al. reduced this effect by gradually activating the attractor dynamics.
However, if the initial movement amplitude is close to zero in a demonstration jumps will occur when the
goal position is changed. By introducing a new scaling term for f , we can avoid jumps at the beginning
of the movement and reduce overshooting in the position and velocity profile. The demonstration was
obtained by kinesthetic teach-in of a striking movement. Both position and velocity were then changed
to a new goal. Note, that the acceleration of the modified hitting primitives is so much smaller that it
appears to be zero when compared to Kober’s and Ijspeert’s original versions.

where ψnt = exp(−ρn(zt−µn)2) while zt can be determined by integrating Equation (5). We can rewrite
this error in matrix form by

e2n = (f ref − zwn)TΨn(f ref − zwn), (11)

where f ref is the vector consisting of f ref
t for each time step t, Ψn = diag{ψn

1 , ..., ψ
n
Tf
} and z = [z1, ..., zTf

]T .
The resulting regression problem can be solved straightforwardly using locally weighted regression as
originally suggested in (Ijspeert et al., 2002; Schaal et al., 2003b). Thus, the optimal wn are given by

wn = (zTΨnz)−1zTΨnf ref . (12)

The detailed method for learning movement primitives with imitation learning for all DoFs is shown in
Algorithm 3.

3 Evaluation

In Section 2, we have described a framework for selecting and generalizing movements based on augmented
states as well as for computing the meta-parameters which are part of the augmented states from the
state information of the environment. Here, we will show that we can use these methods to learn robot
table tennis from and with a human being. Therefore, we will first give a short overview of the table
tennis task and then evaluate the methods in simulation as well as on a real robot.

3.1 Robot Table Tennis Setup

For the robot table tennis task, we developed a system that includes a Barrett WAM arm with seven
DoFs capable of high speed motion for hitting the ball and a vision system with four Prosilica Gigabit
GE640C cameras for tracking the ball (Lampert and Peters, 2012). The robot is mounted in a hanging
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Algorithm 2 Mixture of Motor Primitives (MoMP)
Input: augmented state x
for t = 1 to T do

for i = 1 to L do
Compute the phase variable z

ż = −αzz
and the transformed system

g =
∑5
j=0 bj

(
−τ ln(z)

αz

)j
ġ =

∑5
j=1 jbj

(
−τ ln(z)

αz

)j−1

g̈ =
∑5
j=2 (j2 − j)bj

(
−τ ln(z)

αz

)j−2

η = exp(gf−y0)
exp a

τ v̇ = αy (βy(g − y) + ġτ − v) + g̈τ2 + ηf(z)
τ ẏ = v̇

end for
Mixture of Motor Primitives output

π(x) =
PL

i=1 γi(x)πi(x)PL
i=1 γi(x)

end for

position from the ceiling. A standard racket, with a 16 cm diameter, is attached to the end-effector. The
setup incorporates a standard sized table tennis table and a table tennis ball in accordance with the
International Table Tennis Federation (ITTF) rules (International Table Tennis Federation, 2011). The
ball is served either by a ball launcher to the forehand of the robot with a randomly chosen velocity
or served by a human. The area covered is approximately 1 m2. The ball is visually tracked with a
sampling rate of 60 Hz and the vision information is filtered using an extended Kalman filter (EKF).
For the internal model of the EKF, we assume a simplified model of the flight and bouncing behavior of
the ball, i.e., we consider gravity and air drag, but neglect the spin acting on the ball due to its limited
observability. The world frame is fixed at the base of the robot, with the negative y-axis pointing towards
the opponent and the z-axis pointing upwards.

