
Cognitive Science (submitted) manuscript No.
(will be inserted by the editor)

Model Learning for Robot Control: A Survey

Duy Nguyen-Tuong · Jan Peters

the date of receipt and acceptance should be inserted later

Abstract Models are among the most essential tools in robotics, such as kinematics

and dynamics models of the robot’s own body and controllable external objects. It

is widely believed that intelligent mammals also rely on internal models in order to

generate their actions. However, while classical robotics relies on manually generated

models that are based on human insights into physics, future autonomous, cognitive

robots need to be able to automatically generate models that are based on information

which is extracted from the data streams accessible to the robot. In this paper, we

survey the progress in model learning with a strong focus on robot control on a kine-

matic as well as dynamical level. Here, a model describes essential information about

the behavior of the environment and the influence of an agent on this environment. In

the context of model based learning control, we view the model from three different

perspectives. First, we need to study the different possible model learning architectures

for robotics. Second, we discuss what kind of problems these architecture and the do-

main of robotics imply for the applicable learning methods. From this discussion, we

deduce future directions of real-time learning algorithms. Third, we show where these

scenarios have been used successfully in several case studies.

Keywords Model learning · Robot Control · Machine Learning · Regression

1 Introduction

Machine learning may allow avoiding the need to pre-program all possible scenarios,

but rather learns the system during operation. There have been many attempts at

creating learning frameworks, enabling robots to autonomously learn complex skills

ranging from task imitation to motor control [132,175,133]. However, learning is not

an easy task. For example, reinforcement learning can require more trials and data

D. Nguyen-Tuong · J. Peters
Max-Planck Institute for Biological Cybernetics
Spemannstrasse 38
72076 Tübingen, Germany
Tel.: +49-7071-601-585
E-mail: duy.nguyen-tuong@tuebingen.mpg.de
E-mail: jan.peters@tuebingen.mpg.de



2

16

We also applied LWPR to an even more complex robot, a 30 DOFs humanoid robot
as shown in Figure 5a. Again, we learned the inverse dynamics model for the shoulder
motor, however, this time involving 90 input dimensions (i.e., 30 positions, 30 velocities,
and 30 accelerations of all DOFs). The learning results, shown in Figure 5b, are similar
to Figure 4. Very quickly, LWPR outperformed the inverse dynamics model estimated
from rigid body dynamics and settled at a result that was more than three times more
accurate. The huge learning space required more than 2000 local models, using about
2.5 local projections on average. In our real-time implementation of LWPR on this robot,
the learned models achieve by far better tracking performance than the parameter esti-
mation techniques.

a) b)

!

!"!#

!"$

!"$#

!"%

!"%#

!"&

!"&#

!"'

!"'#

!"#

!

#!!

$!!!

$#!!

%!!!

%#!!

! %#!!!!! #!!!!!! (#!!!!!

)
*
+
,
-.
)
-/
0
1
2-
+
0
2

3
4
0
5
0
6
27
8
0
-9
70
:;
1

3/<=7)7)>-?=2=-@.7)21

@=<=A020<
B;0)27C75=27.)

DE@4

3491

Figure 5: a) Humanoid robot in our laboratory; b) inverse dynamics learning for the right shoulder motor
of the humanoid.

4 Conclusions
This paper presented Locally Weighted Learning algorithms for real-time robot learn-
ing. The algorithms are easy to implement, use sound statistical learning techniques,
converge quickly to accurate learning results, and can be implemented in a purely in-
cremental fashion. We demonstrated that the latest version of our algorithms is capable
of dealing with high dimensional input spaces that even have redundant and irrelevant
input dimensions while the computational complexity of an incremental update re-
mained linear in the number of inputs. In several examples, we demonstrated how LWL
algorithms were applied successfully to complex learning problems with actual robots.
From the view point of function approximation, LWL algorithms are competitive meth-
ods of supervised learning of regression problem and achieve results that are compara-
ble with state-of-the-art learning techniques. However, what makes the presented algo-

(a) Humanoid Robot
DB

Slip Prediction Using Visual Information
Anelia Angelova

Computer Science Dept.
California Institute of Technology
Email: anelia@vision.caltech.edu

Larry Matthies, Daniel Helmick
Jet Propulsion Lab (JPL)

California Institute of Technology
lhm, dhelmick@jpl.nasa.gov

Pietro Perona
Electrical Engineering Dept.

California Institute of Technology
perona@vision.caltech.edu

Abstract—This paper considers prediction of slip from a
distance for wheeled ground robots using visual information as
input. Large amounts of slippage which can occur on certain
surfaces, such as sandy slopes, will negatively affect rover mobil-
ity. Therefore, obtaining information about slip before entering
a particular terrain can be very useful for better planning and
avoiding terrains with large slip.

The proposed method is based on learning from experience
and consists of terrain type recognition and nonlinear regression
modeling. After learning, slip prediction is done remotely using
only the visual information as input. The method has been
implemented and tested offline on several off-road terrains
including: soil, sand, gravel, and woodchips. The slip prediction
error is about 20% of the step size.

I. INTRODUCTION

Slip is a measure of the lack of progress of a wheeled ground
robot while driving. High levels of slip can be observed on
certain terrains, which can lead to significant slow down of
the vehicle, inability to reach its predefined goals, or, in the
worst case, getting stuck without the possibility of recovery.
Similar problems were experienced in the Mars Exploration
Rover (MER) mission in which one of its rovers got trapped
in a sand dune, experiencing a 100% slip (Figure 1). In future
missions it will be important to avoid such terrains, which
necessitates the capability of slip prediction from a distance,
so that adequate planning could be performed. This research is
relevant to both Mars rovers and to Earth-based ground robots.
While some effort has been done in mechanical modeling

of slip for wheeled ground robots [2], [8], [14], no work, to
our best knowledge, has considered predicting slip, or other
properties of the vehicle-terrain interaction, remotely. In this
paper we use vision information to enable that.
We propose to learn a mapping between visual informa-

tion (i.e. geometry and appearance coming from the stereo
imagery) and the measured slip, using the experience from
previous traversals. Thus, after learning, the expected slip can
be predicted from a distance using only stereo imagery as
input. The method consists of: 1) recognizing the terrain type
from visual appearance and then, after the terrain type is
known, 2) predicting slip from the terrain’s geometry. Both
components are based on learning. In our previous work we
have shown that the dependence of slip on terrain slopes
when the terrain type is known (termed ‘slip behavior’) can
be learned and predicted successfully [1]. In this paper we
describe the whole system for slip learning and prediction,

Fig. 1. The Mars Exploration Rover ‘Opportunity’ trapped in the ‘Purgatory’
dune on sol 447. A similar 100% slip condition can lead to mission failure.

Fig. 2. The Mars Exploration Rover ‘Spirit’ in the JPL Spacecraft Assembly
Facility (left). The LAGR vehicle on off-road terrain (right).

including the texture recognition and the full slip prediction
from stereo imagery.
The output of the slip prediction algorithm is intended to

be incorporated into a traversability cost to be handed down
to an improved path planner which, for example, can consider
regions of 100% slip as non-traversable or can give higher cost
to regions where more time is needed for traversal due to large
slip. Second to tip-over hazards, slip is the most important
factor in traversing slopes. Automatic learning and prediction
of slip behavior could replace manual measurement of slip, as
the one performed by Lindemann et al. [17], which has been
used successfully to teleoperate the ‘Opportunity’ rover out of
Eagle Crater. One additional problem which occurred in [17],
and which learning could easily solve, is that slip models were
available only for angles of attack of 0◦, 45◦, 90◦ away from
the gradient of the terrain slope [7], [17].

A. Testbed

This research is targeted for planetary rovers, such as MER
(Figure 2). For our experiments, however, we used an experi-
mental LAGR1 testbed (Figure 2), as it is a more convenient
1LAGR stands for Learning Applied to Ground Robots

(b) Mobile LAGR Robot

Learning Locomotion over Rough Terrain using Terrain Templates

Mrinal Kalakrishnan∗, Jonas Buchli∗, Peter Pastor∗, and Stefan Schaal∗†‡

∗Computer Science, University of Southern California, Los Angeles, CA 90089 USA
†Neuroscience and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA

‡ATR Computational Neuroscience Labs, Kyoto 619-0288, Japan
Email: {kalakris, buchli, pastorsa, sschaal}@usc.edu

Abstract— We address the problem of foothold selection
in robotic legged locomotion over very rough terrain. The
difficulty of the problem we address here is comparable to
that of human rock-climbing, where foot/hand-hold selection is
one of the most critical aspects. Previous work in this domain
typically involves defining a reward function over footholds as
a weighted linear combination of terrain features. However, a
significant amount of effort needs to be spent in designing these
features in order to model more complex decision functions, and
hand-tuning their weights is not a trivial task. We propose the
use of terrain templates, which are discretized height maps of
the terrain under a foothold on different length scales, as an
alternative to manually designed features. We describe an algo-
rithm that can simultaneously learn a small set of templates and
a foothold ranking function using these templates, from expert-
demonstrated footholds. Using the LittleDog quadruped robot,
we experimentally show that the use of terrain templates can
produce complex ranking functions with higher performance
than standard terrain features, and improved generalization to
unseen terrain.

I. INTRODUCTION

Traversing rough terrain with carefully controlled foot
placement and the ability to clear major obstacles is what
makes legged locomotion such an appealing, and, at least
in biology, a highly successful concept. Surprisingly, when
reviewing the legged locomotion literature, relatively few
projects can be found that actually address walking over
rough terrain. Most legged robots walk only over flat or at
best slightly uneven terrain, a domain where wheeled systems
are usually superior. Walking over rough terrain poses a
variety of challenges. First, the walking pattern needs to be
very flexible in order to allow close to arbitrary foothold
selection – indeed, even the choice of which leg is the
swing leg may have to be altered on the fly [1]. Second,
balance control becomes crucial due to slipping and other
mistakes, such that sole reliance on a stable walk pattern
is insufficient [2]. And third, foothold selection for maximal
robustness and speed is crucial. In previous work [1], [2], we
have addressed the first two issues. In this paper, we consider
the problem of foothold selection for locomotion over rough
terrain.

Related work in the literature has used classifiers that
classify footholds on the terrain as acceptable or unac-
ceptable using terrain features like slope and proximity to
cliffs [3]. Other work involves defining a reward function
over footholds as a weighted linear combination of terrain

Fig. 1. The LittleDog quadruped robot on rocky terrain

features like slope and curvature on different length scales,
and subsequently picking the foothold that maximizes the
reward [4]. The weights on the features in the reward
function in [4] are inferred using a learning procedure called
hierarchical apprenticeship learning on footholds and body
paths demonstrated by an expert. The performance of such a
system, however, is critically dependent on the careful design
of heuristic terrain features which are flexible enough to
model the expert’s training data.

The contribution of this paper is the introduction of terrain
templates (hereafter simply referred to as templates) as a
tool for learning locomotion over rough terrain. The concept
is partly inspired by template matching techniques widely
used in computer vision [5]. A template is a discretized
height map in a small area around a foothold that the robot
encounters. We introduce an algorithm that can learn a set
of templates from expert-demonstrated footholds, along with
an associated set of weights, and use them to successfully
navigate previously unseen terrain. We present results show-
ing that the learnt templates alone can outperform multi-
scale terrain features on complex terrain. We also show that
the combination of features and templates performs the best,
due to the broad generalization ability of features, and the
specialization capability of templates.

The rest of this paper is laid out as follows. In Section II,
we formulate the foothold selection problem and introduce an
algorithm that learns a ranking function for foothold selection

(c) Boston Dynamics Little Dog

Fig. 1 Platforms with well-known applications of model learning: (a) Schaal et al. learned
the complete inverse dynamics model for Humanoid DB [134]; (b) Angelova et al. predicted
the slip of the mobile LAGR robot based on learned models that required visual features as
input [4]; (c) Kalakrishnan et al. estimated foothold quality models based on terrain features
for the Boston Dynamics little dog [60].

than one can generate in the life-time of a robot, and black box imitation learning can

at best reproduce the desired behavior. Thus, it is essential to study how the basic,

underlying mechanisms of the world can be learned. This approach is commonly known

as model learning.

In recent years, methods to learn models from data have become interesting tools

for robotics, as they allow straightforward and accurate model approximation. The

reason for this increasing interest is that accurate analytical models are often hard to

obtain due to the complexity of modern robot systems and their presence in unstruc-

tured, uncertain and human-inhabited environments [105,93]. Model learning can be a

useful alternative to manual pre-programming, as the model is estimated directly from

measured data. Unknown nonlinearites can be directly taken in account, while they

are neglected by the standard physics-based modeling techniques and by hand-crafted

models. In order to generalize the learned models to a larger state space and to adapt

the models for time dependent changes, online learning of such models is necessary.

