
Model Learning with Local Gaussian Process Regression

Duy Nguyen-Tuong Matthias Seeger Jan Peters

Max Planck Institute for Biological Cybernetics

Spemannstr. 38, 72076 Tübingen

{duy.nguyen-tuong, matthias.seeger, jan.peters}@tuebingen.mpg.de

Abstract

Precise models of the robot inverse dynamics allow the design of significantly more accurate,

energy-efficient and more compliant robot control. However, in some cases the accuracy of rigid-

body models does not suffice for sound control performance due to unmodeled nonlinearities arising

from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the

inverse dynamics model from measured data poses an interesting alternative. Nonparametric regres-

sion methods, such as Gaussian process regression (GPR) or locally weighted projection regression

(LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework

for approximating unknown nonlinearities. In this paper, we propose a local approximation to

the standard GPR, called local GPR (LGP), for real-time model online-learning by combining the

strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR.

The approach is shown to have competitive learning performance for high-dimensional data while

being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison

with the state-of-the-art regression techniques, such as GPR, LWPR and ν-SVR. The applicability

of the proposed LGP method is demonstrated by real-time online-learning of the inverse dynamics

model for robot model-based control on a Barrett WAM robot arm.

Keywords: Robotics, Inverse dynamics, Model-based control, Machine learning, Nonparametric re-

gression

1 Introduction

Precise models of technical systems can be crucial in technical applications. In robot tracking control,

only a well-estimated inverse dynamics model allow both high accuracy and compliant, low-gain control.

For complex robots such as humanoids or light-weight arms, it is often hard to analytically model

the system sufficiently well and, thus, modern regression methods can offer a viable alternative [1, 2].

However, highly accurate regression methods such as Gaussian process regression (GPR) suffer from

high computational cost, while fast real-time learning algorithms such as locally weighted projection

regression (LWPR) are not straightforward to use, as they require manual adjustment of many data

dependent parameters.

1



In this paper, we attempt to combine the strengths of both approaches, i.e., the high accuracy and

comfortable use of GPR with the fast learning speed of LWPR [3]. We will proceed as follows: firstly, we

briefly review both model-based control as well as two nonparametric learning approaches, i.e., standard

GPR and LWPR. We will discuss the necessity of estimating the inverse dynamics model and further

discuss the advantages of both regression methods in learning this model. Subsequently, we describe

our local Gaussian process models (LGP) approach and related work. We show that LGP inherits both

the precision of GPR and a higher speed similar to LWPR.

In Section 4, the learning accuracy and performance of the presented LGP approach will be compared

with several relevant regression methods, e.g., standard GPR [4], ν-support vector regression (ν-SVR) [5],

sparse online GP (OGP) [6] and LWPR [1, 2]. The applicability of the LGP for low-gain model-based

tracking control and real-time learning is demonstrated on a Barrett whole arm manipulator (WAM) [7].

We can show that its tracking performance exceeds analytical models [8] while remaining fully compliant.

1.1 Background

Model-based control, e.g., computed torque control [9] as shown in Figure 1, enables high speed and

compliant robot control while achieving accurate control with small tracking errors for sufficiently precise

robot models. The controller is supposed to move the robot that is governed by the system dynamics [9]

M (q) q̈ + C (q, q̇) + G (q) + ε (q, q̇, q̈) = u , (1)

where q, q̇, q̈ are joint angles, velocities and accelerations of the robot, respectively, u denotes the

applied torques, M (q) the inertia matrix of the robot and C (q, q̇) Coriolis and centripetal forces,

G (q) gravity forces and ε (q, q̇, q̈) represents nonlinearities of the robot which are not part of the

rigid-body dynamics due to hydraulic tubes, friction, actuator dynamics, etc.

The model-based tracking control law determines the joint torques u necessary for following a desired

trajectory qd, q̇d, q̈d using a dynamics model while employing feedback in order to stabilize the system.

For example, the dynamics model of the robot can be used as a feed-forward model that predicts the

joint torques uFF required to perform the desired trajectory while a feedback term uFB ensures the

stability of the tracking control with a resulting control law of u=uFF + uFB. The feedback term can

be a linear control law such as uFB =Kpe+Kvė, where e=qd−q denotes the tracking error and Kp,Kv

position-gain and velocity-gain, respectively. If an accurate model in the form of Equation (1) can be

obtained, e.g., for negligible unknown nonlinearities, the resulting feedforward term uFF will largely

cancel the robots nonlinearities [9].

1.2 Problem Statement

For complex robots such as humanoids or light-weight arms, it is often hard to model the system

sufficiently well using the rigid body dynamics. Unknown nonlinearities ε (q, q̇, q̈) such as flexible

hydraulic tubes, complex friction, gear boxes, etc, couple several degrees of freedom together and result

2



Dynamics
Model Robot

q̈d

q̇d

qd

KvKp

∑
∑

∑
+

+ +

−

−+

+

u

qq̇
∑

Figure 1: Schematic showing computed torque robot control

in highly altered dynamics. In particular, for the Barrett WAM several degrees of freedom are jointly

actuated in a differential setup, and as a result, there is a complex friction function. Additionally, several

spinning drives are in different reference frames from the actuated joint while only one can be measured

resulting in effects such as reflective inertias.Thus, the dynamics can no longer be fully captured by

standard rigid-body dynamics [10]. Such unknown nonlinearities can dominate the system dynamics

and deteriorate the analytical model [11]. The resulting tracking error needs to be compensated using

large gains [9]. High feedback gains prohibit compliant control and, thus, make the robot less safe for the

environment while causing many practical problems such as actuator saturation, excitation of unmodeled

dynamics, may result in large tracking errors in presence of noise, increase energy consumption, etc. To

avoid high-gain feedback, it is essential to improve the accuracy of the dynamics model for predicting

uFF. Since uFF is a function of qd, q̇d, q̈d, it can be obtained with supervised learning using measured

data. The resulting problem is a regression problem that can be solved by learning the mapping

q, q̇, q̈→ u on sampled data [12–14] and, subsequently, using the resulting mapping for determining

the feedforward motor commands. As trajectories and corresponding joint torques are sampled directly

from the real robot, learning the mapping will include all nonlinearities and not only the ones described

in the rigid-body model.

