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Abstract—Task-space control of redundant robot systems
based on analytical models is known to be susceptive to modeling
errors. Here, data driven model learning methods may present
an interesting alternative approach. However, learning models
for task-space tracking control from sampled data is an ill-
posed problem. In particular, the same input data point can
yield many different output values, which can form a non-convex
solution space. Because the problem is ill-posed, models cannot
be learned from such data using common regression methods.
While learning of task-space control mappings is globally ill-
posed, it has been shown in recent work that it is locally
a well-defined problem. In this paper, we use this insight to
formulate a local, kernel-based learning approach for online
model learning for task-space tracking control. We propose a
parametrization for the local model which makes an application
in task-space tracking control of redundant robots possible. The
model parametrization further allows us to apply the kernel-
trick and, therefore, enables a formulation within the kernel
learning framework. For evaluations, we show the ability of the
method for online model learning for task-space tracking control
of redundant robots.

Index Terms—Kernel Methods, Online Learning, Real-Time
Learning, Task-Space Tracking, Robot Control

I. INTRODUCTION

Control of redundant robots in operational space, especially
task-space tracking control, is an essential ability needed in
robotics [1], [2]. Here, the robot’s end-effector follows a
desired trajectory in task-space, while distributing the resulting
forces onto the robot’s joints. Analytical formulation of task-
space control laws requires given kinematics and dynamics
models of the robot. However, modeling the kinematics and
dynamics is susceptive to errors. For example, accurate ana-
lytical dynamics models are hard to obtain for complex robot
systems, due to many unknown nonlinearities resulting from
friction or actuator dynamics [3]. One promising possibility to
overcome such inaccurate hand-crafted models is to learn them
from data. From a machine learning point of view, learning of
such models can be understood as a regression problem. Given
input and output data, the task is to learn a model describing
the input to output mapping.

Using standard regression techniques, such as Gaussian
process regression [4], support vector regression [5] or locally
weighted regression [6], a model can be approximated to
describe a single-valued mapping (i.e., one-to-one) between
the input and output data. The single-valued property re-
quires that the same input point should always yield the

D. Nguyen-Tuong and J. Peters are with the Department Empir-
ical Inference of the Max Planck Institute for Biological Cybernet-
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same single output value, resulting in a well-defined learning
problem. However, this situation changes when learning a
torque prediction model for task-space tracking control of
redundant robots. Here, we are confronted with the problem of
learning multi-valued or one-to-many mappings. In this case,
standard regression techniques can not be applied. Naively
learning such multi-valued mappings from sampled data using
standard regression will average over multiple output values in
a potentially non-convex solution space [7]. Thus, the resulting
model will output degenerate predictions, which lead to poor
control performance and may cause damage to the redundant
robot system.

However, despite being a globally ill-posed problem, learn-
ing such task-space control mappings is locally well-defined
[7], [8]. Learning a mapping from data can be understood
as an averaging over input regions [8]. Employing local
learning, the data averaging is performed over local regions.
Predictions can subsequently be done by combining learned
local models. When the data averaging is performed over small
local regions, the approximation is locally consistent. If the
local learning is performed online and, thus, time and space
variant, different output solutions (depending on time and
space) for the same inputs can be approximated using different
local models. In this paper, we employ this insight to formulate
an online local learning approach, appropriate for learning
models that allow prediction with such multi-valued mappings.
The key idea is to localize a model in configuration space,
while continuously updating this model online by including
new data points and, eventually, removing old points. Here,
local data points are inserted or removed based on a kernel
distance measure. By doing so, we have a consistent spatial
and temporal local data set. Due to the local consistency, a
prediction model can be learned. The resulting proposed model
hence differs from the classical regression setup. Due to the
local configuration pre-filtering is not a general regression
approach but involves a filtering or prediction step. The
proposed model parametrization allows us to apply the kernel-
trick and, therefore, enables a formulation within the kernel
learning framework [5]. Kernel methods have been shown to
be a flexible and powerful tool for learning general nonlinear
models [9]–[13]. In task-space tracking control of redundant
robots, the model parametrization enables a projection of the
joint-space stabilization torques into the task’s null-space.

The remainder of the paper will be organized as follows:
first, we give a brief overview of task-space control and
provide a review of related work. In Section II, we describe our
approach to learn task-space tracking control. The proposed
method will be evaluated on redundant robot systems, e.g., a
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simulated 3-DoF robot and 7-DoF Barrett WAM, for task-
space tracking control in Section III. The most important
lessons from this research project will be summarized in
Section IV.

