
Incremental Online Sparsification

for Model Learning in Real-time Robot Control

Duy Nguyen-Tuong and Jan Peters

Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen

Abstract

For many applications such as compliant, accurate robot tracking control, dynamics models learned
from data can help to achieve both compliant control performance as well as high tracking quality.
Online learning of these dynamics models allows the robot controller to adapt itself to changes in
the dynamics (e.g., due to time-variant nonlinearities or unforeseen loads). However, online learning
in real-time applications – as required in control – cannot be realized by straightforward usage of
off-the-shelf machine learning methods such as Gaussian process regression or support vector regres-
sion. In this paper, we propose a framework for online, incremental sparsification with a fixed budget
designed for fast real-time model learning. The proposed approach employs a sparsification method
based on an independence measure. In combination with an incremental learning approach such as
incremental Gaussian process regression, we obtain a model approximation method which is applicable
in real-time online learning. It exhibits competitive learning accuracy when compared with standard
regression techniques. Implementation on a real Barrett WAM robot demonstrates the applicability of
the approach in real-time online model learning for real world systems.

Keywords: Sparse Data, Machine Learning, Real-time Online Model Learning, Inverse Dynamics,
Robot Control

1. Introduction

In recent years, model learning has become an
important tool in a variety of robotics applica-
tions such as terrain modeling [5], sensor evalu-
ation [11], model-based control [8, 13] and many
others. The reason for this rising interest is that
accurate analytical models are often hard to ob-
tain due to the increasing complexity of modern
robot systems. Model learning can be a useful al-
ternative as the model is estimated directly from
measured data. Unknown nonlinearites are di-
rectly taken in account, while they are neglected
either by the standard physics-based modeling tech-
niques or approximated by hand-crafted models.
Nevertheless, the excessive computational com-
plexity of the more advanced regression techniques
still hinders their widespread application in robotics.

Models that have been learned offline can only
approximate the model correctly in the area of
the state space that is covered by the sampled
data, and often do not generalize beyond that re-
gion. Thus, in order to cope with unknown state
space regions online model learning is essential.
Furthermore, it also allows the adaptation of the
model to changes in the robot dynamics, for ex-
ample, due to unforeseen loads or time-variant
nonlinearities such as backlash, complex friction
and stiction.

However, real-time online model learning poses
three major challenges: first, the learning and
prediction processes need to be sufficiently fast;
second, the learning system needs to deal with
large amounts of data; third, the data arrives as
a continuous stream and, thus, the model has to
be continuously adapted to new training exam-

Preprint submitted to Neurocomputing June 7, 2010

ples. A few approaches for real-time model learn-
ing for robotics have been introduced in the ma-
chine learning literature, such as locally weighted
projection regression [18] or local Gaussian pro-
cess regression [10]. In these methods, the state
space is partitioned in local regions for which local
models are approximated and, thus, these meth-
ods will not make use of the global behavior of
the embedded functions. As the proper alloca-
tion of relevant areas of the state space is es-
sential, appropriate online clustering becomes a
central problem for these approaches. For high
dimensional data, partitioning of the state space
is well-known to be a difficult issue [18, 10]. To
circumvent this online clustering, an alternative
is to find a sparse representation of the known
data [12, 15, 6]. For robot applications, however,
it requires finding an incremental sparsification
method applicable in real-time online learning –
a major challenge tackled in this paper.

Inspired by the work in [15, 3], we propose
a method for incremental, online sparsification
which can be integrated into several existing on-
line regression methods, making them applicable
for model learning in real-time. The suggested
sparsification is performed using a test of linear in-
dependence to select a sparse subset of the train-
ing data points, often called the dictionary. The
resulting framework allows us to derive criteria for
incremental insertion and deletion of dictionary
data points, which are two essential operations in
such an online learning scenario. For evaluation,
we combine our sparsification framework with an
incremental approach for Gaussian process regres-
sion (GPR) as described in [10]. The resulting al-
gorithm is applied in online learning of the inverse
dynamics model for robot control [17, 9].

The rest of the paper will be organized as fol-
lows: first, we present our sparsification approach
which enables real-time online model learning. In
Section 3, the efficiency of the proposed approach
in combination with an incremental GPR update
is demonstrated by an offline comparison of learn-
ing inverse dynamics models with well-established
regression methods, i.e., ν-support vector regres-
sion [16], standard Gaussian process regression
[12], locally weighted projection regression [18]

and local Gaussian process regression [10]. Fi-
nally, the capability of incremental GPR using
online sparsification for real-time model learning
will be illustrated by online approximation of in-
verse dynamics models for real-time tracking con-
trol on a Barrett WAM. A conclusion will be given
in Section 4.

2. Incremental Sparsification for Real-time
Online Model Learning

In this section, we introduce a sparsification
method which – in combination with an incre-
mental kernel regression – enables fast, real-time
model learning. The proposed sparsification ap-
proach is formulated within the framework of ker-
nel methods. Therefore, we first present the basic
intuition behind the kernel methods and motivate
the need of online sparsification. Subsequently,
we describe the proposed sparsification method
in details.