Model learning has been shown to be an efficient tool in a variety of scenarios, such

as inverse dynamics control [105], inverse kinematics [124,162,52], robot manipulation

[151,66], autonomous navigation [4] or robot locomotion [60]. Figure 1 shows several

examples of well-known applications of model learning. While there are many more

applications of model learning in robotics, such as learning 3D-models of objects or

map-models of the environment [117], this survey focuses on the core application of

model learning for control. Here, a model can be used to describe the kinematics and

dynamics of the robot’s own body and controllable external objects. In the context

of control, a model contains essential information about the system and describes the

influence of an agent on this system. Thus, modeling a system is inherently connected

with the question how the model can be used to manipulate, i.e., to control, the system

on a kinematic as well as dynamical level.



3

1.1 Model Learning for Control: Problem Statement

Accurate models of the system and its environment are crucial for planning, control

and many other applications. In this paper, we focus on generating learned models of

dynamical systems that are in a state sk taking an action ak and transfer to a next

state sk+1, where we can only observe an output yk that is a function of the current

state and action. Thus, we have

sk+1 = f(sk,ak) + εf ,

yk = h(sk,ak) + εy ,
(1)

where f and h represent the state transition and the output function, εf and εy
denote the noise components. In practice, state estimation techniques are often needed

to reduce the noise of the state estimate and to obtain complete state information [67].

While the output function h can often be described straightforwardly by an algebraic

equation, it is more difficult to model the state transition function f , as it includes

more complex relationship between states and actions.

The state transition model f predicts the next state sk+1 given the current state

sk and action ak. Application of such state transition models in robotics and control

has a long history. With the increasing speed of computation and its decreased cost,

models have become common in robot control, e.g., in feedforward control and state

feedback linearization. At the same time, due to the increasing complexity of robot

systems, analytical models are more difficult to obtain. This problem leads to a vari-

ety of model estimation techniques which allow the roboticist to acquire models from

data. Combining model learning with control has drawn much attention in the control

community [37]. Starting with the pioneering work in adaptive self-tuning control [5],

model based learning control has been developed in many aspects ranging from neural

network controllers [111] to more modern control paradigms using statistical methods

[68,95].

In early days of adaptive control [100,5], models are learned by fitting open param-

eters of pre-defined parametric models. Estimating such parametric models from data

has been popular for a long time [6,64] due to the applicability of well-known system

identification techniques and adaptive control approaches [77]. However, estimating the

open parameters is not always straightforward, as several problems can occur, such as

persistent excitation issues, i.e., optimal excitation of the system for data generation

[99]. Furthermore, the estimated parameters are frequently not physically consistent

(e.g., violating the parallel axis theorem or having physically impossible values) and,

hence, physical consistency constraints have to be imposed on the regression problem

[161]. Nonparametric model learning methods can avoid many of these problems. Mod-

ern nonparametric model learning approaches do not pre-define a fixed model structure

but adapt the model structure to the data complexity. There have been strong efforts

to develop nonparametric machine learning techniques for model learning in robotics

and, especially, for robot control [94,37].

1.2 Overview

The aim of this paper is to give a comprehensive overview of past and current research

activities in model learning with a particular focus on robot control. The remainder



4

(a) Forward model (b) Inverse model (c) Mixed model

(d) Multi-step prediction model

Fig. 2 Graphical illustrations for different types of models. The white nodes denote the ob-
served quantities, while the grey nodes represent the quantities to be inferred. (a) The forward
model allows inferring the next state given current state and action. (b) The inverse model
determines the action required to move the system from the current state to the next state. (c)
The mixed model approach combines forward and inverse models in problems where a unique
inverse does not exist. Here, the forward and inverse models are linked by a latent variable
zt. (d) The multi-step prediction model is needed when dealing with finite sequences of future
states.

of this paper is organized as follows. First, we discuss different types of models in

Section 2.1 and investigate how they can be incorporated into different learning control

architectures in Section 2.2. In Section 2.3, we further discuss the challenges that arise

from the application of learning methods in the domain of robotics. In Section 2.4, we

provide an overview on how models can be learned using machine learning techniques

with a focus on statistical regression methods. In Section 3, we highlight examples

where model learning has proven to be helpful for the action generation in complex

robot systems. The paper will be summarized in Section 4.

2 Model Learning

Any rational agent will decide how to manipulate the environment based on its obser-

vations and predictions on its influence on the system. Hence, the agent has to consider

two major issues. First, it needs to deduce the behavior of the system from some ob-

served quantities. Second, having inferred this information, it needs to determine how

to manipulate the system.

The first question is a pure modeling problem. Given some observed quantities,

we need to predict the missing information to complete our knowledge about the ac-

tion and system’s reaction. Depending on what kind of quantities are observed (i.e.,

what kind of missing information we need to infer), we distinguish between forward

models, inverse models, mixed models and multi-step prediction models. Section 2.1

describes these models in more detail. The second question is related to the learning



5

control architectures which can be employed in combination with these models. In this

case, we are interested in architectures that incorporate learning mechanisms into con-

trol frameworks. Section 2.2 presents three different model learning architectures for

control, i.e., direct modeling, indirect modeling and distal teacher learning. In prac-

tice, model learning techniques cannot be used straightforwardly for many real-world

applications, especially, for robot control. Section 2.3 gives an overview of challenges

that appear when model learning is used in robotics. Section 2.4 approaches the model

learning problem from the algorithmic viewpoint, showing how models can be learned

using modern statistical regression methods. Here, we will distinguish between local

and global learning approaches.

2.1 Prediction Problems and Model Types

To understand the system’s behavior and how it reacts due to the agent’s actions, we

need information about the states and actions (of the past, the presence and sometimes

the expected future). However, we have only access to a limited number of these quan-

tities in practice. Thus, we need to predict the missing information given the known

information.

If we can observe the current state sk, and the current action ak is given, we

can attempt to predict the next state sk+1. Here, the forward model can be used to

predict the next state given current state and action. The forward model describes the

mapping (sk,ak)→ sk+1. We can use the inverse model to infer the current action,

i.e., the relation (sk, sk+1) → ak, if we know the current state and the desired or

expected future state. There are also approaches combining forward and inverse models

for prediction, which we will refer to as mixed model approaches. However, for many

applications the system behavior has to be predicted for the next t-steps rather than

for the next single step. Here, we need models to predict a series of states; we call such

models multi-step prediction models. Figure 2 illustrates these introduced models.

Given a model that provides predictions of the missing information, actions can

be generated by the agent. The way how actions are generated based on the models

is called control policy. Thus, a policy is understood as a decision for controlling the

system, while a model reflects the behavior of the system. Depending on the model, ap-

propriate policies should be taken to control the system. In this section, we additionally

describe how the different models can be used in various control scenarios.

2.1.1 Forward Models

Forward models predict the next state of a dynamic system given the current ac-

tion and current state. Note that the forward model directly corresponds to the state

transfer function f shown in Equation (1). As this function expresses the physical

properties of the system, the forward model represents a causal relationship between

states and actions. Thus, if such causal mappings have to be learned, it will result

in a well-defined problem and learning can be done straightforwardly using standard

regression techniques. While forward models of classical physics are unique mappings,

there are several cases where forward models alone do not provide sufficient informa-

tion to uniquely determine the next system’s state [69]. For instance, when a pendulum

is located at an unstable equilibrium point, it is more likely to go to the left or right

than to stay at the center. Nevertheless, the center point would be the prediction of a



6

forward model. Here, the modes of a conditional density may be more interesting than

the mean function f [69,145,70].

An early application of forward models in classical control is the Smith predictor,

where the forward model is employed to cancel out delays imposed by the feedback loop

[147]. Later, forward models have been applied, for example, in the context of model

reference adaptive control (MRAC) [100]. MRAC is a control system in which the

performance of an action is predicted using a forward model (i.e., a reference model).

The controller adjusts the action based on the resulting error between the desired and

current state. Hence, the policy π for the MRAC can be written as

π(s) = arg min
a

‖ fforward(st,a)− sdes
t+1 ‖ , (2)

where sdes
t denotes the desired trajectory, a the action chosen by the policy π and st

represents the observed state at time t. MRAC was originally developed for continuous-

time system and has been extended later for discrete and stochastic systems [100].

Applications of MRAC can be found numerously in robot control literature, such as

adaptive manipulator control [108]. Further application of forward models can be found

in the wide class of model predictive control (MPC) [82]. MPC computes optimal

actions by minimizing a given cost function over a certain prediction horizon N in the

future. The MPC control policy can be described by

π(s) = arg min
at:t+N

t+NX
k=t

Fcost

“
fforward(sk,ak)− sdes

k+1

”
, (3)

where Fcost denotes the cost function to be minimized, for k > t, sk are predictions

using the forward model, and at:t+N denotes the next N actions. MPC is widely used

in the industry, as it can deal with constraints in a straightforward way. MPC was

first developed for linear system models and, subsequently, extended to more complex

nonlinear models [82]. Forward models have also been essential in model based rein-

forcement learning approaches, which relate to the problem of optimal control [156,9,

103]. Here, the forward models describe the so-called transition dynamics determining

the probability of reaching the next state given current state and action. In contrast

to previous applications, the forward models incorporate a probabilistic description

of the system dynamics in this case [121,128]. More details about the applications of

forward models for optimal control will be given in the case studies in Section 3.1. It is

worth noting that from the biological view point forward models can be seen as a body

schema, i.e., a sensorimotor representation of the body used for action [54]. Inspired

by the biologically motivated body representations, the concept of body schema has

been exploited in robotics, such as for data generation [85] or incorporating structural

prior knowledge [168].

2.1.2 Inverse Models

Inverse models predict the action required to move the systems from the current state to

a desired future state. In contrast to forward models, inverse models represent an anti-

causal relationship. Thus, inverse models do not always exist or at least are not always

well-defined. However, for several cases, such as for the robot’s inverse dynamics, the

inverse relationship is well-defined. Ill-posedness in learning inverse models can happen

when the data space is not convex [58], for example, in multi-valued mappings. In such



7

cases, the model cannot be learned using standard regression techniques, as they tend

to average over the non-convex solution space resulting in invalid predictions. General,

potentially ill-posed inverse modeling problems can be solved by introducing additional

constraints, as will be discussed in Section 2.1.3 in more detail.

For control, applications of inverse models can be traditionally found in computed

torque robot control [29], where the inverse dynamics model is used to predict the

torques required to move the robot along a desired joint space trajectory. The computed

torque control policy can be described by

π(s) = finverse(s, sdes) + k(s− sdes) , (4)

where k(s − sdes) is an error correction term (for example, a PD-controller as both

positions, velocities and accelerations may be part of the state) needed for stabilization

of the robot. If an accurate inverse dynamics model is given, the predicted torques

are sufficient to obtain a precise tracking performance. The inverse dynamics control

approach is closely related to the computed torque control method. Here, the error

correction term acts through the inverse model of the system [29] and, hence, we have

a control policy given by

π(s) = finverse(s, sdes, k(s− sdes)) . (5)

If the inverse model perfectly describes the inverse dynamics, inverse dynamics con-

trol will perfectly compensate for all nonlinearities occurring in the system. Control

approaches based on inverse models are well-known in the robotics community. For

example, in motion control inverse dynamics models gain increasing popularity, as the

rising of computational power allows to compute more complex models for real-time

control. The concept of feedback linearization is another, more general way to derive

inverse dynamics control laws and offers possibly more applications for learned models

[146,79].

2.1.3 Mixed Models

In addition to forward and inverse models, there are also methods which combine

both types of models. As pointed out in preceding sections, modeling the forward

relationship is well-defined, while modeling the inverse relation can lead to an ill-posed

problem. The ill-posedness can occur when the mapping to be learned is not unique.

A typical ill-posed inverse modeling problem is the inverse kinematics of redundant

robots. Given a joint configuration q, the task space position x can be determined

exactly (i.e., the forward kinematic model is well-defined), but there may be many

possible joint configurations q for a given task space position x (i.e., the inverse model

could have infinitely many solutions and their combination is not straightforward). Due

to the multi-valued relationship, the mapping x→q is ill-posed and q may form a non-

convex solution space. Thus, when naively learning such inverse mapping from data,

the learning algorithm will potentially average over non-convex sets of the solutions.

The resulting mapping will contain invalid solutions which can cause poor prediction

performance.

The basic idea behind the combination of forward and inverse models is that the

information encoded in the forward model can help to resolve the non-uniqueness, i.e.,

the ill-posedness, of the inverse model. The ill-posedness of the inverse model can be

resolved when it is combined with the forward model, such that the composite of these



8

models yields an identity mapping [58]. In this case, the inverse model will provide

those solutions which are consistent with the unique forward model.