A. Problem Statement

To obtain an analytical task-space control law, we first
need to model the robot’s kinematics [1]. The relationship
between the task-space and the joint-space of the robot is
usually given by the forward kinematics model x=f(q). Here,
q ∈ Rm denotes the robot’s configuration in the joint-space
and x∈Rd represents the task-space position and orientation.
For redundant robot systems, it is necessary that m > d. The
task-space velocity and acceleration are

ẋ = J(q)q̇ and ẍ = J̇(q)q̇ + J(q)q̈ ,

where J(q) = ∂f/∂q is the Jacobian. For computing the
joint torques necessary for the robot to follow the task-space
trajectory, a model of the robot dynamics is required. A typical
dynamics model can be given in the form of

u = M(q)q̈ + F(q, q̇) ,

see [14] for more details. Here, u denotes the joint torque,
M(q) is the generalized inertia matrix of the robot, and
F(q, q̇) is a vector containing forces, such as gravity, cen-
tripetal and Coriolis forces. Combining the dynamics model
with the kinematics model yields one possible operational
space control law

u = MJ†w(ẍref − J̇q̇) + F , (1)

where J†w denotes the weighted pseudo-inverse of J, as
described in [3], [15], [16]. In Equation (1), a task-space
attractor ẍref is employed for tracking the actual task-space
acceleration ẍ [3]. Here, the task-space attractor is formulated
as ẍref = ẍdes+Gvv(ẋdes−ẋ)+Gpp(xdes−x), where xdes,
ẋdes and ẍdes denote the desired task-space trajectory. Gvv

and Gpp are positive task-space gain matrices.
To ensure stable tracking in the joint-space of redundant

robots, the controller command u in Equation (1) is usually
extended by a null-space controller term u0. Thus, the total
joint torque command ujoint is given as

ujoint = u+
(
I− J†wJ

)
u0 . (2)

The term u0 can be interpreted as joint-space stabilizing
torques which are only effective in the task’s null-space and,
thus, do not interfere with the task achievement [3]. The null-
space controller command u0 can be chosen such that the
redundant robot is pulled towards a desired rest posture qrest,
i.e., u0=−Gvq̇−Gp(q−qrest), where Gp and Gv are positive
joint-space gain matrices.

As indicated by Equations (1, 2), an analytical formulation
for task-space control requires given analytical kinematics
and dynamics models. As modeling these relationships can
be inaccurate in practice [3], [17], model learning presents
a promising alternative. In the task-space tracking problem
shown in Equation (1), we want to learn mappings from inputs
(q, q̇, ẍ) to targets u. However, this mapping is one-to-many

[7], [8], as there can be many torques u which correspond to
the same task-space acceleration ẍ given q, q̇. Thus, naively
learning a task-space control model for redundant robots
from sampled data may result in a degenerate mapping. In
practice, such degenerate models will provide inconsistent
torque predictions.

B. Related Work

Learning multi-valued mappings has previously been inves-
tigated in the field of neural motor control [18], [19]. In [18],
the multi-valued relationship is resolved for a particular output
solution by jointly approximating the forward and inverse
mapping. Here, it is assumed that the inverse mapping is multi-
valued while the corresponding forward mapping is unique.
The basic idea is to use the unique forward mapping to resolve
the ambiguities in the inverse mapping. Originally, the intro-
duced forward-inverse learning principle has been formulated
in the framework of neural networks [18]. In a neural networks
based implementation, the forward model is chained with the
multi-valued inverse model, where the prediction errors made
by the forward model are used to adapt the weight values
of the inverse model for a given output solution. However,
training such neural networks is well-known to be problematic
due to local minima, instability and difficulties in selecting the
network structures. Nevertheless, this framework of learning
forward and inverse models initiated a number of follow-up
research projects, such as [19], [20]. For example, in [20] con-
siderable evidence was presented indicating that the forward-
inverse models approach may explain human motor control. In
[19], the authors approximate pairwise forward-inverse models
for different motor control tasks and, subsequently, combine
them for prediction.