2.1. Model Learning with Kernel Methods

By learning a model, we want to approximate
a mapping from the input set X to the target set
Y. Given n training data points {xi, yi}ni=1, we
intend to discover the latent function f(xi) which
transforms the input vector xi into a target value
yi given by the model yi=f(xi)+εi, where εi rep-
resents a noise term. In general, it is assumed
that f(x) can be parametrized as f(x)=φ(x)T w,
where φ is a feature vector mapping the input x
into some high dimensional space and w is the
corresponding weight vector [15, 12]. The weight
w can be represented as a linear combination of
the input vectors in the feature space, i.e., w =∑n

i=1 αiφ(xi) with αi denoting the linear coeffi-
cients. Using these results, the prediction ŷ of a
query point x can be given as

ŷ = f̂(x) =
∑n

i=1 αi〈φ(xi),φ(x)〉 ,
=
∑n

i=1 αik(xi,x) .
(1)

As indicated by Equation (1), the inner product of
features vectors 〈φ(xi),φ(x)〉 can be represented
as a kernel value k(xi,x) [15]. Thus, instead of
finding a feature vector, only appropriate kernels

2

data
stream

insertSelect
Data Points

delete

Dictionary Online Model
Learning

Figure 1: Sparsification for online model learning.

need to be determined. An often used kernel is,
for example, the Gaussian kernel

k(xp,xq)=exp

(
−1

2
(xp−xq)

T W(xp−xq)

)
, (2)

where W denotes the kernel widths [15, 12]. For
employing kernel methods in model learning, how-
ever, one needs to estimate the linear coefficients
αi using training examples. State-of-the-art ker-
nel methods such as kernel ridge regression, sup-
port vector regression (SVR) or Gaussian process
regression (GPR), differ in the approaches for es-
timating αi [15, 12, 4]. While support vector re-
gression estimates the linear coefficients by opti-
mization using training data [15], kernel ridge re-
gression and Gaussian process regression basically
solve the problem by matrix inversion [4, 12] (see
the Appendix for a short review of GPR). The
complexity of model learning with kernel meth-
ods, i.e., the estimation of αi, depends largely on
the number of training examples. In GPR, for ex-
ample, the computational complexity is O(n3), if
the model is obtained in batch learning.

However, online model learning requires incre-
mental updates, e.g., incremental estimation of
αi, as the data arrives sequentially. There have
been many attempts to develop incremental, on-
line algorithms for kernel methods, such as incre-
mental SVM [2], sequential SVR [19], recursive
kernel learning with NARX form [6] or the ker-
nel recursive least-squares algorithm [3], for an
overview see [15]. However, most incremental ker-
nel methods do not scale to online learning in real-
time, e.g., for online learning with model updates
at 50 Hz or faster. The main reason is that they
are neither sparse [2, 19], as they use the complete
data set for model training, nor do they restrict
the size of the sparse set [3]. To overcome these
shortcomings, we propose the setup illustrated in
Figure 1.

To ensure real-time constraints, we train the
model using a dictionary with a fixed budget.
The budget of the dictionary, i.e., the sparse set,
needs to be determined from the intended learn-
ing speed and available computational power. To
efficiently make use of the stream of continuously
arriving data, we select only the most informa-
tive data points for the dictionary. If the budget
limit is reached, dictionary points will need to be
deleted. Finally, for the model training using dic-
tionary data, most incremental kernel regression
methods can be employed, e.g., incremental GPR
as described in [10], sequential SVR [19] or incre-
mental SVM [2].

Inspired by the work in [3, 14], we use a linear
independence measure to select the most infor-
mative points given the current dictionary. Based
on this measure, we derive criteria to remove data
points from the dictionary, if a given limit is reached.
The following sections describe the proposed ap-
proach in detail.

2.2. Sparsification using Linear Independence Test

The main idea in our sparsification approach
is that we intend to cover the relevant state space
at the best, given a limited number of dictio-
nary points. At any point in time, our algorithm
maintains a dictionary D = {di}mi=1 where m de-
notes the current number of dictionary points di.
The choice of the dictionary element di might be
crucial for particular application and will be dis-
cussed in Section 2.5. To test whether a new point
dm+1 should be inserted into the dictionary, we
need to ensure that it can not be approximated
in the feature space spanned by the current dic-
tionary set. This test can be performed using a
measure δ defined as

δ =

wwwww
m∑

i=1

aiφ(di)− φ(dm+1)

wwwww
2

, (3)

(see, e.g., [14, 15] for background information),
where ai denote the coefficients of linear depen-
dence. Equation (3) can be understood as a dis-
tance of the new point dm+1 to the linear plane
spanned by the dictionary set D in the feature
space as illustrated in Figure 2. Thus, the value

3

Figure 2: Geometrical interpretation of the independence
measure δ. Here, the dictionary consists of two data points
{d1,d2} which span a linear plane in the feature space.
The independence measure δ for a new data point dnew

can be interpreted as the distance to this plane.