The mixed model approach, i.e., the composite of forward and inverse models,

was first poposed in conjunction with the distal teacher learning approach [58], which

will be discussed in details in Section 2.2.3. The proposed mixed models approach

has subsequently evoked significant interests and has been extensively studied in the

field of neuroscience [175,62]. Furthermore, the mixed model approach is supported by

evidence that the human cerebellum can be modeled using forward-inverse composite

models, such as MOSAIC [176,12]. While the mixed models have become well-known

in the neuroscience community, the application of such models in robot control is not

yet widespread. Pioneering work on mixed models in the control community can be

found in [98,97], where the mixed models are used for model reference control of an

unknown dynamical system. Even though mixed model approaches are not widely used

in control, with the appearance of humanoid robots in the last few years, biologically

inspired robot controllers are gaining more popularity. Controllers based on mixed

models may present a promising approach [49,114,162].

The concept of mixed models can also be found in recently developed techniques

for learning dynamical systems, such as learning predictive state distributions [76].

Here, a dynamical system is represented by a set of observable experiments, i.e., the

so-called tests, which include sequences of action-state pairs. The prediction includes

the task to find those test which match the observations produced by the real system.

Thus, learning predictive state distribution incorporates the generation of a set of tests

and the evaluations of these test samples. On a high level, learning how to generate

and evaluate test samples can be can be seen as a model learning problem, where

two models (i.e., for test generation and evaluation) need to be approximated [15].

Formulated in a probabilistic framework, these probabilistic models can be estimated

empirically from samples [15].

2.1.4 Multi-step Prediction Models

The models introduced in preceding sections are mainly used to predict a single future

state or action. However, in problems such as open-loop control, one would like to

have information of the system for the next t-steps in the future. This problem is the

multi-step ahead prediction problem, where the task is to predict a sequence of future

values without the availability of output measurements in the horizon of interest. We

call the models which are employed to solve this problem as multi-step prediction

models. It turns out that such multi-step prediction models are difficult to develop

because of the lack of measurements in the prediction horizon. A straightforward idea

is to apply single-step prediction models t times in sequence, in order to obtain a

series of future predictions. However, this approach seems to be susceptible to the

error accumulation problem, i.e., errors made in the past are propagated into future

predictions. An alternative to overcome the error accumulation problem is to apply

autoregressive models which are extensively investigated in time-series prediction [2].

Here, the basic idea is to use models which employ past predicted values to predict

future outcomes.

Combining multi-step prediction models with control was originally motivated by

the need of extension of forward models for multi-step predictions [63]. In more re-

cent work, variations of traditional ARX and ARMAX models for nonlinear cases have

been proposed for multi-step prediction models [13,92]. However, multi-step prediction



9

Model Type
Learning

Architecture
Example Applications

Forward Model Direct Modeling

Prediction,

Filtering,

Learning simulations,

Optimization

Inverse Model
Direct Modeling,

Indirect Modeling

Inverse dynamics control,

Computed torque control,

Feedback linearization control

Mixed Model

Direct Modeling

(if invertible),

Indirect Modeling,

Distal-Teacher

Inverse kinematics,

Operational space control,

Multiple-model control

Multi-step Prediction
Model

Direct Modeling

Planning,

Optimization,

Model predictive control,

Delay compensation

Table 1 Overview on model types associated with applicable learning architectures and ex-
ample applications.

models based on some parametric structures, such as ARX or ARMAX are too limited

for sophisticated, complex robot systems. The situation is even worse in the presence

of noise or complex nonlinear dynamics. These difficulties are reasons to employ non-

parametric multi-step prediction models for multi-step predictions [68,43].

2.2 Learning Architectures

In previous section, we have presented different prediction problems that require dif-

ferent types of models. Depending on what quantities are observed, we need different

models to predict the missing information. Here, we distinguished between forward

models, inverse models, mixed models and multi-step prediction models. A central

question when incorporating these models into a learning control framework is how to

learn and adapt the models while they are being used. We will distinguish between

direct modeling, indirect modeling and the distal teacher approach. Table 1 shows an

overview of model types associated with applicable learning architectures.

In direct modeling approaches, we attempt to learn a direct mapping from input

data to output data. In most cases, direct model learning can be performed using stan-

dard regression techniques, where the model learning is driven by the approximation

errors, i.e., the errors between predictions and target outputs. However, direct model

learning is only possible, when the relationship between inputs and outputs is well-

defined. In case the input-output relationship is ill-posed (for example, when learning

an inverse model) indirect and distal learning techniques can be used instead. When

employing indirect modeling techniques, the model learning is driven by a particular

error measure. For example, the feedback error of a controller can be used in this

case. In distal teacher learning approaches, the inverse model of the system is used for

control, and the learning of this inverse model is guided by a forward model. Figure

3 illustrates these three learning architectures. Compared to the direct modeling ap-

proaches, the indirect model learning and the distal teacher learning are goal-directed



10

Model

RobotFeedback 
Controller

(a) Direct Modeling

Model

RobotFeedback 
Controller

(b) Indirect Modeling

Inverse 
Model

RobotFeedback 
Controller

Forward 
Model

(c) Distal Teacher Learning

Fig. 3 Learning architectures in model learning applied to control. (a) In the direct modeling
approach, the model is learned directly from the observations. (b) Indirect modeling approx-
imates the model using the output of the feedback controller as error signal. (c) In the distal
teacher learning approach, the inverse model’s error is determined using the forward model.
The resulting composite model will converge to an identity transformation.

learning techniques. Instead of learning a global mapping from inputs to outputs (as

done by direct modeling), goal-directed learning approximates a particular solution in

the output space. Due to this property, indirect and distal teacher learning approaches

can be used for learning when confronting with an ill-posed mapping problem.

2.2.1 Direct Modeling

Direct learning is probably the most straightforward way to obtain a model but is not

always applicable. In this learning paradigm, the model is directly learned by observing

the inputs and outputs. Direct modeling as shown in Figure 3 (a) is probably the most

frequently employed learning technique for model approximation in control, such as in

vision-based control [87,86] or in inverse dynamics control [106]. Direct model learning

can be implemented using most standard regression techniques, such as least square

methods [77], neural networks [51,152,18] or statistical approximation techniques [122,

138,78].

An early example of direct learning in control was the self-tuning regulator that

generates a forward model and adapts it online [5]. Using the estimated forward model,

the self-tuning regulator will estimate an appropriate control law online. However, the

forward model in the traditional self-tuning regulator has a fixed parametric structure

and, hence, it cannot deal automatically with unknown nonlinearities [92,28]. The

main reason why parametric models need to be used in direct modeling techniques

is that such model parametrization is necessary for a convenient formulation of the

control law and, more importantly, for the rigorous stability analysis. As parametric

models are often too restrictive for complex robot systems, learned models with more

degrees of freedom are needed, such as neural networks or fuzzy logic [170,75]. However,

sophisticated learning algorithms for control are difficult to analyze if not impossible.

Most work on the analysis of learning control has been done in neural control [111] and



11

model predictive control [47,102,96]. The operator model is an extension of forward

models to multi-step prediction used in model predictive control. Direct learning of

multi-step prediction models has been done with neural networks [25]. In more recent

work, probabilistic methods are employed to learn such multi-step prediction models

[43,68].

Inverse models can be learned straightforwardly in a direct manner, if the inverse

mapping is well-defined. A well-known example is the inverse dynamics model required

by computed torque and inverse dynamics control [29,150]. If direct modeling is appli-

cable, learning becomes straightforward and can be achieved using standard regression

techniques [134,105,22]. Early work in learning inverse models for control attempts to

adapt a parametric form of the rigid body dynamics model. This model is linear in

its parameters and, hence, it can be estimated from data straightforwardly using lin-

ear regression [6,17]. In practice, the estimation of dynamics parameters is not always

straightforward. It is hard to create sufficiently rich data sets so that physically plausi-

ble parameters can be identified [93], and when identified online, additional persistent

excitation issues occur [99]. Due to the fixed parametric structures, these models are

not capable of capturing the structured nonlinearities of the real inverse dynamics.

Physically implausible values often arise from such structural errors that result from a

lack of representation for unmodeled nonlinearities. Hence, more sophisticated models

have been introduced for learning inverse dynamics, such as neural networks [22,111]

or statistical nonparametric models [134,105,106]. There have also been attempts to

combine parametric rigid body dynamics model with nonparametric model learning for

approximating the inverse dynamics [107]. Similar to inverse dynamics control, feed-

back linearization control can also be used in conjunction with direct model learning.

Again, the nonlinear dynamics can now be approximated using neural networks or

other nonparametric learning methods [41,94]. Stability analysis of feedback lineariza-

tion control with learned models is possible, extending the cases where the nonlinear

dynamics could not be canceled perfectly [94].

If the inverse mapping is ill-posed, the inverse models can be learned using indi-

rect modeling or distal teacher learning as described in the next sections. However,

there are also approaches which attempt to deal with the ill-posedness in a direct man-

ner [33,78,114,127]. One approach deals with the question how to generate the data

in an intelligent way, such that the ill-posedness can be avoided [33,127]. These ap-

proaches additionally requires explorations in the data space, where the explorations

can be performed in the input space [33] or the target space [127]. Other techniques

attempt to learn the manifold of solutions in the input-output space [32,78]. In [114,

162], the authors attempt to directly approximate the multi-valued relationship using

local learning approaches. The core idea is to approximate different output solutions

with different local models and, thus, resolving the ill-posedness in the prediction.

While direct learning is mostly associated with learning a single type of model,

it can also be applied to mixed models. The mixed model approach (e.g., combining

inverse and forward models) find its application in learning control for multi-module

systems. The basic idea is to decompose a (probably) complex system into many simpler

sub-systems which can be controlled individually [97]. The problem is how to choose

an appropriate architecture for the multiple controllers, and how to switch between

the multiple modules. Employing the idea of mixed models, each controller module

consists of a pair of inverse and forward models. The intuition is that the controller

can be considered as an inverse model, while the forward model is essentially used

to switch between the different modules [175]. Such multiple pairs of forward and



12

inverse models can be learned directly from data using gradient-descent methods or

expectation-maximization [49].

2.2.2 Indirect Modeling

Direct model learning works well when the input-output relationship is well-defined

as in inverse dynamics. However, there can be situations where this relationship is

not well-defined, such as in the differential inverse kinematics problem. In such cases,

these models can often still be learned indirectly. One indirect modeling technique

which can solve some of such ill-posed problems is known as feedback error model

learning [61]. Feedback error learning relies on the output of a feedback controller that

is used to generate the error signals employed to learn the feedforward controller, see

Figure 3 (b). In several problems, such as feedforward inverse dynamics control [29],

this feedback error learning approach can be understood particularly well. If the inverse

dynamics model in the feedforward loop is a perfect model, the corresponding feedback

controller is silent (and its output will be zero). If the feedback error is non-zero, it

corresponds to the error of the inverse model in the feedforward loop [29]. The intuition

behind feedback error learning is that by minimizing the feedback errors for learning

the inverse model, the feedback control term will decrease as the model converges.

Thus, the inverse model will describe the inverse dynamics of the system, while the

feedback control part becomes irrelevant.

Compared to the direct model learning, feedback error learning is a goal-directed

model learning approach resulting from the minimization of feedback errors. Here,

the model learns a particular output solution for which the feedback error is zero.

Another important difference between feedback error learning and direct learning is

that feedback error learning has to perform online, while direct model learning can

be done both online and offline. Feedback error learning is biologically motivated due

to its inspiration from cerebellar motor control [62]. It has been further developed

for control with robotics applications, originally employing neural networks [144,88].

Feedback error learning can also be used with various nonparametric learning methods

[95]. Conditions for the stability of feedback error learning control in combination with

nonparametric approaches have also been investigated [95]. It is worth noting that

indirect modeling can also be performed with other error measure, such as output

error [118].

Indirect model learning can also be used in the mixed model approach [45]. Here,

the attempt has been made to combine the feedback error learning with the mixture of

experts architecture to learn multiple inverse models for different manipulated objects,

where the inverse models are learned indirectly using the feedback error learning ap-

proach [45]. In this approach, the forward model is used for training a gating network,

as it is well-defined. The gating network subsequently generates a weighted prediction

of the multiple inverse models, where the predictors determine the locally responsible

models.