In the broader sense, the pairwise forward-inverse model
approach [19] can be understood as a local learning method,
where the data is first partitioned into local regions for which
local forward-inverse model pairs are subsequently approxi-
mated. Here, different solutions in the output space will be ap-
proximated with different local forward-inverse models. These
local models can be combined to make consistent predictions
for query points. Due to the local consistency, these models
can be learned straightforwardly [19], [21]. A local learning
approach is also employed in [22] and [8] to learn models for
robot inverse kinematics, where locally weighted regression
techniques are used. The locally weighted regression approach
has been further extended for learning operational space robot
control [7]. While Peters et al. [7] attempt to learn a direct
mapping for predicting the joint torques for control, Salaun et
al. [23] first learn a forward kinematics model and invert the
learned model afterwards. Subsequently, they combine it with
an inverse dynamics model to generate the required torque
command.

Compared to previous local learning approaches, we attempt
to learn a single localized model, while continuously updating
this local model depending on the robot’s current configura-
tion. One advantage of our approach is that it is not necessary
to partition the data space beforehand, as done in previous lo-
cal approaches [7], [8]. For high dimensional data, partitioning
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of the data space is well-known to be a difficult issue [17],
[24]. Due to the local consistency, our model learning problem
is well-defined. We propose a model parameterization which
enables kernel-based learning of torque prediction models for
task-space tracking control. The model parametrization also
allows a null-space projection, which is necessary to stabilize
the robot in the joint-space without interfering with the task-
space performance.

II. LEARNING TASK-SPACE TRACKING WITH KERNELS

In this paper, we want to learn the mapping from inputs
(q, q̇, ẍ) to outputs u, similar to the one described by Equation
(1). This mapping is subsequently used for predicting the
outputs for given query points. As such one-to-many mappings
are locally well-defined [7], [8], they can be approximated
with a local kernel learning approach. Here, our model will
be localized in the robot’s joint position space. The local data
is incrementally updated, as the robot moves to new state
space regions. Every local data point is additionally weighted
by its distance to the most recent joint position. Thereby, we
ensure that the local data points form a well-defined set that is
appropriate for model learning. Using the weighted local data
points, the model’s parameters can be obtained by minimizing
a cost function. To place the model into the kernel learning
framework, we propose a model parametrization appropriate
for the application of the kernel-trick. The parametrization
is also suitable for task-space tracking control of redundant
robots.

The approach we employed in this work can be under-
stood as smoothing over a local region. When employing the
approach to locally learn a dynamic function whose output
solutions can change with time and space, different output
solutions can be temporarily approximated. In the following
sections, we will describe how the model is localized and
updated in an online setting. We present the parametrization of
the local model and show how the corresponding parameters
can be obtained from data. Subsequently, we show how the
learned local model can be used in online learning for task-
space robot control.

A. Model Localization

For learning task-space tracking, we use a single local
model for torque prediction, where this model is localized in
the robot’s joint position space. This local data set needs to
be continuously updated in the online setting, as the robot
frequently moves to new state space regions. In this section,
we describe the measures needed to localize and update the
model during online learning. The procedure includes insertion
of new data points into the local data set and removal of old
ones. By continuously online update, we have a consistent
spatial and temporal local data set appropriate for model
learning. Here, the spatial allocation is taken into account by
using kernel-based measures, while the temporal property is
achieved by continuously insertion and removal of data points.

1) Insertion of New Data Points: For deciding whether to
insert a new data point into the local data set, we consider
the distance measure δ as proposed in [25] and [26]. A brief

motivation for this measure is given in the Appendix. This
measure is defined by

δ(q∗) = k(q∗, q∗)− kTK−1a k . (3)

where k(·, ·) denotes a kernel, Ka = k(L,L) is the kernel
matrix evaluated for the local joint positions L={qi}Ni=1 and
k=k(L, q∗) is the kernel vector [26]. The value δ describes
the distance of a point q∗ to the surface defined by L in the
joint-space. This value increases with the distance of q∗ from
the surface L [26]. It should be noted that the measure given
in Equation (3) has been used in various contexts, such as
sparsification [27], [28] and learning dynamical systems [26].
In this paper, we employed this measure as a criterion for
localization. While the sparsification and pruning deal with
the problem of data reduction, the localization is related to
the problem of selecting neighboring data points.

Using Equation (3), we can make decisions for inserting
new data points. If the δ values of new data points exceed a
given threshold η, we will insert these points into the local
model. The employed measure δ ensures that new data points
will be included into the local set, when the robot moves to
new joint-space regions.