δ can be considered as an independence measure
indicating how well a new data point dm+1 can be
approximated in the feature space of a given data
set. Thus, the larger the value of δ is, the more
independent is dm+1 from the dictionary set D,
and the more informative is dm+1 for the learning
procedure.

The coefficients ai from Equation (3) can be
determined by minimizing δ. Formulated in ma-
trix form, the minimization of δ can be given as

a = min
a

[
aTKa− 2aTk + k

]
, (4)

where K = k(D,D) represents the kernel ma-
trix, k= k(D,dm+1) is the kernel vector and k=
k(dm+1,dm+1) denotes a kernel value. Note that
in Equation (4) we make use of the property that
inner products of feature vectors can be repre-
sented as kernel values. Minimizing Equation (4)
yields the optimal coefficient vector a = K−1k.
The parameter a from Equation (4) can be further
regularized taking in account problems such as
outliers. The regularization can be controlled by
a regularization-parameter which can be chosen
to alleviate the outlier’s contribution to the spar-
sication process. Usually, this parameter can be
obtained from training data by cross-validation.
However, in this paper we omitted this regulariza-
tion as we did not observe any serious problems
due to outliers. After substituting the optimal

Algorithm 1 Independence test with online up-
dates of the dictionary.

Input: new point dm+1, threshold η, Nmax.
Compute: a=K−1k with k=k(D,dm+1),
Compute: δ = k(dm+1,dm+1)− kTa,
if δ > η then

if number of dictionary points < Nmax then
Insert dm+1 into D and update the dictio-
nary using Algorithm 2.

else
Insert dm+1 into D and update the dictio-
nary using Algorithm 3, while replacing an
old dictionary point from D.

end if
Incremental online model training using the
new dictionary D=D ∪ dm+1.

end if

value a into Equation (3), δ becomes

δ = k(dm+1,dm+1)− kTa . (5)

Using δ we can decide whether to insert new data
points into the dictionary. The sparsification pro-
cedure is summarized in Algorithm 1.

The independence measure δ as given in Equa-
tion (5), can be used as a criterion for selecting
new data points by thresholding, see Algorithm
1. The threshold parameter η implicitly controls
the level of sparsity. However, for a given thresh-
old value η, the number of dictionary points se-
lected from the online data stream is not known
beforehand and, thus, can be very large. Large
dictionaries are prohibitively expensive in terms
of computational complexity and as a result not
real-time capable. To cope with this problem, we
need to define an upper bound on the dictionary
size and delete old dictionary points if this limit
is reached.

For deleting old dictionary points, we consider
the independence measures δi of every dictionary
point i as illustrated in Figure 3. The value δi

indicates, how well the dictionary point i can be
approximated by the remainder of the dictionary.
The score δi has to be updated, when a new data
point is inserted into the dictionary or an old data
point is removed from the dictionary. In Sections

4

Figure 3: Geometrical interpretation of individual independence measures δi, i=1..3, for the dictionary D={d1,d2,d3}.
The dictionary point with a minimal δi is more likely to be deleted. After every dictionary operation (e.g., insertion and
deletion of dictionary points), the individual independence measures δi have to be incrementally updated.

2.3 and 2.4, we will discuss an efficient, incremen-
tal way of updating the value δi applicable for
real-time online computation.

2.3. Dictionary Update for Inserting New Points

For inserting a new data point dm+1 into the
dictionary, we have to incrementally update the
independence measure δi and corresponding coef-
ficients for every dictionary point i, as changing
the dictionary implies a change for δi. This up-
date for an existing dictionary point di is achieved
by adjusting the corresponding coefficient vector
ai. Updating ai implies an update of (Ki)−1 and
ki. Here, inserting a new point will extend Ki

by a row/column and ki by a value, respectively,
such that

Ki
new =

[
Ki

old km+1

kT
m+1 km+1

]
,

ki
new =

[
ki

old ki,m+1

]T
,

(6)

where km+1 =k(dm+1,dm+1), ki,m+1 =k(di,dm+1),
km+1 = k(Di,dm+1) with Di = D\{di}. Using
the Equation (6), the incremental update of the
inverse matrix (Ki

new)−1 is given by

(
Ki

new

)−1
=

1

γi

[
γi(K

i
old)−1 +αiα

T
i −αi

−αT
i 1

]
. (7)

This result leads to the update rule for the linear
independency value δi for the i-th dictionary point

Algorithm 2 Update the dictionary after insert-
ing a new data point.

Input: new dictionary point dm+1.
Update dictionary D = {di}m+1

i=1 .
for i=1 to m do

Compute
km+1 =k(Di,dm+1),
km+1 =k(dm+1,dm+1),
ki,m+1 =k(dm+1,di).

Compute

αi =
(
Ki

old

)−1
km+1,

γi = km+1 −αT
i km+1.