If the visual system detects a table tennis ball that moves towards the robot, the system needs to
compute the relevant movement information, i.e., where, when and how the ball has to be hit (see Section
3.2). The target location on the opponent’s court was fixed to the center of the court to make the results

Algorithm 3 Imitation Learning of one DMP for MoMP

Input: Γi = [θt, θ̇t, θ̈t], t ∈ {1, ..., Tf}
For all DoF i and each parameter wn do

Set constant parameters αz, αy, βy, pn and µn
Set gf = θτ and ġf = θ̇Tf

Calculate g, ġ and g̈
Calculate zt by integrating τ ż = αzz for all t
Calculate ψnt = exp(−ρn(zt − µn)2)
Calculate reference value f ref from demonstration
f ref
t = τ2θ̈t − αy(βy(g − θt) + ġ − τ θ̇t)− g̈τ2

Create matrices z = [z1, ..., zTf
]T , Ψ = diag(ψn1 , ..., ψ

n
Tf

) and f ref = [f ref
1 , ..., f ref

Tf
]T

Compute weights via locally weighted regression
wn = (zTΨz)−1zTΨf ref

end

11
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Figure 6: Cost (lower curve) of the simulated table tennis task averaged over 10 runs. The upper curve
represents the rate of successful hits. At the beginning the robot misses the ball in 95% of the trials. At
the end the trained robot hits almost all balls.

comparable.
Special attention was given to prevent physical damage to the setup during movement execution. As

a result, the system evaluates at each time point the position of the end-effector. If the end-effector
was too close to the table, the movement would be stopped and the arm moves back to its rest posture.
During the real robot evaluation, however, the table was 80 cm away from the real robot. Thus, the
robot was not able to hit the table. However, even in simulation, where the table was at a distance of
30 cm from the robot, collisions with the table were rarely a problem. Balls which cannot be reached
by the robot are ignored. To avoid joint limitations, the solutions for the joint configuration predicted
for the hitting point were evaluated before performing the motion. If the joint configuration violated
the joint limits, the solution would be rejected. Furthermore, the desired joint configuration for the next
time step, was tested. If the join limitations were violated, the movement would stop and not continue
the planned movement. However, if additional object or joint limit avoidance is necessary, the movement
could be adapted by adding a repellent force. In this case, a potential field centered around the obstacle
(as described by Park et al. (2008) and Kroemer et al. (2010)) could be used. Luckily, these security
precautions were never required in our experiments in practice as the MoMP generates movements within
the convex combination of demonstrations. Hence, the system will not encounter joint limits or hit the
table. Similarly, singularities were avoided by additionally restricting the hitting area of the robot.

3.2 Computing the Meta-Parameters

To use DMPs as motor policies in a table tennis game, the system needs to identify the hitting position,
velocity and orientation of the racket, as well as the time until impact. These parameters need to be
estimated for each incoming ball in a match. When planning in joint space, the hitting position, velocity
and orientation of the racket are defined by the joint configuration of the robot at this point in time.
Altogether, 15 parameters need to be determined, which include the timing parameter that determines
the initiation of the hitting movement. These values depend on the impact point of the racket and the
ball, the velocity of the ball and the desired goal on the court of the opponent. As the goal on the
opponent’s court is kept constant, we can neglect this parameter.

We can learn the 15 task parameters using CrKR as described in Section 2.2 based on the position
and velocity of the ball above the net, which is used as the state of the system. The Euclidean distance
of the ball and the racket at the estimated hitting time is used as the cost function. The accuracy of the
system over time is shown in Figure 6. A more detailed description and evaluation of this approach can
be found in (Kober et al., 2012).

Besides learning the meta-parameters directly, the position, velocity and orientation of the racket
can be computed analytically based on the state of the system and the target on the opponent’s court.
These task space parameters can also be converted into joint space parameters using inverse kinematics

12



(a) Physical human robot interaction: kinesthetic teach-in of a striking motion in table tennis.

(b) Reproduced hitting motion by imitation learning.

Figure 7: Sequence of a hitting motion in table tennis demonstrated by a human teacher and reproduced
with a Barrett WAM arm with seven DoF. From the left to the right the single pictures represent the
system at the end of the awaiting, preparing, hitting and follow through stage respectively.

(Muelling et al., 2011).

3.3 MoMP

To analyze the performance of our system described in Section 2, we analyzed the MoMP framework in
simulation as well as on a real Barrett WAM in a physical table tennis setup. The system learns a set
of basic hitting movements from demonstration and, subsequently, generalizes these demonstrations to a
wider range of situations.