2) Removal of Old Data Points: For removing data points
from the local set, we select the point which is the farthest
from the most recent joint position q. Here, we employ a
Gaussian kernel as a distance measure between q and other
local data points qi

k (q, qi)=exp

(
−1

2
(q−qi)TW(q−qi)

)
, (4)

where W denotes the kernel width. Removing the farthest
local data point implies that its kernel measure k(·, ·) is the
smallest. By continuously inserting and removing local data
points, we make sure that the local data set is suitable for
the current region of the state space. It is worth noting that
it is sufficient to localize the local set in the robot’s joint
position space. Due to the smoothness of the function being
learned, spatially and temporarily nearby input data points will
have similar output values. Hence, the localization will form
a consistent spatial and temporal local set.

B. Model Parametrization

The described insertion and removal operations in preceding
section result in a data set localized in the joint position
space. Due to the local consistency, model learning using
this data is well-defined. Given the sampled local data set
D={qi, q̇i, ẍi,ui}Ni=1, we can now learn a model for torque
prediction for task-space control.

From the physical model described in Equation (1), we
can see that the joint torque u is linear in the task-space
acceleration ẍ, while it is nonlinear in the joint position q
and velocity q̇. Using this insight, we propose the following
parametrization for the local model

u = θTφ(q, q̇) + θT0 ẍ , (5)

where φ is a vector containing nonlinear functions projecting
[q, q̇] into some high-dimensional spaces. Generally, ẍ can
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have d dimensions and u is a m dimensional vector. Following
the representer theorem [5], the coefficients θ,θ0 in Equation
(5) can be expanded in term of N local data points. Hence,
we have

θ =
∑N

i=1 αiφ(qi, q̇i) , θ0 =
∑N

i=1 α
i
0ẍi ,

where αi, α
i
0 are the corresponding linear expansion coeffi-

cients. Inserting the linear expansions into Equation (5) and
re-writing it in term of N sample data points yields

U =Kα+ Pα0 . (6)

Here, the elements [K]ij=〈φ(qi, q̇i),φ(qj , q̇j)〉 are the pair-
wise inner-products of the feature vectors. Thus, [K]ij can be
represented with kernels [5], i.e., [K]ij = k̃([qi, q̇i], [qj , q̇j ]).
The matrix K is thus a kernel matrix evaluated at the joint
position and velocity employing the kernel k̃(·, ·). Using this
so-called kernel-trick, only the kernel function k̃ needs to
be determined instead of an explicit feature mapping φ [5].
Similarly, the elements [P ]ij=〈ẍi, ẍj〉 represent the pairwise
inner-products of the task-space acceleration ẍ. Thus, P can
be understood as a kernel matrix where linear kernels are ap-
plied. In Equation (6), the matrix U is given by U={ui}Ni=1.

C. Online Learning of Local Model

Learning requires the estimation of the expansion param-
eters α and α0 in Equation (6) from the local data set.
Employing the learned model, we can predict the output for a
query point. In particular, for online learning the expansion
parameters have to be estimated incrementally, as the data
arrives as a stream over time.

1) Estimation of Model Parameters: Using the model
parametrization in Section II-B, the expansion parameters can
be estimated from data by minimizing an appropriate cost
function L given by

L =
γ

2

(
αTKα+αT

0 Pα0

)
(7)

+
1

2
(Kα+ Pα0 −U)

T
N (Kα+ Pα0 −U) .

The first term in Equation (7) acts as regularization, while
the second term represents a squared-loss based data-fit. In
Equation (7), the parameter γ controls the regularization and
the diagonal matrix N denotes the weight for each data point
in the local set. The minimization of L w.r.t. α and α0 yields
the analytical solution[

α
α0

]
=

[
K + γN−1 P

K P + γN−1

]−1 [
U
U

]
. (8)

A derivation for Equation (8) is given in the Appendix.
The weighting metric N incorporates a distance measure of
each local data point to the most recent point in the local
set. Here, we employ a kernel distance measure in the joint
position space, as given in Equation (4). The weighting metric
N ensures that the local data will form a well-defined set
appropriate for the model learning step.

Algorithm 1 Online learning of the local model.
Given: local data set D={qi, q̇i, ẍi,ui}Ni=1, Nmax, thresh-
old value η.
Input: new input {q, q̇, ẍ} and output u.