1.3 Challenges in Real-time Learning

Due to high computational complexity of nonlinear regression techniques, inverse dynamics models are

frequently only learned offline for pre-sampled desired trajectories [12,14]. In order to take full advantage

of a learning approach, online learning is absolute necessity as it allows the adaption to changes in the

robot dynamics, load or the actuators. Furthermore, a training data set will never suffice for most robots

with a large number of degrees of freedom and, thus, fast online learning is necessary if the trajectory

leads to new parts of the state-space. However, for most real-time applications online model learning

poses a difficult regression problem due to three constraints, i.e., firstly, the learning and prediction

process should be very fast (e.g., learning needs to take place at a speed of 20-200Hz and prediction may

take place at 200Hz up to 5kHz). Secondly, the learning system needs to be capable at dealing with

large amounts of data (i.e., with data arriving at 200Hz, less than ten minutes of runtime will result in

more than a million sampled data points). And, thirdly, the data arrives as a continuous stream, thus,

3



the model has to be continuously adapted to new training examples over time.

2 Nonparametric Regression Methods

As any realistic inverse dynamics is a well-defined functional mapping of continuous, high-dimensional

inputs to outputs of the same kind, we can view it as a regression problem. Given the input x ∈ Rn and

the target y ∈ Rn, the task of regression algorithms is to learn the mapping describing the relationship

from input to target using samples. In this section, we will review the locally weighted projection

regression (LWPR) and the Gaussian process regression (GPR). Locally-weighted projection regression

is currently the standard real-time learning method in robot control applications and has been shown

to scale into very high-dimensional domains [1, 2, 15]. However, it also requires skillful tuning of the

meta parameters for the learning process in order to achieve competitive performance. Gaussian process

regression on the other hand achieves a higher performance [4,16] with very little tuning but also suffers

of a significantly higher computational complexity.

2.1 Regression with LWPR

LWPR predicts the target values by approximating them with a combination of M individually weighted

locally linear models. The weighted prediction ŷ is then given by ŷ = E{ȳk|x}=
∑M

k=1 ȳkp(k|x). Ac-

cording to the Bayesian theorem, the probability of the model k given query point x can be expressed

as

p(k|x)=
p(k,x)
p(x)

=
p(k,x)∑M

k=1 p(k,x)
=

wk∑M
k=1 wk

. (2)

Hence, we have

ŷ(x) =
∑M

k=1 wkȳk(x)∑M
k=1 wk

, (3)

with ȳk = x̄T
k θ̂k and x̄k = [(x − ck)T , 1]T , where wk is the weight or attributed responsibility of the

model, θ̂k contains the estimated parameters of the model and ck is the center of the k-th linear model.

The weight wk determines whether a data point x falls into the region of validity of model k, similar to

a receptive field, and is usually characterized with a Gaussian kernel

wk = exp
(
−1

2
(x− ck)T Dk (x− ck)

)
, (4)

where Dk is a positive definite matrix called the distance matrix. During the learning process, both the

shape of the receptive fields Dk and the parameters θ̂k of the local models are adjusted such that the

error between the predicted values and the observed targets is minimal. The regression parameter θ̂k

can be computed incrementally and online using the partial least squares method [1, 15]. The distance

matrix Dk determines the size and shape of each local model; it can be updated incrementally using

leave-one-out cross validation [2].

4



2.2 Regression with standard GPR

A powerful alternative for accurate function approximation in high-dimensional space is Gaussian process

regression (GPR) [4]. Given a set of n training data points {xi, yi}ni=1, we would like to learn a function

f(xi) transforming the input vector xi into the target value yi given a model yi = f(xi)+εi , where εi

is Gaussian noise with zero mean and variance σ2
n [4]. As a result, the observed targets can also be

described by a Gaussian distribution y ∼ N (0,K(X,X) + σ2
nI
)
, where X denotes the set containing

all input points xi and K(X,X) the covariance matrix computed using a given covariance function.

Gaussian kernels are probably the frequently used covariance functions [4] and are given by

k (xp,xq)=σ2
sexp

(
−1

2
(xp−xq)T W(xp−xq)

)
, (5)

where σ2
s denotes the signal variance and W represents the widths of the Gaussian kernel. Other

choices for possible kernels can be found in [4, 5]. The joint distribution of the observed target values

and predicted value f(x∗) for a query point x∗ is given by y

f(x∗)

∼ N
 0,

 K(X,X) + σ2
nI k(X,x∗)

k(x∗,X) k(x∗,x∗)

  . (6)

Conditioning the joint distribution yields the predicted mean value f(x∗) with the corresponding vari-

ance V (x∗)

f(x∗) = kT
∗
(
K + σ2

nI
)−1

y = kT
∗α ,

V (x∗) = k(x∗,x∗)− kT
∗
(
K + σ2

nI
)−1

k∗ ,
(7)

with k∗=k(X,x∗), K=K(X,X) and α denotes the so-called prediction vector. The hyperparameters

of a Gaussian process with Gaussian kernel are given by θ = [σ2
n, σ

2
f ,W] and remain the only open

parameters. Their optimal value for a particular data set can be automatically estimated by maximizing

the log marginal likelihood using standard optimization methods such as Quasi-Newton methods [4].