Update δi as given in Equation (8).
Update (Ki

new)−1 as given in Equation (7).
end for

given by

δi = k(di,di)− kiT
newa

i
new , with

ai
new =

1

γi

[
γia

i
old +αiα

T
i k

i
old − ki,m+1αi

−αT
i k

i
old + ki,m+1

]
.

(8)

The variables γi and αi are determined by αi =
(Ki

old)−1km+1 and γi =km+1 − kT
m+1αi. The pro-

cedure for the dictionary update after insertion of
new data points is summarized in Algorithm 2.

2.4. Dictionary Update for Replacing Points

As the data arrives continuously in an online
setting, it is necessary to limit the number of dic-
tionary points so that the computational power

5

of the system is not exceeded and the real-time
constraints are not violated. The individual in-
dependence value δi – as illustrated in Figure 3 –
gives rise to a straightforward deletion rule: the
smaller the independence value δi is, the more
likely the corresponding dictionary point is to be
deleted. The idea is to delete points that are more
dependent on other dictionary points, i.e., where
the corresponding independence value δi is small.
For the deletion of dictionary points, we addition-
ally consider a temporal allocation of each dictio-
nary point by imposing a time-dependent forget-
ting rate λi ∈ [0, 1]. Thus, we take the indepen-
dency value δi weighted by the forgetting value λi

as a deleting score. The role of λi will be discussed
in detail in Section 2.5.

Insertion and additional deletion of dictionary
points also change the independence values of other
dictionary points which have to be updated sub-
sequently. Insertion of a new point with an addi-
tional deletion of the j-th dictionary point implies
a manipulation of the j-th row/column of Ki and
the j-th value of ki given by

Ki
new =

K
i
old(1:j) km+1(1:j) Ki

old(j:m)

kT
m+1(1:j) km+1 kT

m+1(j:m)

KiT
old(j:m) km+1(j:m) K

i
old(j:m)

,
ki

new =
[
ki

old(1:j) ki,m+1 k
i
old(j:m)

]T
.

(9)

The values km+1, km+1 and ki,m+1 are determined
as shown in Section 2.3. The incremental update
of the independence measure δi for every i-th dic-
tionary point can be performed directly using an
incremental matrix inverse update. Hence,

δi =k(di,di)−kiT
newa

i
new and ai

new =Aki
new, (10)

where A is computed by the update rule

A=A∗ − rowj[A
∗]TrTA∗

1 + rT rowj[A
∗]T

with

A∗=(Ki
old)−1 − (Ki

old)−1r rowj[(K
i
old)−1]

1 + rT rowj[(K
i
old)−1]T

.

Here, the vector r is determined by r = km+1−
rowj[K

i
old]T and rowj[M] denotes the j-th row

of a given matrix M . The update of (Ki
new)−1

can be given as (Ki
new)−1 = A. The complete

procedure is summarized in Algorithm 3.

Algorithm 3 Replace the least important data
point in the dictionary by a new one.

Input: new dictionary point dm+1.
Compute λi as given in Equation (12) and, sub-
sequently, find the dictionary point with mini-
mal δi weighted by the forgetting rate λi:
j=mini(λ

iδi).
Update dictionary D by overwriting point j:
dj =dm+1.

for i=1 to m do
Compute
km+1 =k(Di,dm+1),
km+1 =k(dm+1,dm+1),
ki,m+1 =k(dm+1,di).

Compute
r = km+1−rowj[K

i
old]T .

Update δi as given in Equation (10).
Update (Ki

new)−1 =A in Equation (10).
end for

2.5. Characterization of the Dictionary Space and
Temporal Allocation

In previous sections, we described the proce-
dures for incremental insertion and deletion of
dictionary points appropriate for real-time com-
putation. The basic idea is that we attempt to
approximate the dictionary space (characterized
by the dictionary vector d) at best using a limited
sparse data set D. However, the choice of the dic-
tionary space is a crucial step which may depend
on particular applications. As we are dealing with
regression in this paper, it is reasonable to choose
the dictionary vector as

d=
[
x y

]T
, (11)

where x is the input vector and y represents the
target values. In so doing, our dictionary space
will include the input as well as target distribu-
tions. In practice, it shows that input and target
distributions both incorporate relevant informa-
tion for model approximation by regression. For
other applications such as learning classification
models, considering the input space only might
be sufficient.

In addition to the spatial allocation of the dic-
tionary space as achieved by employing the inde-

6

pendence measure δ, temporal allocation can be
taken into account by introducing a time-variant
forgetting factor for every dictionary point i. Here,
we consider the forgetting rate

λi(t)=exp

(
−(t− ti)2

2h

)
, (12)

where ti is the time when the dictionary point i
is included into the sparse set and h represents
the intensity of the forgetting rate. For deleting a
point from the dictionary, the deletion score is the
independence value weighted by the correspond-
ing forgetting value λi ∈ [0, 1], as shown in Algo-
rithm 3. By imposing a temporal weight on the
independence values, we make sure that tempo-
ral information encoded in the data is sufficiently
taken in account for the model learning. The for-
getting score λ (controlled by the parameter h)
represents a trade-off between temporal and spa-
tial covering. If the h value is very small, the tem-
poral effects will gain more importance and the
sparsication will behave similar to a time window
in common online algorithms.