3.3.1 Evaluation in Simulation

In order to evaluate our setup, as described in Section 2, in a variety of different situations under near-
perfect conditions, we first evaluate it in simulation. The parameters of the hitting movement depend on
the interception point of the racket and the ball and vary in their overall shape. To generate a movement
that is able to cope with the varying conditions, we use our MoMP framework with the estimated hitting
point and velocities as augmented state. The movement library was built using 300 movement templates
sampled from successful strokes of an analytical robot table tennis player (Muelling et al., 2011). For the
simulation of the ball, we neglected air drag in this evaluation. The system received the true position
and velocity of the ball which reduces the sources of potential errors. Thus, the success rate of returning
the ball back to the desired goal on the opponent’s court reflects the performance of the algorithm more
accurately. We collected arm, racket and ball trajectories and extracted the duration of the submovements
and the Cartesian ball positions and velocities at the hitting point. The parameters w for all movement
primitives were learned offline by imitation learning as described in Algorithm 3. All DoFs were modeled
independently in the transformed system but are synchronized such that they all start at the same time,
have the same duration and are driven by the same canonical system. The Cartesian position and velocity
of the expected hitting point were used as meta-parameters of the augmented state. The balls were served
equally distributed on an area of 1.1 m x 0.3 m.

13
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Figure 8: (a) Velocity error at the movement goal of the single movement primitives and the MoMP. The
execution error of each movement primitive in the library was determined. The first bar of each DoF
shows the mean error of the individual movement primitives and the corresponding standard deviations.
The second bar of each DoF shows the mean error of the motor policies generated by the MoMP. (b)
Improvement of the MoMP system with a growing number of movement primitives in the library.

First, we evaluated the single mixture components (i.e., the movement primitives learned by imitation
learning) independently. Testing randomly selected movement primitives individually, we observed a
success rate of 23 % to 89 %, where success was defined as the ability to return the ball to the opponents
court. The combination of these components in an untrained mixture of movement primitives algorithm
resulted into a player which achieved a success rate of 67 %. Learning of the weight parameters γi over
1000 trials improved the performance to a 94 % success rate. Analyzing the weight parameters for all
movement primitives allowed the learning system to reduce the size of the library as all primitives πi
where γi converged to zero were effectively removed. We observed that about 27 % of the primitives were
removed and that these primitives had an average performance of only a 30 % success rate.

3.3.2 Real Robot Table Tennis

We evaluated our setup on a Barrett WAM arm. Kinesthetic teach-in was used to record 25 striking
motions which all started at the same initial position (see Figure 7). Gravity compensation of the robot
was enabled, but no additional movement commands were sent to the robot. As a result, the robot
could be moved freely by the teacher. To ensure the safety of the teacher, reduced limits for velocity and
acceleration were enforced. A second person manned the emergency shut-off. For the demonstrations, the
ball was served by a ball launcher covering the forehand area of the robot. The recorded arm movements
were divided into submovements according to the following events: contact with the ball, zero velocity and
change in movement direction. As a result, each demonstration could be divided into four submovements:
preparing the hitting by moving the racket backwards, hitting the ball in a circular forward movement,
follow throw until the velocity goes to zero and moving back to the default position. We created the
movement library of DMPs for each movement recorded from the human teacher using imitation learning.
As augmented state, we used the estimated hitting position and velocity.

We evaluated the performance of the created movement library intensively in simulation first. Here,
we used the exponential of the negative distance between the desired joint velocity and the actual joint
velocity at the interception point of the ball and the racket. The balls were served to an area of 1.1 m
x 0.3 m. The system was trained using 100 trials and evaluated over 200 additional trials. First, we
evaluated the performance of the individual movement primitives in our library. Analyzing the ability of
each DMP to generalize to new situations (i.e., the ability to perform equally well in new situations), we
found that not all DMPs were able to adapt to the changing velocity profiles as required. In the last three
DoFs towards the racket, we found mean errors ranging from 0.02 rad/s to 0.4 rad/s from the desired
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(a) Fixed ball launcher.
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(b) Oscillating ball launcher.

