
Learning Task-Space Tracking Control with Kernels

Duy Nguyen-Tuong1, Jan Peters2

Max Planck Institute for Intelligent Systems, Spemannstraße 38, 72076 Tübingen1,2

Universität Darmstadt, Intelligent Autonomous Systems, Hochschulstraße 10, 64289 Darmstadt2

Abstract— Task-space tracking control is essential for robot
manipulation. In practice, task-space control of redundant
robot systems is known to be susceptive to modeling errors.
Here, data driven learning methods may present an interesting
alternative approach. However, learning models for task-space
tracking control from sampled data is an ill-posed problem. In
particular, the same input data point can yield many different
output values which can form a non-convex solution space.
Because the problem is ill-posed, models cannot be learned from
such data using common regression methods. While learning
of task-space control mappings is globally ill-posed, it has been
shown in recent work that it is locally a well-defined problem.
In this paper, we use this insight to formulate a local kernel-
based learning approach for online model learning for task-
space tracking control. For evaluations, we show in simulation
the ability of the method for online model learning for task-
space tracking control of redundant robots.

I. INTRODUCTION

Control of redundant robots in operational space, espe-
cially task-space tracking control, is an essential ability
needed in robotics [1], [2]. Here, the robot’s end-effector
follows a desired trajectory in task-space, while distribut-
ing the resulting forces onto the robot’s joints. Analytical
formulation of task-space control laws requires given kine-
matic and dynamic models of the robot. However, modeling
the kinematics and dynamics is susceptive to errors. For
example, accurate analytical dynamic models are hard to
obtain for complex robot systems, due to many unknown
nonlinearities resulting from friction or actuator dynamics
[3]. One promising possibility to overcome such inaccurate
hand-crafted models is to learn them from data. From a
machine learning point of view, learning of such models
can be understood as a regression problem. Given input and
output data, the task is to learn a model describing the input
to output mapping.

Using standard regression techniques, such as Gaussian
process regression [4], support vector regression [5] or lo-
cally weighted regression [6], a model can be approximated
to describe a single-valued mapping (i.e., one-to-one) be-
tween the input and output data. The single-valued property
requires that the same input point should always yield the
same single output value, resulting in a well-defined learning
problem. However, this situation changes when learning a
torque prediction model for task-space tracking control of
redundant robots. Here, we are confronted with the problem
of learning multi-valued or one-to-many mappings. In this
case, standard regression techniques can not be applied.
Naively learning such multi-valued mappings from sampled
data using standard regression will average over multiple

output values in a potentially non-convex solution space [7].
Thus, the resulting model will output degenerate predictions,
which lead to poor control performance and may cause
damage to the redundant robot.

However, despite being a globally ill-posed problem,
learning such task-space control mapping is locally well-
defined [7], [8]. In this paper, we employ this insight to
formulate an online local learning approach, appropriate
for learning models that allow prediction with such multi-
valued mappings. The key idea is to localize a single model
in configuration space, while continuously updating this
model online by including new data points and, eventually,
removing old points. Here, local data points are inserted
or removed based on a kernel distance measure. Due to
the local consistency, a prediction model can be learned.
The proposed model parametrization allows us to apply the
kernel-trick and, therefore, enables a formulation within the
kernel learning framework [5]. Kernel methods have been
shown to be a flexible and powerful tool for learning general
nonlinear models. In task-space tracking control of redundant
robots, the model parametrization enables a projection of the
joint-space stabilization torques into the task’s null-space.

The remainder of the paper will be organized as follows:
first, we give a brief overview of task-space control and pro-
vide a review of related work. In Section II, we describe our
approach to learn task-space tracking control. The proposed
method will be evaluated on redundant robot systems in
simulation, e.g., a simulated 3-DoF robot and 7-DoF Barrett
WAM, for task-space tracking control in Section III. The
most important lessons from this research project will be
summarized in Section IV.