2.2.3 Distal Teacher Learning

The distal teacher learning approach was motivated by the necessity to learn general

inverse models, which suffer from the problem of ill-posedness [58]. Here, the non-

uniqueness of the inverse model is resolved when combined with an unique forward

model. The forward model is understood as a “distal teacher” which guides the learning



13

Data
Challenges

Algorithmic
Constraints

Real-World Challenges

High-dimensionality,

Smoothness,

Richness of data,

Noise,

Outliers,

Redundant data,

Missing data

Incremental updates,

Real-time,

Online learning,

Efficiency,

Large data sets,

Prior knowledge,

Sparse data

Safety,

Robustness,

Generalization,

Interaction,

Stability,

Uncertainty

in the environment

Table 2 Challenges of real-world problems for machine learning

of the inverse model. In this setting, the unique forward model is employed to determine

the errors made by the inverse model during learning. The aim is to learn the inverse

model such that this error is minimized. The intuition behind this approach is that

the inverse model will learn a correct solution for a particular desired trajectory when

minimizing the error between the output of the forward model and the input of the

inverse model. Thus, the inverse model will result in solutions that are consistent

with the unique forward model. However, distal teacher learning has several potential

disadvantages, such as learning stability, numerical stability and error accumulation.

Nevertheless, the distal teacher approach has successfully learned particular solu-

tions for multi-valued mappings, such as inverse kinematics of redundant robots [58].

Similar to feedback error model learning [61], distal teacher learning is also a goal-

directed learning method applicable for various robot control scenarios. However, un-

like the feedback error learning approach, distal teacher learning allows directly aiming

at a globally consistent inverse model instead of local on-policy optimization. In prac-

tice, the distal teacher employs two interacting learning process: one process where the

forward model is learned, and another process where the learned forward model is used

for determining the error of the inverse model. In the original distal learning approach,

the inverse model’s output is validated by the forward model, as the composite of these

models yields an identity mapping if perfectly learned [58].

The distal learning approach is particularly suitable for control when combining

with the mixed models, as it naturally incorporates the mixed model principle. The

distal teacher learning approach with mixed models has motivated a number of follow-

up projects with several robot control applications [33,114,162].

2.3 Challenges and Constraints

In previous sections, we give an overview of different types of models and how these

models can be incorporated into various learning architectures. However, employing

machine learning methods, such as statistical methods [122,138,172] for learning such

models, is not always straightforward. Several important problems need to be tackled

in order to customize general learning algorithms for an application in robotics. In this

section, we give an overview of these problems and discuss how these problems can be

approached in order to bring machine learning algorithms into robotics. In particular,

we consider the problems that arise from data, from employed algorithms and from

real-world challenges. These are summarized in Table 2.



14

2.3.1 Data Challenges

In order to learn a “good” model for applications in robotics, the sampled data has

to cover a large region of the model state space though, of course, it can never cover

the complete state space. For the purpose of generalization, the generated data has

to be sufficiently rich, i.e., it should contain as much information about the system as

possible. Thus, generating large and rich data sets for model learning is an essential

step (which is sometimes not easy in practice). This step often requires additional

excitation of the robot system during data generation, which is known as persistent

excitation in classical system identification [99]. For several systems, the persistent

excitation condition is naturally given, such as aircraft systems. For other systems, the

persistent excitation condition has to be generated artificially, e.g., by adding small

random movements into to the output of the system.

For learning inverse dynamics, for example, rich data can be sampled from trajec-

tories by approximately executing desired random point-to-point and rhythmic move-

ments [157,135]. In other approaches [40,110], the generation of an optimal robot

excitation trajectory involves nonlinear optimization with motion constraints (e.g.,

constraints on joint angles, velocity and acceleration). These approaches distinguish in

the way of the trajectory parameterization. For example in [110], trajectories are used

which are a combination of a cosine and a ramp. The parameters for these excitation

trajectories are optimized from the data sampled in the robot’s work space. In order

to enhance the system’s excitation, input and output noise can be further added to the

generated trajectories.

The data used for model learning has to be sufficiently smooth, which is a key as-

sumption for most of machine learning methods. However, there are many applications

in robotics where the approximated functions are known to be non-smooth. For ex-

ample, stiction-friction models are often non-smooth. Such non-smooth functions can

sometimes be approximated using kernel methods. As a kernel implicitly incorporates

the smoothness of the approximated function, special kernels can be defined in order

to take the expected non-smoothness in account [138,122]. An example of such types of

kernels are Matern-kernels which are widely used in Bayesian inference methods [122].

Discontinuities in a non-smooth function can also be approximated by local models

and by learning how to switch discontinuously between these local models [164].

Robot systems that have a large number of DoFs pose a challenging problem due

to the high dimensionality of the generated data. For example, in inverse dynamics the

learning methods have to deal with data in a space with 4n dimensions (incorporating

the information of position, velocity, acceleration and torques of the system), where

n is the number of DoFs. This difficulty can be tackled by preprocessing the data

using dimensionality reduction, which is a well-studied technique in machine learning

[158,129]. The application of dimensionality reduction is based on the insight that the

useful information in the data often lies on a low-dimensional manifold of the original

input space. Dimensionality reduction methods have proven to be a powerful method

for model learning in high dimensional robot systems [134,53].

As the data is sampled over a possibly long period of time in many robotics ap-

plications [160], problems of redundant and irrelevant data can occur. In such cases,

redundant and irrelevant data can bias the model which severely hurts the generaliza-

tion. Here, the data can be filtered in an appropriate way by selecting only data points

that are informative for the learning process. This filtering step can be combined with



15

the learning step, for example, by using information criteria for inserting and deleting

data points [106,35].

Noise and outliers have always been a challenging problem for machine learning

and for robot learning. Naively learning a model from noisy data can make the model

fit the noise (i.e., an over-fit) and, thus, adulterate the model learning performance. In

the past decade, considerable efforts have been made in the machine learning commu-

nity to deal with this problem. In particular, regularization frameworks are developed

based on statistical learning theory. The basic idea is to constrain the model to be

learned in an appropriate way, attenuating the contributions made by the noisy com-

ponents in the data. This leads to a variety of model learning methods, such as support

vector regression or Gaussian process regression [149,119]. One step in these methods

is to estimate the noise-level in the data represented by a regularization parameter,

which can either be done by cross-validation or by maximizing the marginal likelihood

function [142]. By controlling the noise in the data, these methods can significantly

improve the generalization performance.

2.3.2 Algorithmic Constraints

There are two scenarios for model learning in robotics: large data and small data. In

the first case, learning algorithms have to deal with massive amounts of data, such

as in learning inverse dynamics. In this scenario, the algorithms need to be efficient

in terms of computation without sacrificing the learning accuracy [16]. In the second

scenario, there is only few data available for learning, as the data generation may be

too tedious and expensive. Here, we need algorithms which allow us to improve the

learning performance in the presence of sparse data, for example, by incorporating

additional prior knowledge [137,73] or using active learning [27,84].

For machine learning techniques, fast, real-time computation is challenging. Stan-

dard model learning approaches, such as Gaussian process regression, for example,

scale cubically in the number of training data, preventing a straightforward usage in

robotics. Sparse and reduced set methods smartly reduce the size of training data and,

thus, decrease the computational effort for the learning and the prediction step [20]. In

recent years, there have been serious efforts to speed up machine learning algorithms

with efficient implementations using, for example, parallel computation [42].

Online learning is also a strong requirement of the domain of robotics. Most of

machine learning methods are developed for learning in batch mode, i.e., offline learning

using pre-sampled data sets, while online learning requires incremental approximation

of the model. However, online learning has found increasing interest over the last decade

giving rise to a number of real-time online machine learning approaches, such as in

[171,22,105,124]. A major motivation for online model learning is the insight that it is

not possible to cover the complete state space with data beforehand, but that only the

interesting state space regions are only known during the execution. Thus, online model

learning will require incremental acquisition of knowledge and, possibly, even partial

forgetting of the recorded information in order to cope with errors as well as change.

Furthermore, online learning presents an essential step towards continuous adaptation

to a changing world which is essential to make robots more autonomous [160].

Incorporating prior knowledge into the learning process can be obtained straightfor-

wardly, when statistical learning approaches are used. In kernel methods, prior knowl-

edge can be specified by feature vectors which can be used to define appropriate kernels



16

[137]. In contrast, probabilistic frameworks allow one to specify priors to capture a pri-

ori information [122]. If prior knowledge is given as a parametric model, it can be

inserted into nonparametric models in a straightforward way, yielding semiparametric

learning approaches [107,148]. Semiparametric models have shown to be capable in

learning competitive models, when only few data is available [107].

Supervised learning requires labeled training data. When the labeling of training

data is expensive, such as in path planning [84] or grasping [71], active learning can be

used to label training data for model learning. Active learning requires an interaction

with the human for the data labeling process. The goal is to obtain a sparse and

informative labeled training set by intelligent adaptive querying [27,31]. Active learning

can help to learn a good model with significantly fewer labels than one would need in

a regular supervised learning framework.

2.3.3 Real-World Challenges

In order to ensure safe interaction of robots with human beings in everyday life, machine

learning algorithms developed for robotics applications have to be fail-safe or at least

have to minimize the risk of damage. For critical applications, such as medical or service

robotics, robustness and reliability are among the most important criteria which have

to be fulfilled by model learning. Model learning can become more robust when feature

selection is employed as a preceding step. Feature selection methods remove irrelevant

and redundant data and, thus, make the model learning more robust. Feature selection

has an inherent connection to sparse and reduced set methods, where the purpose is

to filter the information which is crucial for the model approximation [30,136]. Feature

selection has been an active research field in machine learning for many years and has

now found its ways to several robot applications both in robot vision and control [72,

106].

Robustness also requires the learning algorithm to deal with missing data. This

problem is encountered in every robotics set-up where the sensor information is imper-

fect, such as in terrain modeling or autonomous navigation. In particular, measurement

errors often result in missing data. In the recent years, the problem of missing data has

attracted much attention with the rise of probabilistic learning methods. As the models

are probabilistic, it is now possible to infer the missing “pieces” in the training data

[163]. A further advantage of the probabilistic methods consists of a straightforward

way to assign its uncertainty to each predicted value and, hence, make it easier to deal

with insufficient data.

Modeling non-stationary systems is also a requirement for several robot applica-

tions, for example, when dealing with time dependent dynamics [115] or planning in a

changing environment [154]. In such cases, the learned models need to be adapted to

the changes and, thus, online model learning is necessary [30,105].

2.4 Applicable Regression Methods

In preceding section, some problems are summarized which need to be overcome when

employing machine learning in robotics. In this section, the model learning is ap-

proached from the algorithmic point of view providing an overview of how models can



17

be learned using machine learning techniques. Here, the focus will be on modern sta-

tistical methods for learning models from data. However, connections to other popular

learning approaches such as neural networks will also be discussed [152,51].

Although model learning can be performed with unsupervised learning in few cases

[174,14], supervised learning is the most frequently employed learning technique. Su-

pervised learning enables a fast and robust model approximation. However, it requires

labeled training data as ground truth. In cases where labeled data is hard to obtain or

not available, unsupervised learning can be employed instead [131,39]. Unsupervised

model learning requires only input data points in most cases, corresponding target

outputs can be inferred from observations of the system. Usually, unsupervised model

learning needs additional explorations in order to generate sufficient informative data

for the learning process. Therefore, model learning using unsupervised learning tech-

niques may require a long training process and it can be difficult to obtain a sufficiently

good model. Nevertheless, unsupervised learning has found its way to several model

learning applications [174,14,155]. In [14,155], unsupervised learning is employed to

learn robot’s kinematic models. In [174], models for object recognition are learned using

unsupervised learning techniques based on density estimation.

In the following section, we focus on model learning using supervised learning

approaches. Here, it is assumed that the input x and target output y are given, where

the true output data is corrupted by noise ε, i.e.,

y = f(x) + ε . (6)

Approximating the underlying function f is the goal of supervised learning methods.

Given unknown input data the learned model should be able to provide precise pre-

dictions of the output values. Different supervised learning techniques make different

assumptions on how to model the function f .

Here, we distinguish between global and local techniques used to model the under-

lying function f . Global regression techniques model the underlying function f using

all observed data to construct a single global prediction model [50]. In contrast to

global methods, the local regression estimates the underlying function f within a lo-

cal neighborhood around a query input point. Beyond the local and global types of

model learning, there are also approaches which combine both ideas. An example of

such hybrid approaches is the mixture of experts [55,109]. Here, the data is partitioned

into smaller local models in a first step and, subsequently, a gating network is used to

fuse these local models for global prediction. Mixture of experts approaches have been

further embedded into the Bayesian framework giving rise to a number of Bayesian hy-

brid approaches such as committee machines [165], mixtures of Gaussian models [166,

19] or infinite mixtures of experts [120]. Table 3 provides several examples of machine

learning methods which have been applied in model learning for robotics.

2.4.1 Global Regression

A straightfoward way to model the function f in Equation (6) is to assume a para-

metric structure, such as linear or polynomial models or multilayer perceptron neural

networks, and, subsequently, fit the model parameters using training data [50,48,51].