2.3 Comparison of these Approaches

The major drawback of LWPR is the currently necessary manual adjustment of the metaparameters1

required for the update of the kernel width Dk and the regression vector θ̂k. These values are highly

data dependent making it difficult to find an optimal set of parameters. Furthermore, as linear models

are used in LWPR, a large number of local models may be required to achieve competitive prediction

accuracy, since only relatively small regions can be fit using such linear models. Nevertheless, LWPR

is the fastest and most task-appropriate real-time learning algorithm for inverse dynamics to date;

currently, it can be considered the state of the art in real-time learning. On the other hand, GPR is

more comfortable to apply while often achieving a higher prediction accuracy. All open parameters of a

Gaussian process model, i.e., the hyperparameters θ, can be automatically adjusted by maximizing the

marginal likelihood. As a result, GPR is relatively easy and flexible to use. However, the main limitation
1Current work by Ting et al. [17] indicates that automatic metaparameter estimation may be possible on the long run.

5



of standard GPR is that computational complexity scales cubically with the number of training examples.

This drawback prevents standard GPR from applications which need large amounts of training data and

require fast computation, e.g., model online learning for robot control.

3 Local Gaussian Process Regression

Model learning with GPR suffers from the expensive computation of the inverse matrix (K + σ2
nI)−1

which yields a cost of O(n3), see Equation (7). Inspired by locally weighted regression [1,2], we propose

a method for speed-up the training and prediction process by partitioning the training data in local

regions and learning an independent Gaussian process model (as given in Section 2.2) for each region.

The number of data points in the local models is limited, where insertion and removal of data points can

be treated in a principled manner. The prediction for a query point is performed by weighted average

similar to LWPR. For partitioning and weighted prediction we use a kernel as similarity measure. Thus,

our algorithm consists out of three stages: (i) clustering of data, i.e., insertion of new data points into

the local models, (ii) learning of corresponding local models and (iii) prediction for a query point.

3.1 Partitioning of Training Data

Clustering input data can be performed efficiently using a similarity measure between the input point

x and the centers of the respective local models. From a machine learning point of view, the similarity

or proximity of data points can be defined in terms of a kernel. Kernel functions represent the dot

product between two vectors in the feature space and, hence, naturally incorporate the similarity measure

between data points. The clustering step described in this section results from the basic assumption

that nearby input points are likely to have similar target values. Thus, training points that belong the

same local region (represented by a center) are informative about the prediction for query points next

to this local region.

A specific characteristic in this framework is that we take the kernel for learning the Gaussian process

model as similarity measure wi for the clustering process. If a Gaussian kernel is employed for learning

the model, the corresponding measure will be

wi (x, ci) = exp
(
−1

2
(x− ci)

T W (x− ci)
)
, (8)

where ci denotes the center of the i-th local model and W a diagonal matrix represented the kernel

width. Note that this measure will result in the same weighting as in LWPR, see Equation (4). It

should be emphasized that for learning the Gaussian process model any admissible kernel can be used.

Thus, the similarity measure for the clustering process can be varied in many ways, and, for example, the

commonly used Matern kernel [16] could be used instead of the Gaussian one. For the hyperparameters of

the measure, such as W for Gaussian kernel, we use the same training approach as introduced in Section

2.2. Since the hyperparameters of a Gaussian process model can be achieved by likelihood optimization,

it is straightforward to adjust the open parameters for the similarity measure. For example, we can

6



Algorithm 1: Partitioning the training data with incremental model learning.
Input: new data point {xnew, ynew}.
for i=1 to number of local models do

Compute proximity to the i-th local model:

wi = k (xnew, ci)

end for

Take the nearest local model:

v = maxi wi

if v > wgen then

Insert {xnew, ynew} into the nearest local model:

Xnew =[X,xnew], ynew =[y, ynew]

Update the corresponding center:

cnew = mean(Xnew)

Update the Cholesky matrix and the

prediction vector of local model:

Compute l and l∗

Compute Lnew

If the maximum number of data points is reached

delete another point by permutation.

Compute αnew by back-substitution

else

Create new model:

ci+1 =xnew, Xi+1 =[xnew], yi+1 =[ynew]

Initialize of new Cholesky matrix L and

new prediction vector α.

end if

subsample the available training data and, subsequently, perform the standard optimization procedure.

After computing the proximity between the new data point xnew and all available centers, the data

point will be included to the nearest local model, i.e., the one with the maximal value of wi. As the data

arrives incrementally over time, a new model with center ci+1 is created if all similarity measures wi fall

below a threshold wgen. The new data point is then used as new center ci+1 and, thus, the number of

local models will increase if previously unknown parts of the state space are visited. When a new data

point is assigned to a particular i-th model, i.e., maxi wi(x) > wgen the center ci will be updated to the

mean of corresponding local data points.

7



Algorithm 2: Prediction for a query point.
Input: query data point x, M .

Determine M local models closest to x.

for i = 1 to M do

Compute proximity to the i-th local model:

wi = k (x, ci)

Compute local prediction using the k-th local model:

ȳi(x) = ki(x)Tαi

end for

Compute weighted prediction using M local models:

ŷ(x)=
∑M

i=1 wiȳi(x)/
∑M

k=1 wi .