A. Problem Statement

To obtain an analytical task-space control law, we first
need to model the robot’s kinematics [1]. The relationship
between the task-space and the joint-space of the robot is
usually given by the forward kinematic model x = f(q).
Here, q∈Rm denotes the robot’s configuration in the joint-
space and x ∈ Rd represents the task-space position and
orientation. For redundant robot systems, it is necessary
that m > d. The task-space velocity and acceleration are
ẋ = J(q)q̇ and ẍ = J̇(q)q̇ + J(q)q̈, where J(q) = ∂f/∂q
is the Jacobian. For computing the joint torques necessary
for the robot to follow the task-space trajectory, a model of
the robot dynamics is required. A typical dynamic model
can be given in the form of u=M(q)q̈ + F(q, q̇), see [9]
for more details. Here, u denotes the joint torque, M(q)

is the generalized inertia matrix of the robot, and F(q, q̇)
is a vector containing forces, such as gravity, centripetal
and Coriolis forces. Combining the dynamic model with
the kinematic model yields one possible operational space
control law

u = MJ†
w(ẍref − J̇q̇) + F , (1)

where J†
w denotes the weighted pseudo-inverse of J, as

described in [3]. In Equation (1), a task-space attractor ẍref

is employed for tracking the actual task-space acceleration
ẍ [3]. Here, the task-space attractor is formulated as ẍref =
ẍdes+Gvv(ẋdes−ẋ)+Gpp(xdes−x), where xdes, ẋdes and
ẍdes denote the desired task-space trajectory. Gvv and Gpp

are positive task-space gain matrices.
To ensure stable tracking in the robot’s joint-space, the

controller command u in Equation (1) is usually extended by
a null-space controller term u0. Thus, the total joint torque
command ujoint is given as

ujoint = u +
(

I − J†
wJ

)

u0 . (2)

The term u0 can be interpreted as joint-space stabilizing
torques which are only effective in the task’s null-space and,
thus, do not interfere with the task achievement [3]. The
null-space controller command u0 can be chosen such that
the redundant robot is pulled towards a desired rest posture
qrest, i.e., u0 =−Gvq̇−Gp(q−qrest), where Gp and Gv

are positive joint-space gain matrices.
As indicated by Equations (1, 2), an analytical formulation

for task-space control requires given analytical kinematic
and dynamic models. As modeling these relationships can
be inaccurate in practice, model learning presents a promis-
ing alternative. In the task-space tracking problem shown
in Equation (1), we want to learn mappings from inputs
(q, q̇, ẍ) to targets u. However, this mapping is one-to-many
[7], [8], as there can be many torques u which correspond to
the same task-space acceleration ẍ given q, q̇. Thus, naively
learning a task-space control model for redundant robots
from sampled data may result in a degenerate mapping. In
practice, such degenerate models will provide inconsistent
torque predictions.

B. Related Work

Learning multi-valued mappings has previously been in-
vestigated in the field of neural motor control [10], [11]
and learning inverse kinematics [8], [12]. In [10], the multi-
valued relationship is resolved for a particular output so-
lution by jointly approximating the forward and inverse
mapping. Originally, the introduced forward-inverse learning
principle has been formulated in the framework of neural
networks [10]. In a neural networks based implementation,
the forward model is chained with the multi-valued inverse
model, where the prediction errors made by the forward
model are used to adapt the weight values of the inverse
model for a given output solution. However, training such
neural networks is well-known to be problematic due to local
minima, instability and difficulties in selecting the network
structures. Nevertheless, this framework of learning forward
and inverse models initiated a number of follow-up research

projects, such as [11], [13]. For example, in [13] considerable
evidence was presented indicating that the forward-inverse
models approach may explain human motor control. In [11],
the authors approximate pairwise forward-inverse models
for different motor control tasks and, subsequently, combine
them for prediction.

In the broader sense, the pairwise forward-inverse model
approach [11] can be understood as a local learning method,
where the data is first partitioned into local regions for which
local forward-inverse model pairs are subsequently approx-
imated. A local learning approach is also employed in [14]
and [8] to learn models for robot inverse kinematics, where
locally weighted regression techniques are used. The locally
weighted regression approach has been further extended for
learning operational space robot control [7]. While Peters
et al. [7] attempt to learn a direct mapping for predicting
the joint torques for control, Salaun et al. [15] first learn
a forward kinematic model and invert the learned model
afterwards. Subsequently, they combine it with an inverse
dynamic model to generate the required torque command.