Figure 9: The locations of ball-racket impacts during demonstration and evaluation on the real robot. (a)
The ball-racket impacts during the evaluation with the fixed ball launcher. (b) The ball-racket impacts
of the evaluation of the oscillating ball launcher.

joint velocities. Using our MoMP system reduced the mean errors to 0.04 rad/s (see Figure 8(a)). Using
just the average performance of the last three DoF as a reward signal, the system was able to reduce the
average error to 0.02 rad/s where 8 movement primitives were mixed in average. The average performance
of the system using MoMP without updating the gating network was 0.08 rad/s. Updating the gating
network and just choosing the movement primitive with the best expected performance, we had an error
of 0.05 rad/s and mixing the movement primitives yielded an error of 0.02 rad/s. An overview of the
improvement of the system with increasing number of movement primitives used is shown in Figure 8(b).

Performing the movement on a real system, we used the exponential of the negative distance between
the desired goal on the opponent’s court and the actual bouncing point as reward signal. If the ball
missed the table, the distance would be set to 5 m and the reward was set close to zero. We evaluated the
algorithm in three experiments. In the first two experiments we used the ball launcher to serve the ball
to the robot to ensure similar conditions for both initial and final test phases. In the first experiment, the
ball launcher was in an oscillating mode. The area served by the ball launcher measured 0.7 m x 0.4 m.
The striking movement would be considered to be successful, if the ball was returned to the opponent’s
court. The setup was tested with 30 trials. Before training, the performance of the system was 69%.
The distance between the bouncing points on the opponent’s court and the desired target on the table
had an average distance of 1.9 m to the target on the table. After training the system in 150 trials, the
system returned 97% of the balls successfully to the opponent’s court. The mean distance between the
bouncing point and the target on the table was 0.6 m. Evaluating only the successful trials, the mean
distance to the target was 0.46 m. The point of impact of the ball and the racket during demonstration
and evaluation is shown in Figure 9.

In the second experiment, we chose to fix the ball launcher in a position where the system was not
able to return the ball using the initial policy generated by MoMP. The area served by the ball launcher
was 0.25 m x 0.25 m. Initially, the system was not able to return any of these balls. After training for
60 trials, the system was able to return 79% of the balls successfully to the opponent’s court. The mean
distance between the bouncing point of the returned balls and the desired target on the table was 0.31 m.
During the training, the usage of the applied movement primitives changed drastically. While some of the
movement primitives were relocated, other movement primitives were avoided completely and replaced
by others used instead (see Figure 10).

In a third experiment, a human played against the robot. The human served balls on an area of 0.8 m
x 0.6 m. The robot hit back up to 9 balls in a row in a match against the human opponent. Initially the
robot was able to return 74.4 % of the balls. After playing one hour against the human, the robot was
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(a) Before training.
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(b) After training.

Figure 10: Distribution on the hitting manifold (i.e., the part of the state-space that defines the ball-
racket contacts) of the most dominant movement primitives before (a) and after (b) training. Each
colored region corresponds to one movement primitive in the movement library. Each point corresponds
to the point of impact during evaluation. The usage of the movement primitives changed after training
the system with a ball launcher. While two movement primitives were relocated, three were avoided and
replaced by two better suited primitives. Please note that we have displayed only a small excerpt of the
served forehand area here in order to visualize the re-organization of a few primitives.

min ẋ max ẋ min ẏ max ẏ min ż max ż vmax

Simulation -0.92 m/s 0.34 m/s 1.88 m/s 4.03 m/s -2.11 m/s 1.23 m/s 4.64 m/s
Experiment 1 -0.66 m/s 0.00 m/s 2.8 m/s 3.27 m/s -2.75 m/s -1.03 m/s 4.33 m/s
Experiment 2 -0.49 m/s -0.22 m/s 2.59 m/s 2.99 m/s -3.04 m/s -1.55 m/s 4.29 m/s
Experiment 3 -0.92 m/s 0.57 m/s 2.03 m/s 4.04 m/s -2.02 m/s 0.29 m/s 4.61 m/s

Table 1: Variance of the velocity of the ball before impact in the different experiments of the evaluation.
The maximal velocity vmax of the ball before impact is defined by vmax =

√
|ẋ|2 + |ẏ|2 + |ż|2. All values

are given in meters per second [m/s].

able to return 88 % of the balls successfully, i.e., to the opponent’s court.
The information about the velocity of the ball before impact, as well as on the variance of the incoming

ball’s direction are summarized for all experiments in Table 1. The mean error of the desired final position
and velocity at time Tf during evaluation on the real robot was 0.0017 rad and 0.0431 rad/s, respectively.
A systematic study of the errors in simulation showed that changes in the position affects the final error
more than changes in the velocity. The results from this analysis are depicted in Table 2.