2.6. Comparison to Previous Work
Our work was inspired by the work in [3] where

the authors also use a linear independence mea-
sure to select dictionary points. However, they
do not remove dictionary points again but in-
stead show that the dictionary size is bounded
for a given threshold η if the data space is as-
sumed to be compact. In practice, for a given
threshold value the actual dictionary size is data
dependent and unknown beforehand, thus, the
dictionary can be very large. In order to cope
with the computational constraints in real-time
applications, the dictionary size has to be limited.
In contrast to the algorithm in [3], our approach
allows us to formulate an efficient insertion and
deletion procedure for a given budget. In [3], the
spatial allocation is performed in the input space
only, resulting in an uniform covering of the com-
plete state space which might be suboptimal for
model approximation by regression. As we addi-
tionally employ a temporal allocation, the result-
ing online learning algorithm is able to adapt the
model to temporal effects which is an important
issue for online learning on real systems.

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

X

Y

Test Data
KRLS
SI−GPR

(a) Comparison with KRLS

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

X

Y

Test Data
5 DictPt
10 DictPt
15 DictPt

(b) SI-GPR prediction with different
budgets

Figure 4: An illustrative example of the prediction after a
single sweep through a toy data set. The dots show the po-
sitions of the corresponding dictionary points in the input
space. (a) The performance of SI-GPR is quite similar to
KRLS while the selection of the sparse data sets poses the
main difference. SI-GPR selects 15 dictionary points and
KRLS 21 data points, respectively. (b) Using a fixed bud-
get, e.g., 5, 10 or 15 dictionary points, the most relevant
regions in the input space are covered with data points.

An Illustrative Toy-Example

In the following section, we compare the ker-
nel recursive least square (KRLS) [3] with our ap-
proach. For the model training, we combine the
sparsification with an incremental GPR learning
[10], called sparse incremental GPR (SI-GPR). A
quick review for GPR and its incremental updates
can be found in the Appendix. It should be noted
that other incremental model learning methods
can also be used in combination with our incre-
mental sparsification, such as sequential SVR or
incremental SVM [19, 2].

As a toy example, we generate a noisy data set

7

where the relation between the target y and the
input x is given by yi =sin(x2

i)+εi. The data set
consists of 315 points, where εi is white Gaussian
noise with standard deviation 0.2 and xi ranges
from 0 to π. Here, the data is incrementally fed
to the algorithms and the prediction is computed
after a single sweep through the data set. The
results are shown in Figure 4, where η= 0.3 and
a Gaussian kernel with width 0.3 is being used.
In Figure 4 (a), it can be seen that the predic-
tion performance of SI-GPR using dictionary is
quite similar to KRLS. Here, the selection of the
sparse data points presents the main difference.
While KRLS uniformly fills up the complete in-
put space (resulting in 21 dictionary points), the
sparsification used by SI-GPR selects the most
relevant data points as dictionary points, where
the limit of the dictionary is set to be 15. Figure 4
(b) shows the performance of SI-GPR for different
dictionary sizes, where the prediction improves as
expected with increasing dictionary size.

3. Evaluations

In this section, we evaluate our sparsification
approach used in combination with the incremen-
tal GPR (SI-SVR) in several different experimen-
tal settings with a focus on inverse dynamics mod-
eling for robot tracking control.

First, we give a short review of learning dy-
namics models for control. Subsequently, we eval-
uate the algorithm in the context of learning in-
verse dynamics. The learning accuracy of SI-GPR
will be compared with other regression methods,
i.e., LWPR [18], GPR [12], ν-SVR [16] and LGP
[10]. For this evaluation in inverse dynamics learn-
ing, we employ 2 data sets including synthetic
data, as well as real robot data generated from the
7 degrees-of-freedom (DoF) Barrett WAM, shown
in Figure 6 (a). In Section 3.3, SI-GPR is applied
for real-time online learning of inverse dynamics
models for robot computed torque control (state-
of-the-art batch regression methods can not be
applied for online model learning). Finally, in
Section 3.4, we demonstrate the capability of the
approach in online learning of a dynamics which
changes in presence of different loads.

Dynamics
Model Robot

q̈d

q̇d

qd

KvKp

∑
∑

∑+

+ +

−
−+

+

u

qq̇

∑
+

Figure 5: Feedforward control with online model learning.

3.1. Learning Dynamics Models for Control

Model-based tracking control laws [17] deter-
mine the joint torques u that are required for
the robot to follow a desired trajectory qd, q̇d, q̈d,
where qd, q̇d, q̈d denote the desired joint angles,
velocity and acceleration. In feedforward control,
the motor command u consists of two parts: a
feedforward term uFF to achieve the movement
and a feedback term uFB to ensure stability of
the tracking, as shown in Figure 5. The feed-
back term can be a linear control law such as
uFB = Kpe+Kvė, where e denotes the tracking
error with position gain Kp and velocity gain Kv.
The feedforward term uFF is determined using an
inverse dynamics model and, traditionally, the an-
alytical rigid-body model is employed [17].