Compared to previous local learning approaches, we at-
tempt to learn a single localized model, while continuously
updating this local model depending on the robot’s current
configuration. Due to the local consistency, the model learn-
ing problem is well-defined. We propose a model param-
eterization which enables kernel-based learning of torque
prediction models for task-space tracking control. The model
parametrization also allows a null-space projection, which is
necessary to stabilize the robot in the joint-space without
interfering with the task-space performance.

II. LEARNING TASK-SPACE TRACKING WITH KERNELS

In this paper, we want to learn the mapping from in-
puts (q, q̇, ẍ) to outputs u, similar to the one described
by Equation (1). This mapping is subsequently used for
predicting the outputs for given query points. As such one-to-
many mappings are locally well-defined [7], [8], they can be
approximated with a local kernel learning approach. Here,
our model will be localized in the robot’s joint position
space. The local data is incrementally updated, as the robot
moves to new state space regions. Every local data point is
weighted by its distance to the most recent joint position.
Thereby, we ensure that the local data points form a well-
defined set that is appropriate for model learning. Using the
weighted local data points, the model’s parameters can be
obtained by minimizing a cost function. To place the model
into the kernel learning framework, we propose a model
parametrization appropriate for the application of the kernel-
trick. The parametrization is also suitable for robot tracking
control in the task-space.

In the following sections, we will describe how the model
is localized and updated in an online setting. We present
the parametrization of the local model and show how the
corresponding parameters can be obtained from data. Subse-
quently, we show how the learned local model can be used
in online learning for task-space robot control.

A. Model Localization

For learning task-space tracking, we use a single local
model for torque prediction, where the model is localized in
the robot’s joint position space. This local data set needs to
be continuously updated in the online setting, as the robot
frequently moves to new state space regions. In this section,
we describe the measures needed to localize and update
the model during online learning. The procedure includes
insertion of new data points into the local data set and
removal of old ones.

1) Insertion of New Data Points: For deciding whether to
insert a new data point into the local data set, we consider
the distance measure δ as proposed in [16] and [17]. This
measure is defined by

δ(q∗) = k(q∗, q∗) − kT K−1
a k . (3)

where k(·, ·) denotes a kernel, Ka = k(L,L) is the kernel
matrix evaluated for the local joint positions L={qi}

N
i=1 and

k=k(L, q∗) is the kernel vector [17]. The value δ describes
the distance of a point q∗ to the surface defined by L in
the joint-space. This value increases with the distance of q∗

from the surface L [17].
Using Equation (3), we can make decisions for inserting

new data points. If the δ values of new data points exceed a
given threshold η, we will insert these points into the local
model. The employed measure δ ensures that new data points
will be included into the local set, when the robot moves to
new joint-space regions.

2) Removal of Old Data Points: For removing data points
from the local set, we select the point which is the farthest
from the most recent joint position q. Here, we employ a
Gaussian kernel as a distance measure between q and other
local data points qi

k (q, qi)=exp

(

−
1

2
(q−qi)

T W(q−qi)

)

, (4)

where W denotes the kernel width. Removing the farthest
local data point implies that its kernel measure k(·, ·) is the
smallest. By continuously inserting and removing local data
points, we make sure that the local data set is suitable for
the current region of the state space.

B. Model Parametrization

The described insertion and removal operations in preced-
ing section result in a data set localized in the joint position
space. Due to the local consistency, model learning using
this data is well-defined. Given the sampled local data set
D={qi, q̇i, ẍi,ui}N

i=1, we can now learn a model for torque
prediction for task-space control.

From Equation (1), we can see that the joint torque u is
linear in the task-space acceleration ẍ, while it is nonlinear
in the joint position q and velocity q̇. Using this insight, we
propose the following parametrization for the local model

u = θT φ(q, q̇) + θT
0 ẍ , (5)

where φ is a vector containing nonlinear functions project-
ing [q, q̇] into some high-dimensional spaces. Generally, ẍ
can have d dimensions and u is a m dimensional vector.