However, fixing the model with a parametric structure beforehand may not suffice to

explain the sampled data, which motivates nonparametric model learning frameworks



18

Method Type Mode Online
Com-
plex-
ity

Learning
Applications

Locally Weighted
Projection

Regression [172]
Local Incremental Yes O(n)

Inverse dynamics
[134], Foothold

quality model [60]
Local Gaussian

Process Regression
[105]

Local Incremental Yes O(m2)
Inverse dynamics

[105]

Gaussian Mixture
Model [55]

Semi-
Local

Batch No O(Mn)
Human motion

model [19]
Bayesian Comittee

Machine [165]
Semi-
Local

Batch No O(m2n)
Inverse dynamics

[122]
Sparse Gaussian

Process Regression
[30]

Global Incremental Yes O(n2)
Transition

dynamics [128],
Task model [46]

Gaussian Process
Regression [142]

Global Batch No O(n3)

Terrain model
[117], State

estimation model
[67]

Support Vector
Regression [138]

Global Batch No O(n2)
ZMP control model
[38], Grasp stability

model [112]
Incremental

Support Vector
Machine [81]

Global Incremental Yes O(n2)
Inverse dynamics

[24]

Table 3 A large variety of machine learning methods have been applied in model learning
for robotics. We distinguish between global and local methods, as well as semi-local methods
which combine both approaches. The methods differ in the training mode and their online
capabilities. For computational complexity, n denotes the total number of training points, m
is number of data points in a local model, and M is the number of local models. We further
provide several application examples for model learning in robotics.

[48,138,122]. In the modern parametric and nonparametric regression, the function f

is usually modeled as

f(x) = θTφ(x) , (7)

where θ is a weight vector and φ is a nonlinear function projecting the input x into some

high-dimensional spaces. The basic idea behind nonparametric regression is that the

optimal model structure should be obtained from the training data. Hence, the size of

the weight vector θ is not fixed but can increase with the number of training data points

in most statistical learning methods. It determines the structure of the model given

in Equation (7). Compared to nonparametric statistical approaches, traditional neural

networks fix the model structure beforehand [51]. For instance, the number of nodes

and their connections have to be determined before starting the training procedure

[51]. However, there are attempts to develop neural networks which can change their

structures dynamically, such as in reservoir computing [140,80,125] and echo state

neural networks [153,59,126]. It is worth noting that there have been attempts to put

artificial neural networks into the Bayesian framework [83,101] and, thus, establishing

the connection between the two learning approaches. It has also been observed that

certain neural networks with one hidden layer converge to a Gaussian process prior

over functions [101].



19

In kernel methods, the model structure is determined by the model complexity

[138]. Learning a model includes finding a tradeoff between the model’s complexity

and the best fit of the model to the observed data. It is desirable to have a model

which is simple but at the same time can explain the data well. Using kernel methods,

the weight vector θ in Equation (7) can be first expanded in term of n training data

points and, subsequently, regularized in an optimization step. Intuitively, the weight

vector θ represents the complexity of the resulting model.

Having a close link to the kernel framework, probabilistic regression methods ad-

ditionally provide a Bayesian interpretation of nonparametric kernel regression [122].

Instead of expanding the weight vector as done in kernel methods, probabilistic methods

place a prior distribution over θ. The prior parameters can be subsequently obtained by

optimizing the corresponding marginal likelihood. Thus, the trade-off between data-fit

and model complexity can be obtained in a straightforward and plausible way [122].

Kernel and probabilistic methods have proven to be successful tools for model learn-

ing over the last decade, resulting in a number of widely applied regression methods,

such as support vector regression [139,149,81] or Gaussian process regression [119].

These methods are known to be capable of being applicable to high-dimensional data.

They can also deal well with noisy data, as the noise is taken in account indirectly

by regularizing the model complexity. Furthermore, they are relatively easy to use,

as several black-box implementations are available. However, the major drawback of

these methods are the computational complexity. Thus, one active research line in ma-

chine learning is to reduce the computational cost of those approaches. Due to several

advances in customizing machine learning techniques for robotics, kernel and proba-

bilistic regression techniques have aroused increasing interests and have found their

ways to several robotics applications, such as modeling inverse dynamics [24], grasping

[112], robot control [38,106], imitation learning [46], sensor modeling [116,117] and

state estimation [67].

2.4.2 Local Learning

The basic idea of local regression techniques is to estimate the underlying function f

within a local neighborhood around a query input point xq. The data points in this

neighborhood can then be used to predict the outcome for the query point. Generally,

local regression models can be obtained by minimizing the following cost function J

using n training data points

J =

nX
k=1

w

„
xk − xq

h

«“
yk − f̂(xk)

”2
. (8)

As indicated by the Equation (8), the essential ingredients for a local regression model

are the neighborhood function w and the local model f̂ . The neighborhood function w,

which is controlled by a width parameter h, basically measures the distance between

a query point xq to the points in the training data. The local model f̂ describes the

function structure used to approximate f within the neighborhood around xq [26,36].

Depending on the complexity of the data, different function structures can be assumed

for the local model f̂ , such as a linear or a polynomial model. The open-parameters of f̂

can be estimated straightforwardly by minimizing J with respect to these parameters.

However, the choice of the neighborhood function and its width parameter is more

involved. Several techniques have been suggested for estimating the width parameters



20

for a given w, including the minimization of the leave-one-out cross validation error

and adaptive bandwidth selection [57,90].

Because of their simplicity and computational efficiency, local regression techniques

have become widespread in model learning for robotics [89,8,159]. In the last decade,

novel local regression approaches have been further developed in order to cope with the

demands in many robotics real-time applications, such as locally weighted projection

regression [7,171]. Inspired by local regression techniques, these methods first employ

a partitioning of the input space into smaller local regions, for which locally linear

models are approximated. In addition to being computational efficient, local methods

can deal with less smooth functions and do not require the same smoothness and

regularity conditions as global regression methods. However, it has been shown in

practice that local methods suffer from problems induced by high-dimensional data,

as notions of locality break down for sparse, high-dimensional data. Furthermore, the

learning performance of local methods may be sensitive to noise and heavily depends on

the way how the input space is partitioned, i.e., the configuration of the neighborhood

function w. These problems still present an active research topic [34,162].

Several attempts have been made to scale local regression models to higher dimen-

sional problems as required for many modern robotics systems. For example, locally

weighted projection regression combines local regression with dimensionality reduction

by projecting the input data into a lower dimensional space, where local regression is

employed afterwards [171]. Other methods combine nonparametric probabilistic regres-

sion, such as Gaussian process regression, with the local approaches while exploiting

the strength of probabilistic methods for model learning in high-dimensions [105,162,

169].

3 Application of Model Learning

In this section, we discuss three case studies on model learning in different robot ap-

plications. The presented cases illustrate several different aspects of model learning

discussed in previous sections. This list of examples is obviously not exhaustive but

gives an overview on possible applications of model learning in robotics. In Section 3.1,

an application of forward models is illustrated from several examples. In Sections 3.2

and 3.3, we highlight cases where inverse models and mixed models are useful.

3.1 Simulation-based Optimization

As forward models directly describe the dynamic behavior of the system, learning

such models has evoked much attention in the field of robot control for a long time.

A key application of learned forward models is the optimization of control problems.

In this situation, a policy that has been optimized for a hand-crafted model is likely

to be biased by the large model errors, while optimization on the real system is too

costly. Hence, policy optimization based on learned forward models is an interesting

alternative.

Atkeson et al. [9] were among the first to explore this approach using differen-

tial dynamic programming [56] for optimizing open-loop control policies. The basic

idea of Atkeson et al. is to use receptive field-weighted regression (a type of locally

weighted regression) to learn the models of both cost and state transition. Differential



21

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

p
e
n

d
u

lu
m

 a
n

g
le

 (
ra

d
ia

n
s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

0.20

h
a

n
d

 p
o

s
it

io
n

 (
m

e
te

rs
)

0.5 1.0 1.5 2.0 2.5 3.0

seconds

Human demonstration

8th trial

8 Ng et al.

Fig. 3. Helicopter in autonomous sustained inverted hover.

after which our controller took over and was able to keep the helicopter in
stable, sustained inverted flight. Once the helicopter hardware for inverted
flight was completed, building on our pre-existing software (implemented for
upright flight only), the total time to design and demonstrate a stable in-
verted flight controller was less than 72 hours, including the time needed to
write new learning software.

A picture of the helicopter in sustained autonomous hover is shown in
Figure 3. To our knowledge, this is the first helicopter capable of sustained
inverted flight under computer control. A video of the helicopter in inverted
autonomous flight is also at

http://www.cs.stanford.edu/~ang/rl-videos/

Other videos, such as of a learned controller flying the competition maneuvers
mentioned earlier, are also available at the url above.

5 Conclusions

In this paper, we described a successful application of reinforcement learning
to the problem of designing a controller for autonomous inverted flight on
a helicopter. Although not the focus of this paper, we also note that, using
controllers designed via reinforcement learning and shaping [5], our helicopter
is also capable of normal (upright) flight, including hovering and waypoint
following.

Fig. 4 Learning the pendulum swing up task (with permission of Stefan Schaal) and learning
inverted flight with a helicopter (with permission of Andrew Y. Ng). In both cases, the forward
model is used to learn the dynamics of the system for policy optimization. In the pendulum
swing up task, the robot learns to bring the pole from an hanging to an upright position. In the
inverted helicopter flight, the learned forward model is employed as simulator for generating
complete roll-outs for learning a control policy. After learning, the helicopter is able to fly
inverted while remaining perfectly still.

dynamic programming locally linearizes the state transition model and generates a lo-

cal quadratic approximation of the cost. These approximations are used to improve an

open-loop policy where the linearizations are also updated after every policy update [9].

Atkeson et al. used the method to learn the underactuated pendulum swing up task,

where a pole is attached to the endeffector of the robot and maximal torque has been

limited to a fixed value. The goal of the robot is to bring the pole from an hanging to

an upright position. Hence, the system needs to “pump” energy into the pendulum in

order to swing it up. Subsequently, it needs to limit the energy so that it can stabilize

the pole at the upright position [10]. Starting from an unconstrained human demon-

stration, the robot was able to successfully learn the swing up and balance task after

three trials [10]. Figure 4 shows an illustration for the pole swinging task. The local

trajectory optimization technique has been further extended to biped robot walking

[91]. More recently, a related approach with parametric function approximation has

been applied by Abbeel et al. to learn autonomous helicopter flight [1]. The authors

also reported fast convergence of this approach when learning different moves for the

helicopter, such as flip and roll movements [1].

While Atkeson [9] and Abbeel [1] used the forward model as an implicit simulator,

Ng et al. [103] use it as an explicit simulator (as originally suggested by Sutton [156] in

form of the DYNA model). Here, the forward model acts as a simulator for generating

complete trajectories or roll-outs. The predictions of the forward model are further

perturbed by Gaussian noise with a repeating, fixed noise history (e.g., by resetting

the random seed, a trick well-known in simulation optimization [44] which is the most

common way to implement PEGASUS for complex systems [104]). This perturbation

step is required to make the system more robust to noise and model errors, while the

re-use of the noise history limits the variance in the policy updates (which results

in a major speed-up). This simulator based on a learned forward model is used for

generating complete roll-outs from a similar start-state set for a control policy. The

resulting performance of different control policy can be compared, which allows policy

updates both by pair-wise comparison or by gradient-based optimization. The approach

has been able to successfully stabilize a helicopter in an inverted flight. Figure 4 shows



22

Fig. 5 The 7-DoF anthropomorphic Barrett arm used in learning inverse dynamics. The robot
learns an inverse dynamics model online that is used to control the arm following a figure-8
in task space. After few seconds of online learning, the robot is able to follow the desired
trajectory (blue thick line). When the robot’s dynamics is changed online, e.g., by attaching a
water bottle to the arm, the inverse dynamics model can be adapted in real-time [106] resulting
in more accurate tracking performance.

the inverted helicopter flight after learning. A few similar examples in model predictive

control (see Section 2.1 for an explanation) exist which employ a variety of different

learning approaches such as statistical learning methods [68], neural networks [3] both

for robot navigation [47] and helicopter control [173].

3.2 Approximation-based Inverse Dynamics Control

Inverse models, such as inverse dynamics models, are frequently used in robotics [150].

Inverse dynamics models characterize the required joint torques τ =f(q, q̇, q̈) to achieve

a desired configuration (q, q̇, q̈), where q is the joint position and q̇, q̈ are the cor-

responding velocity and acceleration, respectively. In classical robot control, inverse

dynamics model can be analytically given by the rigid body dynamics model

τ (q, q̇, q̈) = M (q) q̈ + F (q, q̇) , (9)

where M(q) is the generalized inertia matrix of the robot, F(q, q̇) is a vector defined

by the forces, such as Coriolis forces, centripetal forces and gravity. This model relies

on series of assumptions, such as that the robot’s links are rigid, there is no friction or

stiction, nonlinearities of actuators are negligible etc. [150]. However, modern robotics

systems with highly nonlinear components, such as hydraulic tubes or elastic cable

drive, can no longer be accurately modeled with the rigid body dynamics. An inaccurate

dynamics model can lead to severe losses in control performance and, in the worst case,

instability. Instead of modeling the inverse dynamics manually based on physics and

human insight, an inverse dynamics model can be learned from sampled data. Such

a data-driven approach has the advantage that all nonlinearities encoded in the data

will be approximated by the model [105].