4 Conclusion

In this paper, we presented a new framework that enables a robot to learn basic cooperative table
tennis from demonstration and interaction with a human player. To achieve this goal, we created an
initial movement library from kinesthetic teach-in and imitation learning. The movements stored in the
movement library can be selected and generalized using the proposed mixture of movement primitives
algorithm. As a result, we obtain a task policy that is composed of several movement primitives weighted
by their ability to generate successful movements in the given task context. These weights are computed
by a gating network and can be updated autonomously.

The setup was evaluated successfully in a simulated and real table tennis environment. Our exper-
iments showed that both (i) selecting movement primitives from a library based on the current task
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Setup Goal Perturbation Resulting Error
δgf [rad] δġf [rad/s] egf [rad] eġf [rad/s]

average max average max mean std mean std
real robot evaluation 0.44 1.93 1.54 3.01 0.0017 0.0013 0.0431 0.0375

min max min max
−2.00 2.00 0.00 0.00 0.0054 0.0056 0.1695 0.2323

simulation analysis −1.00 1.00 0.00 0.00 0.0035 0.0030 0.0929 0.1083
(5 configurations) 0.00 0.00 −2.00 2.00 0.0031 0.0024 0.0597 0.0701

0.00 0.00 −1.00 1.00 0.0028 0.0024 0.0566 0.0706
−1.00 1.00 −2.00 2.00 0.0036 0.0031 0.0950 0.0944

Table 2: Analysis of the accuracy of the modified hitting primitives after both imitation and reinforce-
ment learning. The right part of the table shows the changes in the desired final position and velocity
compared to the values in the demonstration. On the left side of the table the corresponding mean errors
(averaged over all DoFs) in the desired position and velocity are displayed at time Tf . The simulation
analysis consisted of several configurations in which the motor policies yield through demonstrations were
perturbed. For each configuration, either the final position, final velocity or both were modified using
uniform value shifts between [-2,2] and [-1,1]. Please note that these position shifts exceed those which
were observed on the real system.

context instead of using only a single demonstration and (ii) the adaptation of the selection process dur-
ing a table tennis game improved the performance of the table tennis player. As a result, the system was
able to return balls served to the forehand area of the robot successfully to the opponent’s court. We
managed to perform and improve the movements involved in table tennis with a reasonable amount of
training data for real robot evaluation.

The presented method of generating motor policies from a library of demonstrated movements is
not limited to the demonstrated show-case of robot table tennis. In particular, the approach is suited
for many tasks where a set of movements has to be adapted to new, different but similar situations as
commonly found in striking sports. Additionally, it could potentially be adapted to other goal-oriented
movements (e.g., simple manipulation tasks, foot-step generation for walking over rough terrain, etc.)
where our approach would be a good starting point.

Our approach generalizes well if the situations are within the convex combination of demonstrations.
For extrapolating, more additional reinforcement learning will be needed as exploration is required. In
our approach, only local reinforcement learning is employed for self improvement. As a result, the solution
can be extrapolated to new similar situations and movements but not totally novel ones. Discovering a
movement that differs from all existing ones (as e.g., Dick Fosbury did in high-jumping with the Fosbury
flop (Wikipedia, 2012)) is clearly a limit of this data-driven framework.

Preliminary results of this work were presented in Muelling et al. (2010) and Muelling et al. (2012).
In future work, we will include opponent prediction (Wang et al., 2012) in order to infer the hitting area
from the hitting movement of the opponent. As a result, the system has more time to switch safely
between fore- and backhand. Thus, the system will be able to safely return incoming balls on the whole
width of the table.
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Appendix

Appendix A - Index to Multimedia Extensions

Appendix B - Glossary

To indicate matrices, we use bold upper case letters. For vectors, we use bold lower case letters. Italic
letters indicate scalars.