3.2 Incremental Update of Local Models

During online learning, we have to deal with an endless stream of data (e.g., at a 500 Hz sampling rate

we get a new data point every 2 ms and have to treat 30 000 data points per minute). In order to cope

with the real-time requirements, the maximal number of training examples needs to limited so that the

local models do not end up with the same complexity as a standard GPR regression. Since the number

of acquired data points increases continuously over time, we can enforce this limit by incrementally

deleting old data points when newer and better ones are included. Insertion and deletion of data points

can be achieved using first order principles, for example, maximizing the information gain while staying

within a budget (e.g., the budget can be a limit on the number of data points). Nevertheless, while

the update of the target vector y and input matrix X can be done straightforwardly, the update of

the covariance matrix (and implicitly the update of the prediction vector α, see Equation (7)) is more

complicated to derive and requires thorough analysis given here.

The prediction vector α can be updated incrementally by directly adjusting the Cholesky decompo-

sition of the Gram matrix (K + σ2
nI) as suggested in [18]. For doing so, the prediction vector can be

rewritten as y=LLTα, where the lower triangular matrix L is a Cholesky decomposition of the Gram

matrix. Incremental insertion of a new point is achieved by adding an additional row to the matrix L.

Proposition 3.1 If L is the Cholesky decomposition of the Gram matrix K while Lnew and Knew are

obtained by adding additional row and column, such that

Lnew =

 L 0

lT l∗

 , Knew =

 K kT
new

knew knew

 , (9)

with knew =k(X,xnew) and knew =k(xnew,xnew), then l and l∗ can be computed by solving

Ll = knew (10)

l∗ =
√
knew − ‖l‖2 (11)

Proof Multiply out the equation LnewLT
new = Knew and solve for l and l∗.

8



Since L is a triangular matrix, l can be determined from Equation (10) by substituting it back in

after computing the kernel vector knew. Subsequently, l∗ and the new prediction vector αnew can be

determined from Equation (11), where αnew can be achieved by twice back-substituting while solving

ynew =LnewLT
newαnew. If the maximal number of training examples is reached, an old data point has

to be deleted every time when a new point is being included. The deletion of the m-th data point can

be performed efficiently using a permutation matrix R and solving ynew =R LnewLT
newR αnew, where

R = I − (δm − δn)(δm − δn)T and δi is a zero vector whose i-th element is one [18]. In practice, the

new data point is inserted as a first step to the last row (n-th row) according to Equation (9) and,

subsequently, the m-th data point is removed by adjusting R. The partitioning and learning process is

summarized in Algorithm 1. The incremental Cholesky update is very efficient and can be performed

in a numerically stable manner as discussed in detail in [18].

Due to the Cholesky update formulation, the amount of computation for training can be limited due

to the incremental insertion and deletion of data points. The main computational cost for learning the

local models is dominated by the incremental update of the Cholesky matrix which yields O(N2
l ), where

Nl presents the number of data points in a local model. Importantly, Nl can be set in accordance with

the computational power of the available real-time computer system.

3.3 Prediction using Local Models

The prediction for a mean value ŷ is performed using weighted averaging over M local GP predictions

ȳi for a query point x similar to LWPR. The weighted prediction ŷ is then given by

ŷ =
∑M

i=1 wiȳi∑M
i=1 wi

. (12)

Thus, each local GP prediction ȳi = k(Xi,x)Tαi is additionally weighted by the similarity wi (x, ci)

between the corresponding center ci and the query point x. The search for M local models can be

quickly done by evaluating the proximity between the query point x and all model centers ci. The

prediction procedure is summarized in Algorithm 2.

3.4 Relation to Previous Work

Many attempts have been made to reduce the computational cost of GPR, mostly of them follow

either the strategy of creating (i) sparse Gaussian processes (SGP) or follow a (ii) mixture of experts

(ME) approach. In a SGP, the whole input space is approximated using a smaller set of “inducing

inputs” [6, 19, 20]. Here, the difficulty lies in the choice of the appropriate set of inducing inputs that

essentially summarizes the original input space [4]. In contrast to SGP, the ME approach divides the

whole input space in smaller subspaces employing a gating network which activates responsible Gaussian

process experts [21, 22]. Thus, the computational cost of the matrix inversion is significantly reduced

due to a much smaller number of data points within an expert. The ME performance depends largely

on the number of experts for a particular data set. To reduce the impact of this problem, [21] allows the

9



(a) SARCOS arm (b) Barrett WAM

Figure 2: Robot arms used for data generation and experiments.

learning process to infer the required number of experts for a given data set using a Dirichlet process

to determine the appropriate gating network. The proposed algorithm has approximately a complexity

of O(n3/M) for training and O(n2d) for adapting the gating network parameters, where M denotes the

number of experts, n the total number of training data and d the dimension of input vector.

The presented LGP approach is loosely related to the ME approximation. However, the gating

network requires competition between the models for the data points while the locality approach allows

cooperation [23]. Particularly important is the fact that we re-use the kernel measure as similarity

measure which results in two advantages, firstly, the metric parameters can be derived directly by

optimization procedure which makes it more comfortable and flexible for using. Secondly, the evaluation

of the metric can be performed very fast enabling it for real-time application. However, it shows that

clustering in higher dimensional space is not always straightforward to perform with the kernel similarity

metric. In our experience, partitioning of training data can be done quite well up to 20 dimensions.

Since we can localize the training data in much lower spaces than learning the model, this obstacle can

often be circumvented. We will discuss this issue in more detail in Section 4.