If a sufficiently precise inverse dynamics model
can be approximated, the resulting control law
u=uFF (qd, q̇d, q̈d)+uFB will accurately drive the
robot along the desired trajectory. Due to the
high complexity of modern robot systems such as
humanoids or service robots, traditional analyti-
cal rigid-body model often cannot provide a suf-
ficiently accurate inverse dynamics model. The
lack of model precision has to be compensated
by increasing the tracking gains Kp and Kv mak-
ing the robot stiff and less safe for the environ-
ment [9]. Thus, to fulfill both requirements of
compliant control, i.e., having low tracking gains
and high tracking accuracy, more precise models
are necessary. One possibility to obtain an accu-
rate inverse dynamics model is to learn it directly
from measured data. The resulting problem is a

8

(a) Barrett WAM

1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Degree of Freedom

nM
S

E

LWPR
LGP
ν−SVR
GPR
SI−GPR

(b) Error on simulation data

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Degree of Freedom

nM
S

E

LWPR
LGP
ν−SVR
GPR
SI−GPR

(c) Error on real WAM data

Figure 6: (a) 7-DoF Barrett WAM, used for evaluations. (b) Error (nMSE) on simulated data from a robot model
for every DoF. (c) Error (nMSE) on real robot data for every DoF. As shown by the results, SI-GPR is competitive
to standard batch regression methods such as ν-SVR and GPR, local learning methods such as LWPR and LGP. For
model learning with SI-GPR, the dictionary size is limited to be 2000 data points.

regression problem by approximating the inverse
dynamics model q, q̇, q̈→ u from sampled data
[1]. The resulting mapping can be subsequently
applied for predicting the appropriate feedforward
motor commands uFF. As trajectories and corre-
sponding joint torques are sampled directly from
the real robot, learning the inverse dynamics will
include all nonlinearities of the system encoded
by the data.

If the dynamics model can be learned online
(see Figure 5), the robot controller can adapt it-
self to changes in the robot dynamics, e.g., due
to unforeseen load or time-variant disturbances.
Online learning of dynamics models using sam-
pled data realized in a setup as in Figure 5 can be
considered as a self-supervised learning problem.

3.2. Offline Comparison in Learning Inverse Dy-
namics

For the generation of two data sets, i.e., one
with simulation data and one with real robot data,
we sample joint space trajectories and correspond-
ing torques from an analytical model of the Bar-
rett WAM, as well as from the real robot. This
results in two test scenarios, each having 12000
training points and 3000 test points. Given sam-
ples x=[q, q̇, q̈] as input and using the correspond-
ing joint torques y=u as targets, we have a re-
gression problem with 21 input dimensions and
7 output dimensions (i.e., a single desired torque

for each motor joint). The robot inverse dynamics
model is estimated separately for each DoF em-
ploying LWPR, ν-SVR, GPR, LGP and SI-GPR.

Employing SI-GPR for learning the inverse dy-
namics model, we first sparsify the full data sets
(i.e., 12000 data points) as described in Section
2, and subsequently apply incremental GPR for
an offline approximation of the model. For all
data sets, the dictionary size is limited to be 2000
points, where the parameter η is set to be 0.1.
For the sparsification process and the incremen-
tal GPR, we employ the Gaussian kernel, whose
hyperparameters are obtained by optimizing the
marginal likelihood [12].

Figures 6 (b) and (c) show the offline approx-
imation errors on the test sets evaluated using
the normalized mean square error (nMSE) which
is defined as the fraction of mean squared error
and the variance of target. It can be observed
from the results that SI-GPR using sparsification
is competitive in learning accuracy despite the
smaller amount of training examples (i.e., dic-
tionary points). In practice, it also shows that
the models are easier to train using SI-GPR com-
pared to local learning methods such as LWPR
and LGP, as the latter require an appropriate
clustering of the state space which is not straight-
forward to perform for many data sets.

9

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Degree of Freedom

R
M

S
E

Rigid−Body
SI−GPR

(a) Tracking error on Barrett
WAM in joint space for all 7
DoFs

0 10 20 30 40 50 60

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time [sec]
Jo

in
t P

os
iti

on
 [r

ad
]

Desired
Rigid−Body
SI−GPR

(b) Tracking error on Barrett
WAM in joint space for the 1st
DoF

0 10 20 30 40 50 60

−10

−8

−6

−4

−2

0

2

4

6

Time [sec]

Jo
in

t T
or

qu
e

[N
m

]

Joint torque: u
Feedforward: u

 FF

(c) Feedforward uFF and joint
torque u of the 1st DoF during
SI-GPR online learning

Figure 7: (a) Compliant tracking performance in joint space after 60 sec computed as RMSE. Computed torque control
with online learned model (SI-GPR) outperforms common analytical rigid-body model. (b) Tracking performance in
joint space for the 1st DoF, e.g., the shoulder flexion extension, (other DoFs are similar) during the first 60 sec. (c)
Predicted feedforward torque uFF and joint torque u of the 1st DoF. The predicted torque uFF gradually converges to
the joint torque u as the latter is sampled as target for the model learning.