Following the representer theorem [5], the coefficients θ,θ0

in Equation (5) can be expanded in term of N local data
points. Hence, we have

θ =
∑N

i=1 αiφ(qi, q̇i) , θ0 =
∑N

i=1 αi
0ẍi ,

where αi, αi
0 are the corresponding linear expansion coeffi-

cients. Inserting the linear expansions into Equation (5) and
re-writing it in term of N sample data points yields

U = Kα + Pα0 . (6)

Here, the elements [K]ij=〈φ(qi, q̇i),φ(qj , q̇j)〉 are the pair-
wise inner-products of the feature vectors. Thus, [K]ij can be

represented with kernels [5], i.e., [K]ij = k̃([qi, q̇i], [qj , q̇j]).
The matrix K is thus a kernel matrix evaluated at the joint
position and velocity employing the kernel k̃(·, ·). Using
this so-called kernel-trick, only the kernel function k̃ needs
to be determined instead of an explicit feature mapping φ
[5]. Similarly, the elements [P]ij = 〈ẍi, ẍj〉 represent the
pairwise inner-products of the task-space acceleration ẍ.
Thus, P can be understood as a kernel matrix where linear
kernels are applied. In Equation (6), the matrix U is given
by U ={ui}N

i=1.

C. Online Learning of Local Model

Learning requires the estimation of the expansion param-
eters α and α0 in Equation (6) from the local data set.
Employing the learned model, we can predict the output for
a query point. In particular, for online learning the expansion
parameters have to be estimated incrementally, as the data
arrives as a stream over time.

a) Estimation of Model Parameters.: Using the model
parametrization in Section II-B, the expansion parameters
can be estimated from data by minimizing an appropriate
cost function L given by

L =
γ

2

(

αT Kα + αT
0 Pα0

)

(7)

+
1

2
(Kα + Pα0 − U)T

N (Kα + Pα0 − U) .

The first term in Equation (7) acts as regularization, while
the second term represents a squared loss based data-fit. In
Equation (7), the parameter γ controls the regularization and
the diagonal matrix N denotes the weight for each data point
in the local set. The minimization of L w.r.t. α and α0 yields
the analytical solution

[

α
α0

]

=

[

K + γN−1 P

K P + γN−1

]−1
[

U
U

]

. (8)

The weighting metric N incorporates a distance measure
of each local data point to the most recent point in the
local set. Here, we employ a kernel distance measure in the
joint position space, as given in Equation (4). The weighting
metric N ensures that the local data will form a well-defined
set appropriate for the model learning step. It should be noted
that the Equation (7) is computed using all local data points.

Algorithm 1 Online learning of the local model.

Given: local data set D = {qi, q̇i, ẍi, ui}
N
i=1, Nmax, threshold

value η.
Input: new input {q, q̇, ẍ} and output u.

Evaluate the distance of q to the surface defined by L={qi}
N
i=1

based on the measure δ(q) from Equation (3).
if δ(q) > η then

for i=1 to N do
Compute: N(i, i) = k(q, qi) using Equation (4).

end for
if N < Nmax then

Include the new point: DN+1 ={q, q̇, ẍ, u}.
else

Find the farthest point: j =mini N(i, i).
Replace the j-th data point by the query point: Dj =
{q, q̇, ẍ, u}.

end if
Update the expansion parameters α and α0 incrementally
using Equation (8), while re-weighting every local data point
with the new distance metric N.

end if

b) Online Model Learning.: As the data arrives contin-
uously in the online setting, Equation (8) has to be updated
incrementally. Such incremental updates require adjusting
the corresponding row and column of the inverse matrix,
i.e., a rank-one update of the inverse matrix [18], [19].
Additionally, every data point in the local set has to be
re-weighted by its distance to the most current point after
every insertion and removal step. In practice, we initialize
the inverse matrix in Equation (8) as a diagonal matrix,
where the number Nmax of local data points is fixed. During
online learning, the inverse matrix is first updated Nmax

times while filling up the local data set. Subsequently, old
data points have to be removed when new points are inserted.
The complete procedure for learning the local model is
summarized in the Algorithm 1.

c) Prediction.: With the optimization results from
Equation (8), the prediction û for a query point [q, q̇, ẍref]
can be computed as

û(q, q̇, ẍref) = αT k̃(Q, [q, q̇]) + αT
0 〈Ẍ, ẍref〉 , (9)

where Ẍ ={ẍi}N
i=1 and Q={qi, q̇i}

N
i=1.