Evaluate the distance of q to the surface defined by L =
{qi}Ni=1 based on the measure δ(q) from Equation (3).
if δ(q) > η then

for i=1 to N do
Compute: N(i, i) = k(q, qi) using Equation (4).

end for
if N < Nmax then

Include the new point: DN+1={q, q̇, ẍ,u}.
else

Find the farthest point: j=mini N(i, i).
Replace the j-th local data point by the query point:
Dj={q, q̇, ẍ,u}.

end if
Update the expansion parameters α and α0 incrementally
using Equation (8), while re-weighting every local data
point with the new distance metric N.

end if

2) Online Model Learning: As the data arrives continu-
ously in the online setting, Equation (8) has to be updated
incrementally. Such incremental updates require adjusting the
corresponding row and column of the inverse matrix, i.e., a
rank-one update of the inverse matrix [29]. In this paper, we
employ the well-known Sherman-Morrison formular to update
the corresponding rows and columns [30]. Additionally, every
data point in the local set has to be re-weighted by its distance
to the most current point after every insertion and removal
step. In practice, we initialize the inverse matrix in Equation
(8) as a diagonal matrix, where the number Nmax of local
data points is fixed. During online learning, the inverse matrix
is first updated Nmax times while filling up the local data
set. Subsequently, old data points have to be removed when
new points are inserted. Removing an old point is performed
by overwriting the corresponding row and column by new
ones. The complete procedure for learning the local model
is summarized in the Algorithm 1.

3) Prediction: With the optimization results from Equation
(8), the prediction û for a query point [q, q̇, ẍref ] can be
computed as

û(q, q̇, ẍref) = α
T k̃(Q, [q, q̇]) +αT

0 〈Ẍ, ẍref〉 , (9)

where Ẍ={ẍi}Ni=1 denotes the set of sampled task-space ac-
celeration and Q={qi, q̇i}Ni=1 contains robot’s joint positions
and velocities.

D. Using Local Model for Task-Space Control

Up to now, we have learned a well-defined local model to
predict the joint torques required to drive the robot along a
desired task-space trajectory. To ensure the local consistency,
this local model is continuously updated depending on the
current robot’s configuration. However, even after obtaining
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Fig. 1: An example of learning a non-unique function. For the pendulum shown in (a), we have for each input position x two possible
output values. Naively learning a global mapping x→y using GPR [4] results in an average over multiple output solutions, as shown in
(b). However, when the mapping is learned locally within the vicinity of the query point in an online setting, the model learning problem
is well-defined resulting in a proper prediction.

Algorithm 2 Online prediction for task-space control.

Given: a rest posture qrest, local data Ẍ = {ẍi}Ni=1 and
Q={qi, q̇i}Ni=1, expansion parameters α and α0.
Input: query point {q, q̇,xdes, ẋdes, ẍdes}.

Compute null-space control torque u0.
Compute null-space projection matrix H=αT

0 Ẍ .
Compute task-space attractor ẍref .
Compute joint torque control ujoint as given in Equation
(10).

a perfect prediction of the necessary torques, it is not clear
whether the robot will be stable in the joint-space. Thus, we
need to explore ways to stabilize the robot in the joint-space
without interfering the task-space performance, as done in
analytical task-space control (see Equation (2)). Here, the key
idea is to project the stabilizing torques u0 into the null-space
of the “task relevant” part.

From Equation (9) for the prediction, it can be seen that the
second term is the task relevant part, as this term explicitly
depends on ẍref . Therefore, for the robot joint-space stabi-
lization, we can project the stabilization torques u0 into the
null-space of this term. Hence, the total joint torque controller
command ujoint can be computed as

ujoint = α
T k̃(Q, [q, q̇]) +αT

0 〈Ẍ, ẍref〉 (10)

+ (I−H(HTH)−1HT )u0 .

The null-space projection is then given by the matrix H =
αT

0 Ẍ . The resulting null-space projection allows joint-space
stabilization based on u0 without interfering the task perfor-
mance. The procedure for online torque prediction in task-
space tracking control is summarized in the Algorithm 2.

III. ROBOT EVALUATIONS

In this section, we evaluate the proposed approach for
learning task-space control, as described in Section II. First,

we show for a toy example how a non-unique function can be
learned in the online setting using this local learning approach.
This example further illustrates the basic idea behind the local
learning principle when used for approximating a multi-valued
mapping. Subsequently, we show the ability of our method
in learning torque prediction models for task-space tracking
control of redundant robot systems. The control experiments
are performed with both simulated 3-DoF robot and 7-DoF
anthropomorphic Barrett arm as shown in Figure 2 (c).