3.3. Model Online Learning in Computed Torque
Control

In this section, we apply SI-GPR for the real-
time online learning of the inverse dynamics model
for torque prediction in robot tracking control,
as introduced in Section 3.1. The control task
with model online learning is performed with 500
Hz sample rate (i.e., we get a new test point ev-
ery 2 ms) on the real Barrett WAM. In so doing,
the trajectory q, q̇, q̈ and the corresponding joint
torques u are sampled online as shown in Figure
5. The inverse dynamics model, i.e., the mapping
q, q̇, q̈→u, is learned in a self-supervised manner
during the tracking task using the trajectory as
input and the joint torque as target, starting with
an empty dictionary. As the learned inverse dy-
namics model is subsequently applied to compute
the feedforward torques uFF, it can be observed
that uFF gradually converges against u. In this
experiment, we set the tracking gains (see Sec-
tion 3.1) to very low values satisfying the require-
ment of compliant control. In so doing, inaccurate
inverse dynamics models, however, will result in
large tracking errors.

In this online learning experiment, the maxi-
mal dictionary size is set to be 300, η=0.01 and a
Gaussian kernel is used whose parameters are de-

termined by optimizing the marginal likelihood.
For the forgetting score λ, a forgetting rate h=0.4
is chosen by cross-validation. The desired track-
ing trajectory is generated such that the robot’s
end-effector follows a 8-figure in the task space.
For comparison, we also apply an analytical rigid-
body model for torque prediction [17]. The track-
ing results are shown in Figure 7, where tracking
control task is performed for 60 sec on Barrett
WAM. During this time, the dictionary is first in-
crementally filled up and subsequently updated
about 700 times. The inverse dynamics model is
incrementally learned online using the dictionary.

Figure 7 (a) compares the tracking performance
of the online learned model and the analytical
rigid-body model in joint space for all 7 DoFs,
where the tracking error is computed as root mean
square error (RMSE). It can be observed that the
tracking accuracy can be significantly improved,
if the inverse dynamics model is approximated on-
line. For several DoFs such as the 4th DoF (i.e,
the elbow flexion), the rigid-body model fails to
described the true dynamics resulting in a large
tracking error as shown in Figure 7 (a). This ex-
ample demonstrates the difficulty in analytically
modeling complex systems which may be allevi-
ated by directly learning the model.

10

(a) Starting to Learn (b) After Learning (c) Dynamics Alternation (d) Degraded Performance

(e) After Learning (f) Dynamics Alternation (g) Degraded Performance (h) After Learning

Figure 8: Tracking experiment with online model learning. The blue, thick lines illustrate the desired trajectory and the
red, dotted lines show the robot trajectory in task space. (a) As the model is started to be learned online (beginning
with an empty dictionary), the robot first shows a transient behavior. (b) With a successfully learned model, the robot
is able to follow the trajectory well. (c) The original dynamics is changed by hanging a heavy water bottle to the arm.
(d) Due to the modified dynamics, the robot fails to track the desired initial trajectory. Therefore, the robot starts to
learn the modified dynamics online. (e) As the online model learning converges, the robot gradually moves back to the
desired initial position. (f) The dynamics is modified again by removing the water bottle. (f) The learned model is no
more accurate, i.e., the predicted torques are now too large. The modified dynamics is subsequently adapted online. (g)
As the dynamics model is successfully adapted, the robot returns to the initial desired position. A video showing the
experiment can be seen at “http://www.robot-learning.de/”.

Figures 7 (b,c) show the tracking performance
in joint space for the 1st DoF, i.e., the shoulder
flexion extension, during the first 60 sec, other
DoFs are similar. It can be seen that the pre-
dicted torque uFF (for 1st DoF) consistently con-
verges to the joint torque u as the latter is sam-
pled as target for the model learning.

3.4. Online Learning for Changing Dynamics

In this section, we demonstrate the capabil-
ity of the algorithm for online model learning and
self-adaption to changes in the dynamics in a more
complex task. Figures 8 (a)-(h) show the progress
of the experiment. First, we learn the robot in-
verse dynamics online starting with an empty dic-
tionary. We apply SI-GPR with the same pa-
rameter setting as given in Section 3.3. Here, we
also first incrementally fill up the dictionary and
subsequently update for new data points. Sub-
sequently, we modify the robot dynamics by at-
taching a heavy water bottle to the arm (beside

the changing load, the swinging bottle addition-
ally introduces a time-variant nonlinearity). Due
to the change in the dynamics, the robot can-
not follow the given trajectory in joint space. As
in Section 3.3, the desired joint space trajectory
is defined such that the robot draw a figure-8 in
the task space. The end-effector velocity of the
robot during the tracking in task space is about
0.6 m/sec, where the displacement ranges from
0.2 to 0.5 m. The modified dynamics can now be
learned online, as shown in the Figures 8 (a)-(h).