20



Extension Media Type Description
1 Video The video visualizes the different steps in adapting

the movement generation based on the outcome of
previous trials. We also provided the video online:
www.youtube.com/watch?v=SH3bADiB7uQ

movement primitive A sequence of motor commands executed to accomplish a given motor task.
state of the system s Vector of variables necessary to describe the system. In the table tennis

task the state of the system refers to the current position and velocity of
the ball.

motor skill Learned sequence of smooth movements executed in order to master a par-
ticular task.

movement library Database of movement primitives stored as motor policies.
motor policy π(x) Function that maps the state s of a movement system and the internal

parameters w to a control vector that defines the executable motion. Here,
we use the augmented state x instead of the state of the system s.

meta-parameters δ The movement goal, duration and amplitude of a movement described by a
motor policy.

augmented state x Parameter vector consisting of the state s and a set of parameters that
describes the characteristics of the current task.

movement goal The finite state of the desired movement.
hitting manifold The part of state-space that defines the ball-racket contacts.

Appendix C - Cost regularized Kernel Regression

Cost-regularized Kernel Regression (CrKR), as suggested in (Kober et al., 2012), is a reinforcement
learning approach based on a kernelized version of reward-weighted regression. The goal is to find a
mapping between the meta-parameter δ of a motor policy and a situation described by the state vector
s. Therefore, we looking for a stochastic policy µ(δ|s) that maximizes the expected reward

J(µ) = E {r(s, δ)|µ} , (13)

where r(s, δ) denotes the reward following the selection of δ in state s. The CrKR is based on the use of
the Gaussian distribution with mean δ̄ and variance Σ for the policy µ, i.e., µ(δ|s) = N

(
δ|δ̄,Σ

)
. The

mean and the variance are computed by

δ = k(s)T (K + λC)−1D (14)
Σ = k(s, s) + λ− k(s)T (K + λC)−1k(s) (15)

where D is a matrix that contains the training examples δTn , C = diag{r−1
1 (x1, s1), ..., r−1

N (xN, sN)} is the
cost matrix, λ is a ridge factor, k(s) is a vector that measures the distance between the current state and
the state of the training example using a Gaussian kernel and K is a matrix that contains the pairwise
distances between all combinations of training points. A detailed derivation of this policy can be found
in (Kober et al., 2012).

In this policy µ, the variance corresponds to the uncertainty over output δ and a high cost results in
a high uncertainty. If we have a training example with a high cost, the policy will explore new actions
and the training point will only have a strongly reduced influence. On the other hand, when the cost is
low, we can assume that we are close to the optimal policy and the variance shrinks to a small region
around the observed example.

Appendix D - Linear Bayesian Regression

Linear Bayesian Regression is a linear regression approach in the context of Bayesian inference. The
following summary of the approach is based on Bishop (2006). For more details we refer the reader to
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Chapter 2 of Rasmussen and Williams (2006) or Chapter 3 of Bishop (2006).
Assume we are interested in the target variable t which can be modeled by a function y(x,θ) with

additive Gaussian noise such that

t = y(x,θ) + ε

= θTφ(x) + ε,

where φ(x) is the vector of basis functions, θ is the vector of weights and ε is a zero mean Gaussian
random variable with precision β. The conditional distribution of the target variable t given x, θ and β
is given by the Gaussian distribution p(t|x,θ, β) = N (t|θTφ(x), β−1) (Bishop and Tipping, 2003). Using
the conjugate prior p(θ) = N (θ|m0,V0), the posterior distribution of the unknown parameter vector θ
is again a Gaussian distribution and given by p(θ|t) = Nθ|mn,VN ), where

VN =
(
V−1

0 + βφTφ
)−1

,

mN = VN

(
V−1

0 m0 + βΦT t
)
,

and m0 and V0 are the mean and covariance of the prior of θ (Bishop, 2006).
We can weight each observation similarly to a weighted least squares regression by assigning bad

observations a higher variance than others. Therefore, we obtain p(t|x,θ, β) = N (t|θTφ(x), (βw)−1).
Following the derivation in Bishop (2006), mean and covariance of the posterior distribution of θ are
defined by

VN =
(
V−1

0 + βφTWφ
)−1

,

mN = VN

(
V−1

0 m0 + βΦTWt
)
,

where W is a diagonal matrix whose diagonal entries define the uncertainty of the observation. When
considering the special case of a Gaussian prior with zero mean p(θ) = N (θ|0, α−1I) (Bishop, 2006), the
corresponding mean and covariance of the posterior distribution are given by

VN =
(
αI + βΦTWΦ

)−1

,

mN = βVNΦTWt.