A. Online Learning of a Non-unique Function

As benchmark example, we create a one-dimensional non-
unique function shown in Figure 1 (a). In this example, there
is a pendulum that can rotate in the x−y plane. For a circular
rotation, the trajectory of x and y is given by xi=sin(ti) and
yi=cos(ti) for ti ranging from 0 to 2π. For the experiment,
we sample 500 data points from the generated trajectory. If we
employ x as input and y as the target output, we will have a
non-unique prediction problem.

In this example, the parametrization of the local model is
given by y = θTφ(x). While the model is localized in the
x space, we incrementally update the local data set and learn
the model in the online setting, as described in Section II. For
online model learning, we incrementally feed the data to the
algorithm. Figure 1 shows the results after one sweep through
the data set. To highlight the difficulty in learning such multi-
valued mappings from data, the well-known Gaussian process
regression (GPR) [4] is employed to globally approximate the
mapping x→ y. The comparison between the two methods
is given in Figure 1. Figure 1 (a) shows the trajectory of the
pendulum in the x−y space when using local learning and
GPR for the prediction of y given x. Figure 1 (b) shows the
corresponding prediction outputs y.

In the experiment, the size of the local data set Nmax is
chosen to be 10. The choice of the size also depends on
the complexity of the function being approximated. As the
computing cost is O(4N2) due to the incremental update
of the inverse matrix in Equation (8), the number of the
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for task-space tracking control.
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Fig. 4: Task-space tracking control of a simulated 7-DoF Barrett WAM with additional null-space perturbation. (a) The null-space perturbation
leads to an initial deviation from the desired trajectory. Despite the continuous perturbation in the null-space, the online learned controller
is able to track the task-space trajectory sufficiently well. Here, the learned controller is able to stabilize the robot in the joint-space.
(b) Joint-space trajectory during the online learning with additional perturbation. The perturbation creates oscillations in the joint-space
movements.
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local data points N also implies a trade-off between learning
performance and computational complexity. During the online
learning and prediction, we first incrementally fill the local
set up and, subsequently, update the local model online by
insertion and removal. We employ the Gaussian kernel for the
localization step, as well as for model learning. The kernel
width W is optimized by cross-validation, and the threshold
η is set to be 0.001.

In practice, the two parameters η and Nmax are open-
parameters which need to be chosen by the user. The parameter
Nmax determines the size of the local region, and η determines
the frequency of the updates. The smaller the parameter η is,
the more frequently the local model is updated. While small
η-values enable an accurate approximation of the dynamics,
they also lead to higher computational complexity. Thus, η
should be chosen according to the available computational
power. Large Nmax might lead to inconsistency in the data,
on the other hand small Nmax-values can deteriorate the
learning performance. While there is a connection between the
variability of the function being approximated, the sampling
rate and the choice of Nmax, it is difficult to give general rules
for the choice of this parameter. However, a rule of thumb
might be useful: the more variable the data is, the smaller
should be Nmax; and the denser the data is sampled, the larger
Nmax can be chosen. In practice, Nmax and η can be chosen
beforehand by cross-validation on sampled data. By so doing,
optimal settings for a given function being learned can be
determined.

As the farthest point in the input space is removed when a
new point is inserted, one can observe that the local data set
always covers a region in the vicinity of the recent query point.
Due to the locality of the data set, i.e., only a local region of
the input-output space is covered with data at any time, the
local learning approach does not suffer from the ambiguity in
the outputs. Thus, we have a local model which moves along
with the data stream observed online. The locality is further
enforced by the weighting metric N introduced in Equation
(7), which ensures that the local set forms a convex data space.
Thus, a local model can be learned and results in a proper
online prediction of the targets y, shown in Figure 1.

B. Online Model Learning for Task-Space Tracking Control

In this section, we apply the proposed method to online
learning of torque prediction models for task-space control
of a simulated 3-DoF robot and the simulated 7-DoF Barrett
WAM. In the experiments, the models are learned online, while
the robots are controlled to track a task-space trajectory. Here,
the task-space trajectory is given by the positions of the end-
effector in Cartesian space. Thus, the task-space dimension
is 2 for the 3-DoF robot and 3 for the 7-DoF Barrett arm.
The tracking results in task-space for the 3-DoF robot and
the Barrett WAM are shown in Figures 2 and 3, respectively.
The figures show the tracking performance during the first 10
seconds.