Compared with LWPR, one major advantage is that we use Gaussian process model for training the

local models instead of linear models. Thus, we need significantly fewer local models to be competitive

in learning accuracy. Gaussian process models have also shown to generalize the training data well

and are easier to train as the open parameter can be obtained straightforwardly from the log marginal

likelihood. However, a major drawback in comparison to LWPR is that the more complex models result

in an increased computational cost.

4 Learning Inverse Dynamics

Learning models for control of high-dimensional systems in real-time is a difficult endeavor and requires

extensive evaluation. For this reason, we have evaluated our algorithm using high-dimensional data

taken from two real robots, e.g., the 7 degree-of-freedom (DoF) anthropomorphic SARCOS master

10



1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

Degree of Freedom

nM
S

E

 

 

LWPR
OGP
ν−SVR
GPR
LGP

(a) Approximation Error on

SL data (SARCOS model)

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Degree of Freedom

nM
S

E

 

 

LWPR
OGP
ν−SVR
GPR
LGP

(b) Approximation Error on

SARCOS data

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Degree of Freedom

nM
S

E

 

 

LWPR
OGP
ν−SVR
GPR
LGP

(c) Approximation Error on

Barrett WAM data

Figure 3: The approximation error is represented by the normalized mean squared error (nMSE) for

each DoF (1–7) and shown for (a) simulated data from physically realistic SL simulation, (b) real robot

data from an anthropomorphic SARCOS master arm and (c) measurements from a Barrett WAM. In

all cases, LGP outperforms LWPR and OGP in learning accuracy while being competitive to ν-SVR

and standard GPR. The small variances of the output targets in the Barrett data results in a nMSE

that is a larger scale compared to SARCOS; however, this increase has no practical meaning and only

depends on the training data.

arm and 7-DoF Barrett WAM both shown in Figure 2, as well as physically realistic simulation using

SL [24]. We compare the learning performance of LGP with the state-of-the-art in nonparametric

regression, e.g., LWPR, ν-SVR, standard GPR and online Gaussian Process Regression (OGP) in the

context of approximating inverse robot dynamics. For evaluating ν-SVR and GPR, we have employed

the libraries [25] and [26], respectively. The code for LGP contained also parts of the library [26].

4.1 Learning Accuracy Comparison

For comparing the prediction accuracy of our proposed method in the setting of learning inverse dynam-

ics, we use three data sets, (i) SL simulation data (SARCOS model) as described in [14] (14094 training

points and 5560 test points), (ii) data from the SARCOS master arm (13622 training points and 5500

test points) [2] as well as (iii) a data set generated from our Barrett arm (13572 training points, 5000

test points). Given samples x = [q, q̇, q̈] as input, where q, q̇, q̈ denote the joint angles, velocity and

acceleration, respectively, and using the corresponding joint torques y = [u] as targets, we have a well-

defined, proper regression problem. The considered seven degrees of freedom (DoF) robot arms result

in 21 input dimensions (i.e., for each joint, we have an angle, a velocity and an acceleration) and seven

target or output dimensions (i.e., a single torque for each joint). The robot inverse dynamics model can

be estimated separately for each DoF employing LWPR, ν-SVR, GPR, OGP and LGP, respectively.

The training examples for LGP can be partitioned either in the same input space where the local

models are learned or in a subspace that has to be physically consistent with the approximated function.

11



In the following, we localize the data depending on the position of the robot. Thus, the partitioning of

training data is performed in a seven dimensional space (i.e., consisting of the seven joint angles). The

localization should be performed in a low dimensional space, since with increasing input dimensions

the partitioning of data may be difficult having negative effects on the learning performances. After

determining the similarity metric wk for all k local models in the partitioning space, the input point will

be assigned to the nearest local model, i.e., the local model with the maximal value of distance measure

wk. For computing the localization, we will use the Gaussian kernel as given in Equation (5) and the

corresponding hyperparameters are optimized using a subset of the training set.

Note that the choice of the limit value wgen during the partitioning step is crucial for the performance

of LGP and, unfortunately, is an open parameter requiring manual tuning. If wgen is too small, a large

number of local models will be generated with small number of training points. As these small models

receive too little data for a stable GPR, they do not generalize well to unknown neighboring regions of

the state space. If wgen is large, the local models will include too many data points which either results

in over-generalization or, if the number of admitted data points is enlarged as well, it will increase the

computational complexity. Here, the training data is clustered in about 30 local regions ensuring that

each local model has a sufficient amount of data points for high accuracy (in practice, roughly a hundred

data points for each local model suffice) while having sufficiently few that the solution remains feasible

in real-time (e.g., on the test hardware, an Intel Core Duo at 2GHz, that implies the usage of up to a

1000 data points per local model). On average, each local model includes approximately 500 training

examples, i.e., some models will not fill up while others actively discard data. This small number of

training data points enables a fast training for each local model using the previously described fast

Cholesky matrix updates.

Figure 3 shows the normalized mean squared error (nMSE) of the evaluation on the test set for each

of the three evaluated scenarios, i.e., a physically realistic simulation of the SARCOS arm in Figure 3

(a), the real anthropomorphic SARCOS master arm in Figure 3 (b) and the Barrett WAM arm in Figure

3 (c). Here, the normalized mean squared error is defined by nMSE = Mean squared error/Variance of

target. During the prediction on the test set using LGP, we take the most activated local models, i.e.,

the ones which are next to the query point.

When observing the approximation error on the test set shown in Figure 3(a-c), it can be seen that

LGP generalizes well to the test data during prediction. In all cases, LGP outperforms LWPR and OGP

while being close in learning accuracy to of the offline-methods GPR and ν-SVR. The mean prediction

for GPR is determined according to Equation (7) where we pre-computed the prediction vector α from

training data. When a query point appears, the kernel vector kT
∗ is evaluated for this particular point.