D. Using Local Model for Task-Space Control

Up to now, we have learned a well-defined local model to
predict the joint torques required to drive the robot along a
desired task-space trajectory. To ensure the local consistency,
this local model is continuously updated depending on the
current robot’s configuration. However, even after obtaining
a perfect prediction of the necessary torques, it is not clear
whether the robot will be stable in the joint-space. Thus, we
need to explore ways to stabilize the robot in the joint-space
without interfering the task-space performance, as done in
analytical task-space control (see Equation (2)). Here, the
key idea is to project the stabilizing torques u0 into the null-
space of the “task relevant” part.

From Equation (9), it can be seen that the second term
is the task relevant part, as this term explicitly depends on

Algorithm 2 Online prediction for task-space control.

Given: a rest posture qrest, local data Ẍ = {ẍi}
N
i=1 and Q =

{qi, q̇i}
N
i=1, expansion parameters α and α0.

Input: query point {q, q̇, xdes, ẋdes, ẍdes}.

Compute null-space control torque u0.
Compute null-space projection matrix H =αT

0 Ẍ .
Compute task-space attractor ẍref .
Compute joint torque control ujoint as given in Equation (10).

ẍref . Therefore, for the robot joint-space stabilization, we
can project the stabilization torques u0 into the null-space
of this term. Hence, the total joint torque controller command
ujoint can be computed as

ujoint = αT k̃(Q, [q, q̇]) + αT
0 〈Ẍ, ẍref〉 (10)

+ (I − H(HT H)−1HT)u0 .

The null-space projection is then given by the matrix H =
αT

0 Ẍ . The resulting null-space projection allows joint-space
stabilization based on u0 without interfering the task perfor-
mance. The procedure for online torque prediction in task-
space tracking control is summarized in the Algorithm 2.

III. EVALUATIONS

In this section, we evaluate the proposed approach for
learning task-space control, as described in Section II. First,
we show for a toy example how a non-unique function can
be learned in the online setting using this local learning
approach. This example further illustrates the basic idea
behind the local learning principle when used for approx-
imating a multi-valued mapping. Subsequently, we show the
ability of our method in learning torque prediction models
for task-space tracking control of redundant robot systems in
simulation. The control experiments are performed with both
simulated 3-DoF robot and 7-DoF anthropomorphic Barrett
arm.

A. Online Learning of a Non-unique Function

As benchmark example, we create a one-dimensional non-
unique function shown in Figure 1. In this example, there is
a pendulum that can rotate in the x−y plane. For a circular
rotation, the trajectory of x and y is given by xi =sin(ti) and
yi =cos(ti) for ti ranging from 0 to 2π. For the experiment,
we sample 500 data points from the generated trajectory. If
we employ x as input and y as the target output, we will
have a non-unique prediction problem.

In this example, the parametrization of the local model
is given by y = θT φ(x). While the model is localized in
the x space, we update the local data set and learn the
model in the online setting, as described in Section II. For
online model learning, we incrementally feed the data to the
algorithm. Figure 1 shows the results after one sweep through
the data set. To highlight the difficulty in learning such
multi-valued mappings from data, the well-known Gaussian
process regression [4] is employed to globally approximate

(a) Trajectory of a pendulum in the x−y

space

Fig. 1: An example of learning a non-unique function. For the
pendulum, we have for each input position x two possible output
values. Naively learning a global mapping x → y using GPR [4]
results in an average over multiple output solutions. However, when
the mapping is learned locally within the vicinity of the query point
in an online setting, the model learning problem is well-defined
resulting in a proper prediction.

the mapping x → y. The comparison between the two
methods is given in Figure 1.