In the experiment using the 3-DoF robot model shown
in Figure 2, we compare the task-space tracking control
performance, when employing the online learned model and

the perfect analytical model. Using the perfect analytical
model knowledge, the joint torques are computed as given
in Equation (2). Thus, the robot performs perfect task-space
tracking, as shown in Figure 2 (a). In this example, the rest
posture is set to be qrest=[−π/3, π/3, π/3]T .

For the online learning of the task-space control model, the
torque prediction is computed as given in Equation (10). The
size of the local set is determined to be 30 and η=0.01. Here,
we employ a Gaussian kernel, where the kernel width W is
optimized beforehand. As shown in Figure 2 (b), the learned
joint torques converge to the torques computed by the perfect
analytical model after a short transient phase. As a result, the
robot achieves good task-space tracking performance after a
few seconds of online model learning. This comparison shows
that the online learned local model is able to approximate the
physical properties of the robot. In the next experiment, we
employ the proposed approach to control the more complex
7-DoF Barrett WAM in simulation. Similar to the previous
experiment, the robot is controlled to follow a figure-8 in
task-space while learning the torque prediction model online.
Here, the local set consists of 150 data points, η= 0.05 and
a Gaussian kernel is used. During online learning, the model
is incrementally updated 300 times. The results for the first
10 seconds are shown in Figure 3. It can be observed that the
robot is able to follow the task-space trajectory well, while
keeping the joint-space trajectory in the vicinity of the rest
posture qrest=[0.0, 0.5, 0.0, 1.9, 0.0, 0.0, 0.0]T .

In task-space tracking control, it is desirable that the joint-
space stabilization u0=−Gvq̇−Gp(q−qrest) does not signifi-
cantly affect the task-space performance. To achieve this goal,
the joint-space stabilization torque u0 is projected into the
null-space of the task relevant part, as shown in Equation (10).
In order to show the decoupling of u0 from the task perfor-
mance, we additionally perturbate the null-space movements.
In particular, we add a perturbation to the first 4 DoFs of the
Barrett WAM (i.e., the shoulder DoFs and the elbow DoF).
For this experiment, we define a time-dependent rest posture
as qrest(t)=[P (t), 0.5+P (t), P (t), 1.9+P (t), 0.0, 0.0, 0.0]T ,
with P (t) = 0.5 sin(2πt) and t is the running time. Figure 4
shows the results for the first 20 sec.

It can be seen that the time-dependent perturbation in the
rest posture qrest(t) leads to an initial deviation from the
desired trajectory. During online learning, the robot gradually
moves back to the desired trajectory, as the model learning
is converging. Although the perturbation is added to the first
4 DoFs, the null-space movements are distributed on all 7
DoFs, as shown by the Figure 4 (b). Due to the perturbation,
the stabilization torque u0 starts oscillating as shown in
Figure 5 (b). The perturbation of u0 also becomes noticeable
through oscillations in the joint trajectory (see Figure 4). The
decoupling of the joint-space stabilization u0 from the task
performance is showed by the circumstances that the task-
space tracking remains sufficiently accurate despite different
joint-space stabilization. Figure 5 shows u0 (a) and (b) for
cases with and without perturbation. Despite the different
stabilization torques, the task-space performance is hardly
affected. The task-space tracking errors are similar for both
cases, as shown in Figure 5 (c).
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(a) Null-space torque u0 for each DoF
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(b) Null-space torque u0 with perturbation
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Fig. 5: Figures (a) and (b) show the joint-space stabilization torques u0 during the first 10 sec of the task-space tracking. (a) Stabilization
torque without perturbation. (b) Stabilization torque with perturbation. Due to the projection of u0 into the null-space of the task, different
joint-space stabilization torques do not significantly affect the task performance. In both cases, the task-space tracking errors remain similar,
as shown in Figure (c). The tracking errors are computed as root-mean-square-error (RMSE) after 10 sec online learning.