As the inverse model is a unique mapping from joint space into torque space, learn-

ing inverse dynamics models is a standard regression problem. In order to generalize

the learned models for a larger state space and to adapt the models for time depen-

dent changes in the dynamics, real-time online learning becomes necessary. However,



23

online learning poses difficult challenges for any regression method. These problems

have been addressed by real-time learning methods such as locally weighted projection

regression [172]. Nguyen-Tuong et al. [105,106] combine the basic ideas behind the

locally weighted projection regression method with the global probabilistic Gaussian

process regression method [122], attempting to combine the efficiency of local learning

with the high accuracy of Gaussian process regression. The resulting method has shown

to be capable of real-time online learning of the robot’s inverse dynamics. Instead of

using local models, data sparsification methods can be employed to speed up kernel

regression approaches for real-time learning [106]. Figure 5 shows a Barrett arm while

learning to follow a figure-8 in task space.

It is worth noting that such inverse dynamics model learning approaches can also

be motivated from a biological point of view. Kawato et al [62] have suggested that the

cerebellum may act as an inverse dynamics model. Motivated by this insight, Shibata et

al. [144] proposed a biologically inspired vestibulo-oculomotor control approach based

on feedback-error learning of the inverse dynamics model. The problem is to stabilize

the gaze in the face of perturbations due to body movement, where the cerebellum is

known to predict the forces required to keep image stabilized on the retina (based on

efferent motor signals and inputs from the vestibular system). In this work, Shibata

et al. employ the locally weighted projection regression approach to learn the inverse

model of the eye dynamics online [172]. The same locally weighted projection regression

technique has also been used to learn a complete inverse dynamics model for the

humanoid DB [134].

3.3 Learning Operational Space Control

Operational space control (OSC) allows the robot to follow given desired trajectories

in task space [65,93]. Before explaining how OSC can be viewed as a learning problem,

we will review the most basic form of OSC laws from a classical robotics point of view.

The relationship between the task space and joint space of the robot is defined

by the classical forward kinematics models x = f(q), where q denotes a joint space

configuration and x represents the corresponding task space position. The task space

velocity and acceleration are given by ẋ=J(q)q̇ and ẍ= J̇(q)q̇ + J(q)q̈, respectively,

where J(q)=∂f/∂q is the Jacobian. To obtain the joint torques required for the task

space control, the dynamics model (as given in Equation (9)) is needed. The direct

combination of dynamics and kinematics model yields one possible operational space

control law

u = MJ+
W (ẍ− J̇q̇) + F , (10)

where J+
W denotes the weighted pseudo-inverse of J [141,113] and u represents the

joint control torques. Equation (10) can be employed to generate the joint torques

necessary for tracking a task space trajectory determined by a reference task-space

acceleration [93]. Note that the practical application of such control laws often requires

further terms, such as the so-called null-space control law for joint-space stabilization

[93].

As discussed in Section 3.2, dynamics models can be hard to obtain and, thus,

learning can be an attractive alternative. Learning an operational space control law

corresponds to learning an inverse model such as (q, q̇, ẍ)→u [114]. However, learning

such OSC models is an ill-posed problem, as there are infinitely many inverse models



24

possible. For example, we could create infinitely many solutions for a redundant robot

analytically by simply varying the metric W of the weighted pseudo-inverse in Equation

(10). As the space of possible solutions is not convex, such OSC models cannot be

learned straightforwardly using regression models (unless the system has no redundant

degrees of freedom). Similar problems appear in the limited case of differential inverse

kinematics [33].

Both D’Souza et al. [33] and Peters et al. [114] noticed that local linearizations of

the mapping in Equation (10) will always form a convex space. Hence, data sets gen-

erated by such systems will also be locally convex. They furthermore realized that the

predictive abilities of forward models allows determining local regions, where a locally

consistent forward model can be learned. However, extremely different and inconsis-

tent local models may form, depending on the local data distribution. As a result, the

global consistency can no longer be ensured. This insight leads to two significantly

different approaches. D’Souza [33] created a differential inverse kinematics learning

system (i.e., a limited special case of an operational space control law) and chose to

bias the learning system by selectively generating data. However, he also realized that

such an approach will generically be limited by the trade-off between this intentional

bias and the inverse model’s accuracy. Peters et al. [114] treated learning of complete

operational space control laws. They realized that a re-weighting of the data using an

additional reward function allows regularizing these inverse models towards a globally

consistent solution. Inspired by a result in analytical OSC [113], they suggested appro-

priate reward functions both for learning full OSC and differential inverse kinematics.

The resulting mapping was shown to work on several robot systems. Ting et al. [162]

presented an implementation of Peters et al.’s [114] approach with modern Bayesian

machine learning which sped up the performance significantly.

Instead of learning a direct OSC control law as done by Peters et al. [114], Salaün

et al. [130] attempt to learn the well-defined differential forward kinematics as a first

step (i.e., learning the Jacobian) using locally weighted projection regression. The cor-

responding weighted pseudo-inverse of the Jacobian is subsequently computed using

SVD decomposition techniques. The obtained differential inverse kinematics model is

combined with an inverse dynamics model to generate the joint space control torques

[130]. Approximating inverse kinematics models has also been investigated using neural

network learning [58,123]. More recently, Reinhart et al. [123] employ a reservoir com-

puting architecture which allows to jointly learn the forward and inverse kinematics.

4 Future Directions and Conclusion

In this paper, we have surveyed model learning for robotics. In this section, we round

this review paper off by giving our perspective on open problems and an outlook on

future developments as well as a conclusion.

4.1 Open Problems and Outlook

A key question in robotics is how to deal with uncertainty in the environment. In

the context of control and robotics, uncertainty has not yet been investigated exten-

sively despite its central role in risk-sensitive control, sensori-motor control and robust

control. Uncertainty is an essential component when dealing with stochastic policies,



25

incomplete state information and exploration strategies. As probabilistic machine learn-

ing techniques (e.g., Bayesian inference) have reached a high level of maturity [122],

it has become clear how beneficial Bayesian machine learning may become for robot

learning, especially, for model learning in presence of uncertainty. However, machine

learning techniques based on Bayesian inference is well-known to suffer from high com-

putational complexity. Thus, special approximations will need to be made as illustrated

by the problems discussed in Section 2.3. Recently developed approximate inference

methods such as in [21,20] may become interesting new tools for robotics.

In order for robots to enter everyday life, the robot needs to continuously learn and

adapt itself to new tasks. Recent research on learning robot control has predominantly

focused on learning single tasks that were studied in isolation. However, there is an

opportunity to transfer knowledge between tasks which is known as transfer learning

in the field of machine learning [11]. To achieve this goal, robots need to learn the

invariants of the individual tasks and environments and, subsequently, exploit them

when learning new tasks. Such task-independent knowledge can be employed to make

the system more efficient when learning a new task. In this context, similarities between

tasks also need to be investigated and how they can be employed to generalize to new

tasks. Furthermore, it may be useful to further study the underlying structures between

tasks which can help to accelerate the model learning process [167].

In most of the model learning approaches, supervised learning methods are used.

However, for many robot applications, target outputs are not always available. One

example is learning models for terrain classification using vision features. In that case,

exact labeling of the vision features is not always possible and, furthermore, manually

labeling such features is susceptive to errors. Here, semi-supervised learning techniques

can be useful to learn such models [23]. Semi-supervised learning employs labeled as

well as unlabeled data for model learning and can help to overcome the sparse label-

ing problem. It would also be beneficial to develop online versions of semi-supervised

approaches for real-time adaptation and learning.

Approximation based control often still suffers from a lack of proper analysis of

stability and convergence properties despite the pioneering work of Nakanishi et al. and

Farrell et al. [94,37]. Here, modern statistical learning theory might offer appropriate

tools by using error bounds that enable a general approach to the discussed analysis

problems [138]. For example, generalization bounds can be used to estimate the learning

performance of the controller and, from this insight, further statements and conditions

about stability can be made.

Learning non-unique mappings is a key problem for several robot applications, such

as inverse kinematics or operational space control, as pointed out in Section 3.3. This

problem can be considered as a non-unique labeling problem, i.e., many input points

may have the same target outputs. Here, statistical machine learning techniques, such

as conditional random fields [74], may offer a tool to solve the problem. Conditional

random fields is a framework for building probabilistic models to segment and label

sequence data. A conditional model specifies the probabilities of possible target outputs

given an input observation sequence. As the target outputs are conditioned on the

(current) input observations. Non-uniqueness in the mappings can be resolved. It would

be beneficial to investigate how conditional random fields can be incorporated into

learning control to learn an OSC model. Furthermore, it can be interesting to extend

such models to a hierarchical control framework, as proposed by Sentis et al. [143].



26

4.2 Conclusion

In this paper, we give a survey of past and current research activities of model learning

for robotics. Model learning is gaining increasing interests in the robotics community,

as physically modeling of complex, modern robot systems become more difficult. It

can be a useful alternative to manual pre-programming, as the model is estimated

directly from measured data. Unknown nonlinearities are taken in account, while they

are neglected by the standard physics-based modeling techniques. Model learning has

been shown to be an efficient tool in variety of application scenario. Especially, for

robot control model learning has proven to be useful, as it provides accurate models

of the system allowing the application of compliant, energy-efficient controls. First, we

discussed different model learning architectures. Subsequently, we pointed out what

kind of problems these architectures and the domain of robotics imply for the learning

methods. We further discussed the challenges that arise from the application of learning

methods in the domain of robotics. An overview on how models can be learned using

machine learning techniques with a focus on statistical regression methods was given.

In several case studies, we showed where the model learning scenarios have been used

successfully.

References

1. P. Abbeel, A. Coates, M. Quigley, A. Y. Ng. An application of reinforcement learning to
aerobatic helicopter flight. Advances in Neural Information Processing Systems, 2007.

2. H. Akaike. Autoregressive model fitting for control. Annals of the Institute of Statistical
Mathematics, 23:163–180, 1970.

3. B. M. Akesson, H. T. Toivonen. A neural network model predictive controller. Journal
of Process Control, 16(9):937–946, 2006.

4. A. Angelova, L. Matthies, D. Helmick, P. Perona. Slip prediction using visual information.
Proceedings of Robotics: Science and Systems, Philadelphia, USA, August 2006.

5. K. J. Aström, B. Wittenmark. Adaptive Control. Addison Wesley, Boston, MA, USA,
1995.

6. C. G. Atkeson, C. H. An, J. M. Hollerbach. Estimation of inertial parameters of manip-
ulator loads and links. International Journal of Robotics Research, 5(3), 1986.

7. C. G. Atkeson, A. W. Moore, S. Schaal. Locally weighted learning. Artificial Intelligence
Review, 11(1–5):11–73, 1997.

8. C. G. Atkeson, A. W. Moore, S. Schaal. Locally weighted learning for control. Artificial
Intelligence Review, 11(1-5):75–113, 1997.

9. C. G. Atkeson, J. Morimoto. Nonparametric representation of policies and value func-
tions: A trajectory-based approach. Advances in Neural Information Processing Systems,
2002.

10. C. G. Atkeson, S. Schaal. Robot learning from demonstration. Proceedings of the 14-th
International Conference on Machine Learning, 1997.

11. S. Ben-David, R. Schuller. Exploiting task relatedness for multiple task learning. Pro-
ceedings of the Conference on Learning Theory, 2003.

12. N. Bhushan, R. Shadmehr. Evidence for a forward dynamics model in human adaptive
motor control. Advances in Neural Information Processing Systems, 1999.

13. S. S. Billings, S. Chen, G. Korenberg. Identification of mimo nonlinear systems using a
forward-regression orthogonal estimator. International Journal of Control, 49:2157–2189,
1989.

14. J. Bongard, V. Zykov, H. Lipson. Resilient machines through continuous self-modeling.
Science, 314:1118–1121, 2006.

15. B. Boots, S. M. Siddiqi, G. J. Gordon. Closing the learning-planning loop with predictive
state representations. Robotics: Science and Systems, 2010.

16. L. Bottou, O. Chapelle, D. DeCoste, J. Weston. Large-Scale Kernel Machines. MIT
Press, Cambridge, MA, 2007.



27

17. E. Burdet, B. Sprenger, A. Codourey. Experiments in nonlinear adaptive control. Inter-
national Conference on Robotics and Automation, 1:537–542, 1997.