4.2 Comparison of Computation Speed for Prediction

The computation requirements of kernel-based regression can even be problematic for prediction in real-

time, thus, it is an essential component of the LGP that it results in a substantial reduction of prediction

12



0 5000 10000 15000

1

2

3

4
5
6
7

Nr. of Training Points

P
re

di
ct

io
n 

T
im

e 
[m

s]
 (

lo
g.

 S
ca

le
)

 

 

LWPR
ν−SVR
GPR
LGP

Figure 4: Average time in millisecond needed for prediction of 1 query point. The computation time is

plotted logarithmically with respect to the number of training examples. The time as stated above is

the required time for prediction of all 7 DoF performed sequentially. Here, LWPR presents the fastest

method due to simple regression models. Compared to global regression methods such as standard GPR

and ν-SVR, local GP makes significant improvement in term of prediction time. For this experiment, 3

local models are taken each time for prediction with LGP.

latency rendering online prediction feasible even for large data sets. The duration of a prediction of the

LGP significantly lower than the one GPR and ν-SVR as only a small amount of local models in the

vicinity of the current input data is needed during prediction. Thus, the complexity of the prediction

operation is O(n) for a standard GPR (ν-SVR does not differ in complexity), it will become O(NM)

for LGP, where n denotes the total number of training points, M number of local models used in

the prediction and N number of data points in a local model. Note that usually n >> NM . The

comparison of prediction speed is shown in Figure 4. Here, we train LWPR, ν-SVR, GPR and LGP on

5 different data sets with increasing training examples (1065, 3726, 7452, 10646 and 14904 data points,

respectively). Subsequently, using the trained models we compute the average time needed to make a

prediction for a query point for all 7 DoF. For LGP, we take the same number of local models in the

vicinity for prediction as in last experiment. Since assuming a minimal prediction rate at 100 Hz (10 ms)

in order to ensure system stability, data sets with more than 15000 points cannot be used with standard

GPR or ν-SVR on an Intel Core Duo at 2GHz due to high computation demands for the prediction. In

recent time, there are also approaches to speed up the prediction time for standard GPR [27,28]. In [27],

for example, KD-trees are applied to find training data points next to the query point for prediction.

The results given in Figure 4 show that the computation time requirements of ν-SVR and GPR rises

very fast with the size of training data set as expected. LWPR remains the best method in terms of

computational complexity only increasing at a very low pace with the number of data points. However,

as shown in Figure 4, the cost for LGP is significantly lower than the one for ν-SVR and GPR and

increases at a much lower rate. The LGP prediction latency can be bounded by setting the number

of local models needed for prediction, i.e., the parameter M . In practice, we need around 1000 data

13



points in the neighborhood of the query point for prediction resulting in the usage of 2 or 3 local models.

As shown by the results, LGP represents a compromise between learning accuracy and computational

complexity. For large data sets (e.g., more than 5000 training examples), LGP reduces the prediction

cost considerably in comparison to standard methods while still having a good learning performance.

5 Application in Model-based Robot Control

In this section, we use the inverse dynamics models learned in Section 4.1 for a model-based tracking

control task [8] in the setting shown in Figure 1. Here, the model is used for predicting the feedforward

torques uFF necessary to execute a given desired trajectory [qd, q̇d, q̈d]. First, we compare standard

rigid-body dynamics (RBD) models with several models learned offline on training data sets. For this

offline learning comparison, we use LWPR, ν-SVR, standard GPR as well as our LGP as compared

learning methods. We show that our LGP is competitive when compared with its alternatives. Second,

we demonstrate that online learning is highly beneficial. During online learning, the local GP models

are updated in real-time, and the online improvement during a tracking task outperforms the fixed

offline model in comparison. Our goal is to achieve compliant tracking in robots without exception

handling or force sensing but purely based on using low control gains. Our control gains are three

orders of magnitude smaller than the manufacturers in the experiments and we can show that using

good, learned inverse dynamics models we can still achieve compliant control. The accuracy of the

model has a stronger effect on the tracking performance in this setting and, hence, a more precisely

learned model will also results in a significantly lower tracking error.

5.1 Tracking using Offline Trained Models

For comparison with the learned models, we also compute the feedforward torque using rigid-body (RB)

formulation which is a common approach in robot control [8]. The control task is performed in real-time

on the Barrett WAM, as shown in Figure 2. As desired trajectory, we generate a test trajectory which is

similar to the one used for learning the inverse dynamics models in Section 4.1. Figure 5 (a) shows the

tracking errors on test trajectory for 7 DoFs. The error is computed as root mean square error (RMSE)

which is a frequently used measure in time series prediction and tracking control. Here, LGP provides a

competitive control performance compared to GPR while being superior to LWPR and the state-of-the

art rigid-body model.

5.2 Online Learning of Inverse Dynamics Models

In this section, we show that the LGP is capable of online adaptation while being used for predicting

the required torques. Since the number of training examples in each local model is limited, the update

procedure is sufficiently fast for real-time application. For doing so, we employ the joint torques u

and the resulting robot trajectories [q, q̇, q̈] as samples which are added to the LGP models online as

14



1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

Degree of Freedom

R
M

S
E

 

 

RBD
LWPR
ν−SVR
GPR
LGP offline

(a) Tracking errors on Barrett:

comparison of offline-learned

models

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Degree of Freedom

R
M

S
E

 

 

LGP offline
GPR
LGP online

(b) Tracking errors on Barrett:

full GPR vs. offline and online-

learned models with LGP

Figure 5: (a) and (b) show the tracking errors (RMSE) on the Barrett WAM. For offline-learned models,

LGP is competitive with full GPR and ν-SVR while being better than LWPR and rigid-body model.