In the experiment, the size of the local data set is chosen
to be 10. Here, we first fill the local set up incrementally and,
subsequently, update the local model online by insertion and
removal. We employ the Gaussian kernel for the localization
step, as well as for model learning. The kernel width W is
optimized by cross-validation, and the threshold η is set to
be 0.001. As the farthest point in the input space is removed
when a new point is inserted, one can observe that the local
data set always covers a region in the vicinity of the recent
query point. Since the local data set forms a convex solution
space, the local model can be learned and results in a proper
prediction of the targets y, shown in Figure 1 (b).

B. Online Model Learning for Task-Space Tracking Control

In this section, we apply the proposed method to learning
torque prediction models for task-space control of a simu-
lated 3-DoF robot and the simulated 7-DoF Barrett WAM.
In the experiments, the models are learned online, while the
robots are controlled to track a task-space trajectory. Here,
the task-space trajectory is given by the positions of the end-
effector in Cartesian space. The tracking results in task-space
for the 3-DoF robot and the Barrett WAM are shown in
Figures 2 and 3, respectively. The figures show the tracking
performance during the first 10 seconds.

In the experiment using the 3-DoF robot model shown
in Figure 2, we compare the task-space tracking control
performance, when employing the online learned model and
the perfect analytical model. Using the perfect analytical
model knowledge, the joint torques are computed as given
in Equation (2). Thus, the robot performs perfect task-space
tracking, as shown in Figure 2 (a). In this example, the
rest posture is set to be qrest = [−π/3, π/3, π/3]T . For the
online learning of the task-space control model, the torque

prediction is computed as given in Equation (10). The size
of the local set is determined to be 30 and η = 0.01. Here,
we employ a Gaussian kernel, where the kernel width W

is optimized beforehand. As shown in Figure 2 (b), the
predicted joint torques converge to the perfect analytical
torques after a short transient phase. As a result, the robot
achieves good task-space tracking performance after a few
seconds of online model learning. In general, the size of
the local model and η should be chosen according to the
available computational power. The larger the model size,
the more expensive is the incremental learning. Smaller η
will lead to frequent updates of the local model which might
not be beneficial for fast model learning.

In the next experiment, we employ the proposed approach
to control the more complex 7-DoF Barrett WAM in sim-
ulation. Similar to the previous experiment, the robot is
controlled to follow a figure-8 in task-space while learning
the torque prediction model online. Here, the local set
consists of 150 data points, η =0.05 and a Gaussian kernel
is used. During online learning, the model is incrementally
updated 300 times. The results for the first 10 seconds are
shown in Figure 3. It can be observed that the robot is able
to follow the task-space trajectory well, while keeping the
joint-space trajectory in the vicinity of the rest posture qrest.

IV. CONCLUSION

In this paper, we employed local, kernel-based learning for
the online approximation of a multi-valued mapping. This
approach is based on the key insight that an approximation
of such mappings from data is globally an ill-posed prob-
lem, while it is locally well-defined. Our proposed method
uses an online procedure for updating the local model by
inserting and removing data points. We further proposed
a parametrization for the local model that allows learning
task-space tracking control. The update procedures and the
model are formulated in the kernel framework, where the
resulting parameters can be incrementally learned online. As
evaluation, we showed that the approach was able to learn
torque prediction models for task-space tracking of redundant
robots in several setups. The experiments are performed
both on a simulated 3-DoF robot and the simulated 7-
DoF Barrett WAM. The results show that the presented
kernel-based approach can be used to approximate multi-
valued mappings for task-space tracking control. Future work
includes the implementation on real robots and investigation
in stability issues. Furthermore, practical problems need to be
considered in more details, such as gain tuning and efficient
implementation.

REFERENCES

[1] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” Journal of Robotics
and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[2] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, vol. 2, no. 4, pp. 505–518, 2005.

[3] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: a theoretical and emprical comparison,” International
Journal of Robotics Research, vol. 27, no. 6, pp. 737–757, 2008.