18. M. Butz, M. Herbort, J. Hoffmann. Exploiting redundancy for flexible behavior: Unsu-
pervised learning in a modular sensorimotor control architecture. Psychological Review,
114(3):1015–1046, 2007.

19. S. Calinon, F. D’halluin, E. Sauser, D. Caldwell, A. Billard. A probabilistic approach
based on dynamical systems to learn and reproduce gestures by imitation. IEEE Robotics
and Automation Magazine, 17:44–54, 2010.

20. J. Q. Candela, C. E. Rasmussen. A unifying view of sparse approximate gaussian process
regression. Journal of Machine Learning Research, 2005.

21. J. Q. Candela, C. E. Rasmussen, C. K. Williams. Large Scale Kernel Machines. MIT-
Press, Cambridge, MA, 2007.

22. H. Cao, Y. Yin, D. Du, L. Lin, W. Gu, Z. Yang. Neural network inverse dynamic
online learning control on physical exoskeleton. 13th International Conference on Neural
Information Processing, 2006.

23. O. Chapelle, B. Schölkopf, A. Zien. Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006.

24. Y. Choi, S. Y. Cheong, N. Schweighofer. Local online support vector regression for
learning control. Proceedings of the IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 2007.

25. C. M. Chow, A. G. Kuznetsov, D. W. Clarke. Successive one-step-ahead predictions in
multiple model predictive control. International Journal of Control, 29:971–979, 1998.

26. W. S. Cleveland, C. L. Loader. Smoothing by local regression: Principles and methods.
Statistical Theory and Computational Aspects of Smoothing, 1996.

27. D. A. Cohn, Z. Ghahramani, M. I. Jordan. Active learning with statistical models.
Journal of Artificial Intelligence Research, 4:129–145, 1996.

28. F. J. Coito, J. M. Lemos. A long-range adaptive controller for robot manipulators. The
International Journal of Robotics Research, 10:684–707, 1991.

29. J. J. Craig. Introduction to Robotics: Mechanics and Control. Prentice Hall, New Jersey,
2004.

30. L. Csato, M. Opper. Sparse online gaussian processes. Neural Computation, 2002.
31. S. Dasgupta. Analysis of a greedy active learning strategy. Advances in Neural Informa-

tion Processing Systems, 2004.
32. D. Demers, K. Kreutz-Delgado. Learning global direct inverse kinematics. Advances in

Neural Information Processing Systems, strony 589–595, 1992.
33. A. D’Souza, S. Vijayakumar, S. Schaal. Learning inverse kinematics. IEEE International

Conference on Intelligent Robots and Systems, 2001.
34. N. U. Edakunni, S. Schaal, S. Vijayakumar. Kernel carpentry for online regression using

randomly varying coefficient model. Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, 2007.

35. Y. Engel, S. Mannor, R. Meir. Sparse online greedy support vector regression. European
Conference on Machine Learning, 2002.

36. J. Fan, I. Gijbels. Local Polynomial Modelling and Its Applications. Chapman and Hall,
1996.

37. J. A. Farrell, M. M. Polycarpou. Adaptive Approximation Based Control. John Wiley
and Sons, New Jersey, 2006.

38. J. P. Ferreira, M. Crisostomo, A. P. Coimbra, B. Ribeiro. Simulation control of a biped
robot with support vector regression. IEEE International Symposium on Intelligent
Signal Processing, 2007.

39. M. A. F. Figueiredo, A. K. Jain. Unsupervised learning of finite mixture models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(3):381–396, 2002.

40. M. Gautier, W. Khalil. Exciting trajectories for the identification of base inertial param-
eters of robots. International Journal of Robotics Research, 11(4):362–375, 1992.

41. S. S. Ge, T. H. Lee, E. G. Tan. Adaptive neural network control of flexible joint robots
based on feedback linearization. International Journal of Systems Science, 29(6):623–
635, 1998.

42. R. Genov, S. Chakrabartty, G. Cauwenberghs. Silicon support vector machine with online
learning. International Journal of Pattern Recognition and Articial Intelligence, 17:385–
404, 2003.

43. A. Girard, C. E. Rasmussen, J. Q. Candela, R. M. Smith. Gaussian process priors with
uncertain inputs application to multiple-step ahead time series forecasting. Advances in
Neural Information Processing Systems, 2002.



28

44. P. W. Glynn. Likelihood ratio gradient estimation: an overview. Proceedings of the 1987
Winter Simulation Conference, 1987.

45. H. Gomi, M. Kawato. Recognition of manipulated objects by motor learning with modular
architecture networks. Neural Networks, 6(4):485–497, 1993.

46. D. H. Grollman, O. C. Jenkins. Sparse incremental learning for interactive robot con-
trol policy estimation. IEEE International Conference on Robotics and Automation,
Pasadena, CA, USA, 2008.

47. D. Gu, H. Hu. Predictive control for a car-like mobile robot. Robotics and Autonomous
Systems, 39:73–86, 2002.

48. W. K. Haerdle, M. Mueller, S. Sperlich, A. Werwatz. Nonparametric and Semiparametric
Models. Springer, New York, USA, 2004.

49. M. Haruno, D. M. Wolpert, M. Kawato. Mosaic model for sensorimotor learning and
control. Neural Computation, 13(10):2201–2220, 2001.

50. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning. Springer,
New York, 2001.

51. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, New Jersey,
1999.

52. O. Herbort, M. V. Butz, G. Pedersen. The SURE REACH model for motor learning and
control of a redundant arm: From modeling human behavior to applications in robots.
From motor to interaction learning in robots, strony 85–106, 2010.

53. H. Hoffman, S. Schaal, S. Vijayakumar. Local dimensionality reduction for non-
parametric regression. Neural Processing Letters, 2009.

54. M. Hoffmann, H. G. Marques, A. H. Arieta, H. Sumioka, M. Lungarella, R. Pfeifer. Body
schema in robotics: A review. IEEE Transactions on Autonomous Mental Development,
2(4):304–324, 2010.

55. R. Jacobs, M. Jordan, S. Nowlan, G. E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3:79–87, 1991.

56. D. H. Jacobson, D. Q. Mayne. Differential Dynamic Programming. New York, American
Elsevier, 1973.

57. J.Fan, I.Gijbels. Data driven bandwidth selection in local polynomial fitting. Journal of
the Royal Statistical Society, 57(2):371–394, 1995.

58. I. Jordan, D. Rumelhart. Forward models: Supervised learning with a distal teacher.
Cognitive Science, 16:307–354, 1992.

59. P. Joshi, W. Maass. Movement generation with circuits of spiking neurons. Neural
Computation, 17(8):1715–1738, 2005.

60. M. Kalakrishnan, J. Buchli, P. Pastor, S. Schaal. learning locomotion over rough ter-
rain using terrain templates. IEEE International Conference on Intelligent Robots and
Systems, 2009.

61. M. Kawato. Feedback error learning neural network for supervised motor learning. Ad-
vanced Neural Computers, 1990.

62. M. Kawato. Internal models for motor control and trajectory planning. Current Opinion
in Neurobiology, 9(6):718–727, 1999.

63. R. D. Keyser, A. V. Cauwenberghe. A self-tuning multistep predictor application. Auto-
matica, 17:167–174, 1980.

64. W. Khalil, E. Dombre. Modeling, Identification and Control of Robots. Taylor & Francis,
Inc., Bristol, PA, USA, 2002.

65. O. Khatib. A unified approach for motion and force control of robot manipulators: The
operational space formulation. Journal of Robotics and Automation, 3(1):43–53, 1987.

66. S. Klanke, D. Lebedev, R. Haschke, J. J. Steil, H. Ritter. Dynamic path planning for a
7-dof robot arm. Proceedings of the 2009 IEEE International Conference on Intelligent
Robots and Systems, 2006.

67. J. Ko, D. Fox. GP-bayesfilters: Bayesian filtering using gaussian process prediction and
observation models. Autonomous Robots, 27(1):75–90, 2009.

68. J. Kocijan, R. Murray-Smith, C. Rasmussen, A. Girard. Gaussian process model based
predictive control. Proceeding of the American Control Conference, 2004.

69. M. Kopicki. Prediction learning in robotic manipulation. Praca doktorska, University of
Birmingham, December 2010.

70. M. Kopicki, S. Zurek, R. Stolkin, T. Morwald, J. Wyatt. Learning to predict how rigid
objects behave under simple manipulation,. Proceedings of the 2010 IEEE International
Conference on Robotics and Automation, 2011.



29

71. O. Kroemer, R. Detry, J. Piater, J. Peters. Active learning using mean shift optimization
for robot grasping. International Conference on Intelligent Robots and Systems, St.
Louis, MO, USA, 2009.

72. B. J. Kröse, N. Vlassis, R. Bunschoten, Y. Motomura. A probabilistic model for
appearance-based robot localization. Image and Vision Computing, 19:381–391, 2001.

73. E. Krupka, N. Tishby. Incorporating prior knowledge on features into learning. In-
ternational Conference on Artificial Intelligence and Statistics, San Juan, Puerto Rico,
2007.

74. J. D. Lafferty, A. McCallum, F. C. N. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. Proceedings of the 18th International
Conference on Machine Learning, 2001.

75. J. R. Layne, K. M. Passino. Fuzzy model reference learning control. Journal of Intelligent
and Fuzzy Systems, 4:33–47,, 1996.

76. M. Littman, R. S. Sutton, S. Singh. Predictive representations of state. Advances In
Neural Information Processing Systems, 2001.

77. L. Ljung. System Identification - Theory for the User. Prentice-Hall, New Jersey, 2004.
78. M. Lopes, B. Damas. A learning framework for generic sensory-motor maps. Proceedings

of the International Conference on Intelligent Robots and Systems, 2007.
79. A. D. Luca, P. Lucibello. A general algorithm for dynamic feedback linearization of

robots with elastic joints. Proceedings of the IEEE Intemational Conference on Robotics
and Automation, 1998.

80. M. Lukocevicius, H. Jaeger. Reservoir computing approaches to recurrent neural network
training. Computer Science Review, 3(3):127–149, 2009.

81. J. Ma, J. Theiler, S. Perkins. Accurate on-line support vector regression. Neural Com-
putation, 15:2683–2703, 2005.

82. J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, New Jersey, 2002.
83. D. J. MacKay. A practical Bayesian framework for back-propagation networks. Neural

Computation, 4(3):448–472, 1992.
84. R. Martinez-Cantin, O. D. Freitas, A. Doucet, J. A. Castellanos. Active policy learning

for robot planning and exploration under uncertainty. In Proceedings of Robotics: Science
and Systems, 2007.

85. R. Martinez-Cantin, M. Lopes, L. Montesano. Body schema acquisition through active
learning. IEEE International Conference on Robotics and Automation, 2010.

86. W. T. Miller III. Real-time application of neural networks for sensor-based control of
robots with vision. IEEE Transactions on System, Man and Cybernetics, 19(4):825–831,
1989.

87. W. T. Miller III, F. H. Glanz, L. G. Kraft III. Application of a general learning algo-
rithm to the control of robotic manipulators. International Journal of Robotics Research,
6(2):84–98, 1987.

88. H. Miyamoto, M. Kawato, T. Setoyama, R. Suzuki. Feedback-error-learning neural net-
work for trajectory control of a robotic manipulator. Neural Networks, 1(3):251–265,
1988.

89. A. Moore. Fast, robust adaptive control by learning only forward models. Advances in
Neural Information Processing Systems, 1992.

90. A. Moore, M. S. Lee. Efficient algorithms for minimizing cross validation error. Proceed-
ings of the 11th International Confonference on Machine Learning, 1994.

91. J. Morimoto, G. Zeglin, C. G. Atkeson. Minimax differential dynamic programming:
Application to a biped walking robot. Proceedings of the 2009 IEEE International Con-
ference on Intelligent Robots and Systems, 2003.

92. E. Mosca, G. Zappa, J. M. Lemos. Robustness of multipredictor adaptive regulators:
MUSMAR. Automatica, 25:521–529, 1989.

93. J. Nakanishi, R. Cory, M. Mistry, J. Peters, S. Schaal. Operational space control: a theo-
retical and emprical comparison. International Journal of Robotics Research, 27(6):737–
757, 2008.

94. J. Nakanishi, J. A. Farrell, S. Schaal. Composite adaptive control with locally weighted
statistical learning. Neural Networks, 18(1):71–90, 2005.

95. J. Nakanishi, S. Schaal. Feedback error learning and nonlinear adaptive control. Neural
Networks, 17(10), 2004.

96. H. Nakayama, Y. Yun, M. Shirakawa. Multi-objective model predictive control. Pro-
ceedings of the 19th International Conference on Multiple Criteria Decision Making,
2008.