When employing online-updates, LGP can largely improve the tracking results outperforming the offline-

learned models using full GPR. The reported results are computed for a test trajectory executed on the

robot.

described in Section 3.2. New data points are added to the local models until these fill up and, once full,

new points replace previously existing data points. The insertion of new data point is performed with

information gain [29] while for the deletion we randomly take an old point from the corresponding local

model. A new data point is inserted to the local model, if its information gain is larger than a given

threshold value. In practice, this value is set such that the model update procedure can be maintained

in real-time (the larger the information gain threshold, the more updates will be performed). Figure 5

(b) shows the tracking error after online learning with LGP in comparison with offline learned models.

It can be seen that the errors are significantly reduced for LGP with online updates when compared to

both standard GPR and LGP with offline learned models.

Here, we create a more complex test case for tracking with inverse dynamics models, i.e., we take

the Barrett WAM by the end-effector and guide it along several trajectories which are subsequently

used both in learning and control experiments. In order to make these trajectories straightforward

to comprehend for humans, we draw all 26 characters of the alphabet in an imaginary plane in task

space. An illustration for this data generation process is shown in Figure 7 (a). During the imagined

writing, the joint trajectories are sampled from the robot. Afterwards, it will attempt to reproduce

that trajectory, and the reproductions can be used to generate training data. Subsequently, we used

several characters as training examples (e.g., characters from D to O) and others, e.g., A and B, as test

examples. This setup results in a data set with 10845 samples for training and 1599 for testing.

Similar as in Section 4.1, we learn the inverse dynamics models using joint trajectories as input

and joint torques as targets. The robot arm is then controlled to perform the joint-space trajectories

15



−0.5 −0.4 −0.3 −0.2

−0.6

−0.5

−0.4

−0.3

−0.2

X

Y

−0.4 −0.3 −0.2 −0.1 0 0.1

−0.5

−0.4

−0.3

−0.2

−0.1

0

X

Y

(a) Tracking test-characters using

rigid-body model

−0.5 −0.4 −0.3 −0.2

−0.6

−0.5

−0.4

−0.3

−0.2

X
Y

−0.4 −0.3 −0.2 −0.1 0 0.1

−0.5

−0.4

−0.3

−0.2

−0.1

0

X

Y

(b) Tracking test-characters using

offline-learned GP model

−0.5 −0.4 −0.3 −0.2

−0.6

−0.5

−0.4

−0.3

−0.2

X

Y
−0.4 −0.3 −0.2 −0.1 0 0.1

−0.5

−0.4

−0.3

−0.2

−0.1

0

X
Y

(c) Tracking test-characters after

online-learning with LGP

Figure 6: Compliant tracking performance on Barrett WAM for two test characters A and B where the

controlled trajectory lies in joint-space while our visualization is in task space for improved comprehen-

sibility. We compare the corresponding rigid body model, an offline trained GP model and an online

learning LGP. The thick, blue line denotes the desired trajectory, while the dashed, red line represents

the robot trajectory during the compliant tracking task. The results indicate that online learning with

LGP outperforms the offline-learned model using full GPR as well as the rigid-body dynamics.

corresponding to the test characters using the learned models. For LGP, we additionally show that

the test characters can be learned online by updating the local models, as described in Section 5. The

Figure 6 shows the tracking results using online-learning with LGP in comparison to the offline trained

model with standard GPR and a traditional rigid body model. It can be observed that the offline

trained models (using standard GPR) can generalize well to unknown characters often having a better

tracking performance than the rigid-body model. However, the results can be improved even further if

the dynamics model is updated online – as done by LGP. The LGP results are shown in Figure 6 and

are achieved after three trials on the test character.

In practice, it is shown that a good tracking performance can already be achieved after 2 iterations

of the unknown characters. During the first iteration, the tracking error is large (due to suboptimal

prediction in presence of unknown trajectory) resulting in a large correcting feedback term uFB, see

16



(a) Character acquisition

0 5 10

−10

−5

0

time [sec]
U

F
B
 [
N

m
]

 

 

1. Iteration
2. Iteration
3. Iteration

(b) Magnitude of the feedback

torque

0 2 4 6 8 10
−5

0

5

10

time [sec]

U
F

F
 [
N

m
]

 

 

1. Iteration
2. Iteration
3. Iteration

(c) Magnitude of the feedfor-

ward torque

Figure 7: This figure illustrates (a) Data generation for the learning task. (b) and (c) show as example

the feedback uFB and feedforward uFF term of the 1. DoF after each iteration of the test character, e.g.,

A. The feedback term degreases gradually, as the model learns to make the required feedforward torques.

The feedforward toques uFF does not change significantly after 2 iterations. For running through the

complete trajectory, e.g., A, about 8 seconds are necessary.

Figure 7 (b). In the following iterations, the feedback term gradually degreases, as the model ’learns’

to make a correct prediction, i.e, the optimal feedforward torque uFF required for the given characters,

by using the online sampled input-torques u as learning target. The feedforward torque uFF converges

already after 2 or 3 iterations, as shown in Figure 7 (c), i.e., after that the feedforward torques do not

change significantly.