0.7 0.8 0.9 1 1.1 1.2 1.3
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

X−axis

Y
−

a
x
is

Desired

Ana. Model

Learned Model

(a) Task-space tracking

0 2 4 6 8 10
−20

−10

0

10

20

30

40

50

60

Time [sec]

T
o

rq
u

e
s
 [

N
m

]

Uana

1

Uana
2

Uana
3

Ulearn
1

Ulearn
2

Ulearn
3

(b) Control torque for each DoF

Fig. 2: Task-space tracking by a 3-DoF robot. Here, we compared task-space tracking using perfect analytical model with one that was
learned online. As a perfect model is used, the analytical task-space tracking control yields a perfect tracking, as shown in (a). During
online learning, the learned task-space controller continuously improves the task-space tracking performance. As shown in (b), the learned
task-space control torques ujoint converge to the perfect analytical torques after a short transient phase.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−1.05

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

X−axis

Y
−

a
x
is

Desired

Learned Model

0.58 0.59 0.6
Z−axis

(a) task-space tracking performance

0 2 4 6 8 10

−0.5

0

0.5

1

1.5

2

2.5

Time [sec]

J
o

in
t

P
o

s
it

io
n

 [
ra

d
]

5.DoF

6.DoF

7.DoF

1.DoF

2.DoF

3.DoF

4.DoF

(b) joint-space trajectory

Fig. 3: Task-space tracking control of a simulated 7-DoF Barrett WAM with online learned model. (a) During online model learning,
the task-space controller is able to compute the required torques to follow the task-space trajectory. (b) joint-space trajectory during the
online learning. Here, the rest posture is given by qrest =[0.0, 0.5, 0.0, 1.9, 0.0, 0.0, 0.0]T .

[4] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning. Massachusetts Institute of Technology: MIT-Press, 2006.

[5] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. Cambridge,
MA: MIT-Press, 2002.

[6] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” Artificial Intelligence Review, vol. 11, no. 1–5, pp. 11–73,
1997.

[7] J. Peters and S. Schaal, “Learning to control in operational space,”
International Journal of Robotics Research, vol. 27, no. 2, pp. 197–
212, 2008.

[8] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in IEEE International Conference on Intelligent Robots and
Systems, 2001.

[9] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics
and Control. New York: John Wiley and Sons, 2006.

[10] I. Jordan and D. Rumelhart, “Forward models: Supervised learning
with a distal teacher,” Cognitive Science, vol. 16, pp. 307–354, 1992.

[11] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control,” Neural Networks, vol. 11, pp. 1317–1329,
1998.

[12] M. Lopes and B. Damas, “A learning framework for generic sensory-
motor maps,” in International Conference on Intelligent Robots and
Systems, San Diego, CA, 2007.

[13] N. Bhushan and R. Shadmehr, “Evidence for a forward dynamics

model in human adaptive motor control,” Advances in Neural Infor-
mation Processing Systems, 1999.

[14] G. Tevatia and S. Schaal, “Efficient inverse kinematics algorithms
for high-dimensional movement systems,” University of Southern
California, 2008.

[15] C. Salaun, V. Padois, and O. Sigaud, “Control of redundant robots
using learned models: an operational space control approach,” in
Proceedings of the 2009 IEEE International Conference on Intelligent
Robots and Systems, 2009.

[16] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller,
G. Rätsch, and A. J. Smola, “Input space versus feature space
in kernel-based methods,” IEEE Transactions on Neural Networks,
vol. 10, no. 5, pp. 1000–1017, 1999.

[17] D. Nguyen-Tuong and J. Peters, “Incremental sparsification for real-
time online model learning,” in Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, 2010.

[18] M. Seeger, “Low rank update for the cholesky decomposition,” Uni-
versity of California at Berkeley, Tech. Rep., 2007.

[19] D. Nguyen-Tuong and J. Peters, “Model learning with local gaussian
process regression,” Advanced Robotics, vol. 23, no. 15, pp. 2015–
2034, 2009.