IV. CONCLUSION

In this paper, we employed local, kernel-based learning for
the online approximation of a multi-valued mapping. This
approach is based on the key insight that an approximation
of such mappings from data is globally an ill-posed problem,
while it is locally well-defined. Our proposed method uses an
online procedure for updating the local model by inserting and
removing data points. We further proposed a parametrization
for the local model that allows learning task-space tracking
control. The update procedures and the model are formulated
in the kernel framework, where the resulting parameters can
be incrementally learned online. The resulting framework
has open parameters based on the smoothness for dynamics
mapping. To determine a measures of this smoothness is an
important open issue which needs to be addressed in future,
follow-up research projects. As evaluation, we showed that
the approach was able to learn torque prediction models for
task-space tracking of redundant robots in several setups.
The experiments are performed both on a simulated 3-DoF
robot and the simulated 7-DoF Barrett WAM. The results
show that the presented kernel-based approach can be used
to approximate multi-valued mappings for task-space tracking
control.
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G. Rätsch, and A. J. Smola, “Input space versus feature space in kernel-
based methods,” IEEE Transactions on Neural Networks, vol. 10, no. 5,
pp. 1000–1017, 1999.

[26] D. Nguyen-Tuong and J. Peters, “Incremental sparsification for real-
time online model learning,” in Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, 2010.

[27] W. Liu, I. Park, and J. C. Principe, “An information theoretic approach of
designing sparse kernel adaptive filters,” IEEE Transactions on Neural
Networks, no. 20, pp. 1950 – 1961, 2009.

[28] W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering: A
Comprehensive Introduction. Wiley, 2010.

[29] D. Nguyen-Tuong and J. Peters, “Model learning with local gaussian
process regression,” Advanced Robotics, vol. 23, no. 15, pp. 2015–2034,
2009.

[30] G. H. Golub and C. F. V. Loan, Matrix Computation. Baltimore: John
Hopkins University Press, 1996.

APPENDIX

A. Linear Independence Measure

To test whether a new point q∗ should be inserted, we need
to ensure that it can not be approximated in the feature space
spanned by the current local set L={qi}Ni=1. This test can be
performed using a measure δ defined as

δ =

wwwww
m∑
i=1

aiψ(qi)−ψ(q∗)

wwwww
2

, (11)

(see, e.g., [5], [25], [27] for more background information),
where ai denote the coefficients of linear dependence and ψ
is a feature function. Equation (11) can be understood as a
distance of the new point q∗ to the linear plane spanned by
the local set L in the feature space. Thus, the value δ can be
considered as a measure indicating how well a new data point
q∗ can be approximated in the feature space of a given data
set. The larger the value of δ is, the more informative is q∗

for the local set L.
The coefficients ai from Equation (11) can be determined

by minimizing δ. Formulated in matrix form, the minimization
of δ can be given as

a = min
a

[
aTKaa− 2aTk + b

]
, (12)

where Ka = k(L,L) represents the kernel matrix, k =
k(L, q∗) is the kernel vector and b= k(q∗, q∗). Note that in
Equation (12) we make use of the property that inner products
of feature vectors can be represented as kernel values [5].
Minimizing Equation (12) yields the optimal coefficient vector
a=K−1a k. The parameter a from Equation (12) can be further
regularized taking in account problems such as outliers. The
regularization can be controlled by a regularization-parameter
which can be chosen to alleviate the outlier’s contribution to
the selection process. After substituting the optimal value a
into Equation (11), δ becomes

δ(q∗) = b− kTa . (13)

Using δ we can decide whether to insert new data points into
the local set.

B. Estimation of the Expansion Parameters

The derivatives of the cost function L in Equation (7) w.r.t.
α and α0 and are given by

∂L
∂α

= γα+N (Kα+ Pα0 −U) = 0 (14)

∂L
∂α0

= γα0 +N (Kα+ Pα0 −U) = 0 .

Rewriting Equation (14) yields

U =
(
γN−1 +K

)
α+ Pα0 (15)

U =
(
γN−1 + P

)
α0 +Kα .

Solving Equation (15) for α and α0 yields[
α
α0

]
=

[
K + γN−1 P

K P + γN−1

]−1 [
U
U

]
. (16)

For online learning, the inverse matrix in Equation (16) need
to be incrementally updated which requires a cost of O(4N2)
for computation and memory. As the computation can be
expensive for large N , the online update of the inverse matrix
can be implemented in an independent process. Here, the
parameters α and α0 can be updated independently from
the joint torque controller (showed in Equation (10)). While
the controller command ujoint need to be computed for each
sampling step in real-time, e.g., every 2 ms for the Barrett
WAM, it is sufficient to update α and α0 a much slower rate.