In this case, the mean mN corresponds to the solution of the Weighted Ridge Regression.

Appendix E - Stability of Hitting DMPs

Here, we provide the mathematical proof of the stability and convergence of the extension of the DMPs
presented in Kober et al. (2010) and in this paper. Please note that for the ease of reading the variables
used in this section are not related to those with the same name elsewhere in this manuscript. The block
diagrams for the second-order-system for both systems is illustrated in Figure 11.

Stability of Hitting DMPs with Linear Velocity

If we assume a linear velocity of the target object as in the setup of Kober et al. (2010), the forward
channel of the second-order-system expressed in Laplace space is given by

G(s) =
Y (s)
E(s)

,

where Y (s) = (AE(s) +BsE(s))/s2 is the state of our system, U(s) is our desired position of the moving
target, E(s) = U(s)−Y (s) and s ∈ C is the (complex) frequency variable. The transfer function is given
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Figure 11: Diagrams of the employed second-order-system for the (a) DMPs with linear velocity and (b)
the DMPs with polynomial velocity in Laplace space.

by

T (s) =
Y (s)
U(s)

=
G(s)

1 +G(s)
=

A+Bs

s2 +Bs+A
. (16)

Using A = ω2 and B = 2ω the system has a double pole at −ω which results in a critically damped
response. The steady-state error can be calculated by

ess = lim
t→∞

e(t) = lim
s→0

sU(s)(1− T (s)). (17)

For a linear moving object U(s) = V/s2 + C/s and therefore we obtain

ess = 0. (18)

The error’s change rate is given by

ėss = 0. (19)

Stability of Hitting DMPs with a Polynomial Velocity Profile

For the extension of the DMPs used and presented in this paper, the feed-forward term τ2g̈ cancels
all higher order terms, hence the hitting DMPs with polynomial velocity profile has the same stability
properties as the hitting DMPs with linear velocity.

Appendix F - Review of Robot Table Tennis

Driven by a robot-table tennis competition series, several early systems were presented between 1983
and 1993 (Andersson, 1988; Knight and Lowery, 1986; Hartley, 1987; Hashimoto et al., 1987; Fässler
et al., 1990). The focus in that period was mainly on the design of efficient vision systems and improved
hardware rather than finding robust algorithms to achieve a performance comparable to humans. An
important breakthrough was achieved by Andersson (1988) who presented the first robot table tennis
system which was capable to play against humans. Therefore, Andersson used a high speed vision system
and a six DoF Puma 260 arm with a 0.45 m long stick mounted between table tennis racket and robot.
After the competition ended in 1993 several groups picked up robot table tennis and explored certain
aspects of the setup such as vision and trajectory prediction (Zhang and Tau, 2010; Huang et al., 2011),
construction of low-cost systems (Acosta et al., 2003) or predicting the hitting point (Miyazaki et al.,
2005; Lai and Tsay, 2011). Miyazaki et al. (2005) proposed a robot table tennis system mounted on
the table with four DoF consisting of two linear axis and a two DoF pan-tilt unit. The group applied
locally weighted regression to predict the impact time, ball position and velocity. Lai and Tsay (2011)
proposed a setup to estimate the ball trajectory using fuzzy adaptive resonance theory network and learn
the orientation angles of the racket using Self-organizing maps.

None of the approaches concentrated on learning robust hitting movements that are able to compensate
for perturbations in the environment and inaccuracies in the prediction of the impact point and time.
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Muelling et al. (2011) proposed a table tennis setup where the hitting motion is modeled using fifth order
splines. The use of autonomous movement representations as DMPs enable us to learn the movement
without a programmer specifying a fixed movement plan for different kind of movements. DMPs allow to
represent arbitrary shaped movements for many different tasks. The shape of a movement can contain
important features necessary to perform the task successfully. Furthermore, DMPs are robust against
perturbations, as they do not directly depend on time. As a result, we are able to change the movement
goal and timing online while retaining the shape of the movement.
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