6 Conclusion

The local Gaussian process regression LGP combines the strength of fast computation as in local re-

gression with the potentially more accurate kernel regression methods. As a result, we obtain a realtime

capable regression method which is relatively easy to tune and works well in robot application. When

compared to locally linear methods such as LWPR, the LGP achieves higher learning accuracy while

having less computational cost compared to state of the art kernel regression methods such as GPR

and ν-SVR. The reduced complexity allows the application of the LGP for online model learning which

is necessary for realtime adaptation of model errors or changes in the system. Model-based tracking

control using online learned LGP models achieves a superior control performance for low gain control

in comparison to rigid body models as well as to offline learned models.

Future research will focus on several important extensions such as finding kernels which are most

appropriate for clustering and prediction, and how the choice of a similarity can affect the LGP perfor-

mance. Partitioning in higher dimension space is still a challenging problem, a possible solution is to

perform dimensionality reduction during the partitioning step. It is also interesting to investigate how

17



to infer an optimal value for wgen from data. Furthermore, alternative criteria for insertion and deletion

of data points need to be examined more closely. This operation is crucial for online learning as not

every new data point is informative for the current prediction task, and on the other hand deleting an

old but informative data point may degrade the performance. It also interesting to investigate further

applications of the LGP in humanoid robotics with 35 of more DoFs and learning other types of the

control such as operational space control.

REFERENCES

[1] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques from nonparametric statistics

for real-time robot learning,” Applied Intelligence, pp. 49–60, 2002.

[2] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online learning in high dimensions,”

Neural Computation, no. 12, pp. 2602–2634, 2005.

[3] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Local gaussian processes regression for real-time

model-based robot control,” in International Conference on Intelligent Robots and Systems (IROS),

Nice, France, 2008.

[4] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning. Massachusetts

Institute of Technology: MIT-Press, 2006.

[5] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regularization,

Optimization and Beyond. Cambridge, MA: MIT-Press, 2002.

[6] L. Csato and M. Opper, “Sparse online gaussian processes,” Neural Computation, 2002.

[7] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Local gaussian process regression for real time online

model learning and control,” in Advances in Neural Information Processing Systems, Vancouver,

Canada, 2008.

[8] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed. Prentice Hall, 2004.

[9] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics and Control. New York: John

Wiley and Sons, 2006.

[10] W.Townsend, Inertial Data for the Whole-Arm-Manipulator (WAM) Arm, 2007.

[11] J. Nakanishi, J. A. Farrell, and S. Schaal, “Composite adaptive control with locally weighted

statistical learning,” Neural Networks, no. 1, pp. 71–90, 2005.

[12] E. Burdet, B. Sprenger, and A. Codourey, “Experiments in nonlinear adaptive control,” in Inter-

national Conference on Robotics and Automation (ICRA), vol. 1, Albuquerque, NM, USA, 1997,

pp. 537–542.

18



[13] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Real-time robot learning with locally weighted

statistical learning,” in International Conference on Robotics and Automation, San Francisco, CA,

USA, 2000.

[14] D. Nguyen-Tuong, J. Peters, and M. Seeger, “Computed torque control with nonparametric re-

gression models,” in Proceedings of the 2008 American Control Conference (ACC 2008), Seattle,

Washington, USA, 2008.

[15] S. Vijayakumar and S. Schaal, “Locally weighted projection regression: An O(n) algorithm for

incremental real time learning in high dimensional space,” in International Conference on Machine

Learning, Proceedings of the Sixteenth Conference, Bled, Slovenia, 2000.

[16] M. Seeger, “Gaussian processes for machine learning,” International Journal of Neural Systems,

2004.

[17] J. Ting, M. Kalakrishnan, S. Vijayakumar, and S. Schaal, “Bayesian kernel shaping for learning

control,” in Advances in Neural Information Processing Systems, Vancouver, Canada, 2008.

[18] M.Seeger, “Low rank update for the cholesky decomposition,” University of California at Berkeley,

Tech. Rep., 2007. [Online]. Available: http://www.kyb.tuebingen.mpg.de/bs/people/seeger/

[19] J. Q. Candela and C. E. Rasmussen, “A unifying view of sparse approximate gaussian process

regression,” Journal of Machine Learning Research, 2005.

[20] D. H. Grollman and O. C. Jenkins, “Sparse incremental learning for interactive robot control policy

estimation,” in IEEE International Conference on Robotics and Automation, Pasadena, CA, USA,

2008.

[21] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of gaussian process experts,” in Advances

in Neural Information Processing Systems, Cambridge, MA, USA, 2002.

[22] E. Snelson and Z. Ghahramani, “Local and global sparse gaussian process approximations,” San

Juan, Puerto Rico, 2007.

[23] S. Schaal. and C. G. Atkeson, “From isolation to cooperation: An alternative of a system of experts,”

in Advances in Neural Information Processing Systems, Denver, CO, USA, 1996.

[24] S. Schaal, “The SL simulation and real-time control software package,” university of southern

california, Tech. Rep., 2006. [Online]. Available: http://www-clmc.usc.edu/publications/S/schaal-

TRSL.pdf

[25] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001,

http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[26] M. Seeger, LHOTSE: Toolbox for Adaptive Statistical Model, 2007,

http://www.kyb.tuebingen.mpg.de/bs/people/seeger/lhotse/.

19



[27] Y. Shen, A. Y. Ng, and M. Seeger, “Fast gaussian process regression using kd-trees,” in Advances

in Neural Information Processing Systems, Vancouver, Canada, 2005.

[28] T. Suttorp and C. Igel, “Approximation of gaussian process models after training,” in European

Symposium on Artificial Neural Networks, Bruges, Belgium, 2008.

[29] M.Seeger, “Bayesian gaussian process models: Pac-bayesian generalisation error bounds and sparse

approximations,” Ph.D. dissertation, University of Edinburgh, 2005.

20