30

97. K. Narendra, J. Balakrishnan. Adaptive control using multiple models. IEEE Transaction
on Automatic Control, 42(2):171–187, 1997.

98. K. Narendra, J. Balakrishnan, M. Ciliz. Adaptation and learning using multiple models,
switching and tuning. IEEE Control System Magazin, 15(3):37–51, 1995.

99. K. S. Narendra, A. M. Annaswamy. Persistent excitation in adaptive systems. Interna-
tional Journal of Control, 45:127–160, 1987.

100. K. S. Narendra, A. M. Annaswamy. Stable Adaptive Systems. Prentice Hall, New Jersey,
1989.

101. R. M. Neal. Bayesian learning for networks. Lecture Notes in Statistics, 1996.
102. R. Negenborn, B. D. Schutter, M. A. Wiering, H. Hellendoorn. Learning-based model

predictive control for markov decision processes. Proceedings of the 16th IFAC World
Congress, 2005.

103. A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, E. Liang.
Autonomous inverted helicopter flight via reinforcement learning. Proceedings of the 11th
International Symposium on Experimental Robotics, 2004.

104. A. Y. Ng, M. Jordan. Pegasus: A policy search method for large mdps and pomdps.
Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence, 2000.

105. D. Nguyen-Tuong, J. Peters. Model learning with local gaussian process regression.
Advanced Robotics, 23(15):2015–2034, 2009.

106. D. Nguyen-Tuong, J. Peters. Incremental sparsification for real-time online model learn-
ing. (in press). Neurocomputing, 2010.

107. D. Nguyen-Tuong, J. Peters. Using model knowledge for learning inverse dynamics.
Proceedings of the 2010 IEEE International Conference on Robotics and Automation,
2010.

108. S. Nicosia, P. Tomei. Model reference adaptive control algorithms for industrial robots.
Automatica, 20:635–644, 1984.

109. S. Nowlan, G. E. Hinton. Evaluation of adaptive mixtures of competing experts. Advances
in Neural Information Processing Systems, 1991.

110. K. Otani, T. Kakizaki. Motion planning and modeling for accurately identifying dynamic
parameters of an industrial robotic manipulator. International Symposium on Industrial
Robots, 1993.

111. H. D. Patino, R. Carelli, B. R. Kuchen. Neural networks for advanced control of robot
manipulators. IEEE Transactions on Neural Networks, 13(2):343–354, 2002.

112. R. Pelossof, A. Miller, P. Allen, T. Jebara. An svm learning approach to robotic grasping.
In IEEE International Conference on Robotics and Automation, 2004.

113. J. Peters, M. Mistry, F. E. Udwadia, J. Nakanishi, S. Schaal. A unifying methodology
for robot control with redundant DoFs. Autonomous Robots, 24(1):1–12, 2008.

114. J. Peters, S. Schaal. Learning to control in operational space. International Journal of
Robotics Research, 27(2):197–212, 2008.

115. G. Petkos, M. Toussaint, S. Vijayakumar. Learning multiple models of non-linear dy-
namics for control under varying contexts. Proceedings of the International Conference
on Artificial Neural Networks, 2006.

116. C. Plagemann, K. Kersting, P. Pfaff, W. Burgard. Heteroscedastic gaussian process
regression for modeling range sensors in mobile robotics. Snowbird learning workshop,
2007.

117. C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, W. Burgard. Learning pre-
dictive terrain models for legged robot locomotion. Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, 2008.

118. J. Porrill, P. D. P, J. V. Stone. Recurrent cerebellar architecture solves the motor-error
problem. Proceedings Royal Society (B), 2004.

119. C. E. Rasmussen. Evaluation of gaussian processes and other methods for non-linear
regression. University of Toronto, 1996.

120. C. E. Rasmussen, Z. Ghahramani. Infinite mixtures of gaussian process experts. Advances
in Neural Information Processing Systems, 2002.

121. C. E. Rasmussen, M. Kuss. Gaussian processes in reinforcement learning. Advances in
Neural Information Processing Systems, 2003.

122. C. E. Rasmussen, C. K. Williams. Gaussian Processes for Machine Learning. MIT-Press,
Massachusetts Institute of Technology, 2006.

123. R. F. Reinhart, J. J. Steil. Recurrent neural associative learning of forward and in-
verse kinematics for movement generation of the redundant pa-10 robot. Symposium on
Learning and Adaptive Behavior in Robotic Systems, 2008.



31

124. R. F. Reinhart, J. J. Steil. Attractor-based computation with reservoirs for online learn-
ing of inverse kinematics. Proceedings of the European Symposium on Artificial Neural
Networks, 2009.

125. R. F. Reinhart, J. J. Steil. Reaching movement generation with a recurrent neural network
based on learning inverse kinematics. Proceedings of the Conference on Humanoid Robots,
2009.

126. M. Rolf, J. J. Steil, M. Gienger. Efficient exploration and learning of whole body kine-
matics. Proceedings of the International Conference on Development and Learning, 2010.

127. M. Rolf, J. J. Steil, M. Gienger. Goal babbling permits direct learning of inverse kine-
matics. IEEE Transactions on Autonomous Mental Development, 2(3):216–229, 2010.

128. A. Rottmann, W. Burgard. Adaptive autonomous control using online value iteration
with gaussian processes. Proceedings of the IEEE International Conference on Robotics
and Automation, 2009.

129. S. Roweis, L. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290, 2000.

130. C. Salaun, V. Padois, O. Sigaud. Control of redundant robots using learned models:
an operational space control approach. Proceedings of the 2009 IEEE International
Conference on Intelligent Robots and Systems, 2009.

131. T. D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward neural
network. Neural Networks, 2(36):459–473, 1989.

132. S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences, 1999.

133. S. Schaal, C. G. Atkeson. Learning control in robotics: Trajectory-based optimal control
techniques. IEEE Robotics and Automation Magazine, 2010.

134. S. Schaal, C. G. Atkeson, S. Vijayakumar. Scalable techniques from nonparametric statis-
tics for real-time robot learning. Applied Intelligence, 17(1):49–60, 2002.

135. S. Schaal, D. Sternad. Programmable pattern generators. International Conference on
Computational Intelligence in Neuroscience, 1998.

136. B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, A. J. Smola.
Input space versus feature space in kernel-based methods. IEEE Transactions on Neural
Networks, 10(5):1000–1017, 1999.

137. B. Schölkopf, P. Simard, A. Smola, V. Vapnik. Prior knowledge in support vector kernel.
Advances in Neural Information Processing Systems, Denver,CO, USA, 1997.

138. B. Schölkopf, A. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT-Press, Cambridge, MA, 2002.

139. B. Schölkopf, A. Smola, R. Williamson, P. Bartlett. New support vector algorithms.
Neural Computation, 12(5), 2000.

140. B. Schrauwen, D. Verstraeten, J. V. Campenhout. An overview of reservoir computing:
Theory, applications and implementations. Proceedings of the 15th European Symposium
on Artificial Neural Networks, strony 471–482, 2007.

141. L. Sciavicco, B. Siciliano. Modeling and Control of Robot Manipulators. McGraw-Hill,
New York, 1996.

142. M. Seeger. Gaussian processes for machine learning. International Journal of Systems,
2004.

143. L. Sentis, O. Khatib. Synthesis of whole-body behaviors through hierarchical control of
behavioral primitives. International Journal of Humanoid Robotics, 2(4):505–518, 2005.

144. T. Shibata, C. Schaal. Biomimetic gaze stabilization based on feedback-error learning
with nonparametric regression networks. Neural Networks, 14(2):201–216, 2001.

145. D. Skočaj, M. Kristan, A. Vrečko, A. Leonardis, M. Fritz, M. Stark, B. Schiele, S. Hon-
geng, J. L. Wyatt. Multi-modal learning. Cognitive Systems, 8:265–309, 2010.

146. J.-J. E. Slotine, W. Li. Applied Nonlinear Control. Prentice Hall, New Jersey, 1991.
147. O. J. Smith. A controller to overcome dead-time. Instrument Society of America Journal,

6:28–33, 1959.
148. A. Smola, T. Friess, B. Schoelkopf. Semiparametric support vector and linear program-

ming machines. Advances in Neural Information Processing Systems, Denver,CO, USA,
1998.

149. A. J. Smola, B. Schölkopf. A tutorial on support vector regression. Statistics and Com-
puting, 14(3):199–222, 2004.

150. M. W. Spong, S. Hutchinson, M. Vidyasagar. Robot Dynamics and Control. John Wiley
and Sons, New York, 2006.



32

151. J. Steffen, S. Klanke, S. Vijayakumar, H. J. Ritter. Realising dextrous manipulation
with structured manifolds using unsupervised kernel regression with structural hints.
ICRA 2009 Workshop: Approaches to Sensorimotor Learning on Humanoid Robots,
Kobe, Japan, 2009.

152. J. J. Steil. Backpropagation-decorrelation: online recurrent learning with O(n) complex-
ity. Proceedings of the International Joint Conference on Neural Networks, Jul 2004.

153. J. J. Steil. Online reservoir adaptation by intrinsic plasticity for backpropagation-
decorrelation and echo state learning. Neural Networks, 20(3):353–364, 2007.

154. M. Stilman, J. J. Kuffner. Planning among movable obstacles with artificial constraints.
International Journal of Robotics Research, 27(12):1295–1307, 2008.

155. J. Sturm, C. Plagemann, W. Burgard. Unsupervised body scheme learning through self-
perception. IEEE International Conference on Robotics and Automation, Pasadena, CA,
USA, 2008.

156. R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bulletin, 2(4):160–163, 1991.

157. J. Swevers, C. Ganseman, D. Tükel, J. D. Schutter, H. V. Brussel. Optimal robot exci-
tation and identification. IEEE Transaction on Robotics and Automation, 13:730–740,
1997.

158. J. Tenenbaum, V. de Silva, J. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290, 2000.

159. G. Tevatia, S. Schaal. Efficient inverse kinematics algorithms for high-dimensional move-
ment systems. University of Southern California, 2008.

160. S. Thrun, T. Mitchell. Lifelong robot learning. Robotics and Autonomous Systems, 1995.
161. J. Ting, A. D’Souza, S. Schaal. A bayesian approach to nonlinear parameter identification

for rigid-body dynamics. Neural Networks, 2009.
162. J. Ting, M. Kalakrishnan, S. Vijayakumar, S. Schaal. Bayesian kernel shaping for learning

control. Advances in Neural Information Processing Systems, 2008.
163. M. K. Titsias, N. D. Lawrence. Bayesian gaussian process latent variable model. Proceed-

ings of the 13th International Conference on Articial Intelligence and Statistics, 2010.
164. M. Toussaint, S. Vijayakumar. Learning discontinuities with products-of-sigmoids for

switching between local models. Proceedings of the 22nd International Conference on
Machine Learning, 2005.

165. V. Treps. A bayesian committee machine. Neural Computation, 12(11):2719 – 2741,
2000.

166. V. Treps. Mixtures of gaussian process. Advances in Neural Information Processing
Systems, 2001.

167. I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun. Large margin methods for struc-
tured and interdependent output variables. Journal of Machine Learning Research,
6:1453–1484, 2005.

168. S. Ulbrich, V. Angulo, T. Asfour, C. Torras, R. Dillmann. Rapid learning of humanoid
body schemas with kinematic bezier maps. International Conference on Humanoid
Robots, 2009.

169. R. Urtasun, T. Darrell. Sparse probabilistic regression for activity-independent human
pose inference. International Conference in Computer Vision and Pattern Recognition,
Anchorage, Alaska, 2008.

170. P. Vempaty, K. Cheok, R. Loh. Model reference adaptive control for actuators of a biped
robot locomotion. Proceedings of the World Congress on Engineering and Computer
Science, 2009.

171. S. Vijayakumar, A. D’Souza, S. Schaal. Incremental online learning in high dimensions.
Neural Computation, 12(11):2602 – 2634, 2005.

172. S. Vijayakumar, S. Schaal. Locally weighted projection regression: An O(n) algorithm
for incremental real time learning in high dimensional space. International Conference
on Machine Learning, Proceedings of the Sixteenth Conference, 2000.

173. E. A. Wan, A. A. Bogdanov. Model predictive neural control with applications to a 6
dof helicopter model. Proceedings of the 2001 American Control Conference, 2001.

174. M. Weber, M. Welling, P. Perona. Unsupervised learning of models for recognition.
Proceedings of the 6th European Conference on Computer Vision, strony 18–32, 2000.

175. D. M. Wolpert, M. Kawato. Multiple paired forward and inverse models for motor control.
Neural Networks, 11:1317–1329, 1998.

176. D. M. Wolpert, R. C. Miall, M. Kawato. Internal models in the cerebellum. Trends in
Cognitive Sciences, 2, 1998.