As the online model learning converges, the
modified dynamics is taken into account by the
predicted feedforward torques uFF. As an ex-
ample, Figure 9 shows the joint angle and corre-
sponding torques of the 4th DoF (i.e., the robot’s
elbow flexion) during the experiment. With the
attached water bottle, the predicted feedforward
torques uFF gradually becomes more precise as
the model converges. The decreasing model er-
ror results in accurate tracking performance. By

11

0 25 65 130 170 200

1

1.5

2

Jo
in

t P
os

iti
on

 [r
ad

]

Desired

Elbow Joint

0 25 65 130 170 200
0

5

10

To
rq

ue
 [N

m
]

Joint torque: u
Feedforward: u

 FF

0 25 65 130 170 200

−5

0

5

To
rq

ue
 [N

m
]

Time [sec]

Feedback: u
 FB

(a)

Bottle
removed

Bottle
attached

(b) (d)(c) (e)

Figure 9: Elbow joint angle (4th DoF) and corresponding torques of the Barrett WAM during the experiment. (a)
The robot starts with an unmodified dynamics. (b) As the water bottle is attached to the arm, it causes a jump in
the feedback torque uFB and joint torque u. Due to the compliant tracking mode, the change in the feedback torque
uFB is not sufficient to compensate the resulting tracking error. (c) As the dynamics model is learned online, the new
dynamics can be incorporated in the prediction of the feedforward torque uFF. As the online model learning converges,
the resulting tracking error is also gradually reduced, i.e., the robot returns to the desired position. Note how the
feedback torque uFB is decreasing, as the model, i.e., the torque prediction, becomes more accurate. (d) The online
modification of the dynamics, i.e., removing the water bottle, leads to changes in the feedback and joint torques. (e)
As the adaptation is successfully done and the feedforward torque uFF converges, the robot moves back to the desired
trajectory and the feedback torque decreases again.

continuously updating the dictionary, i.e., by in-
sertion and eventual deletion of dictionary points,
the model can adapt to dynamical changes in the
environment. This effect can further be demon-
strated by removing the water bottle. As ob-
served from Figure 9, the predicted torque uFF

is subsequently reduced, since smaller torques are
now required for proper tracking of the desired
trajectory.

In this experiment, we employ very low track-
ing gains. As a result, the model errors will seri-
ously degrade the tracking accuracy unless a more

precise inverse dynamics model is learned. Fig-
ure 9 shows that the feedback torques uFB are
not able to compensate the model error due to
the low tracking gains. As the inverse dynamics
model becomes more accurate during the online
learning, the feedback torques uFB decrease, and,
thus, the joint torques u mainly depend on the
feedforward term uFF. As the torque generation
relies more on the inverse dynamics model, we
can achieve both compliant control (by using low
tracking gains) and high tracking accuracy at the
same time.

12

4. Conclusion and Future Work

Motivated by the need of fast online model
learning in robotics, we have developed an in-
cremental sparsification framework which can be
used in combination with an online learning algo-
rithm enabling an application in real-time online
model learning. The proposed approach provides
a way to efficiently insert and delete dictionary
points taking in account the required fast compu-
tation during model online learning in real-time.
The implementation and evaluation on a physical
Barrett WAM robot emphasizes the applicability
in real-time online model learning for real world
systems. Our future research will be focused on
further extensions such as including a database
enabling online learning for large data sets.

Acknowledgments

We would like to thank Bernhard Schölkopf
from Max Planck Institute for Biological Cyber-
netics for helpful discussions and for providing us
with relevant machine learning literature of re-
duced set methods.

References

[1] Burdet, E., Codourey, A., 1998. Evaluation of para-
metric and nonparametric nonlinear adaptive con-
trollers. Robotica 16 (1), 59–73.

[2] Cauwenberghs, G., Poggio, T., 2000. Incremental and
decremental support vector machine learning. Ad-
vances in Neural Information Processing Systems.

[3] Engel, Y., Mannor, S., Meir, R., 2004. The kernel re-
cursive least-square algorithm. IEEE Transaction on
signal processing 52.

[4] Hastie, T., Tibshirani, R., Friedman, J., 2001. The
Elements of Statistical Learning. Springer, New York.

[5] Lang, T., Plagemann, C., Burgard, W., 2007. Adap-
tive non-stationary kernel regression for terrain mod-
eling. Robotics: Science and Systems (RSS).

[6] Liu, Y., Wang, H., Yu, J., Lia, P., 2009. Selective
recursive kernel learning for online identification of
nonlinear systems with NARX form. Journal of Pro-
cess Control, 181–194.

[7] M.Seeger, 2007. Low rank update for the cholesky
decomposition. Tech. rep., University of California at
Berkeley.

[8] Nakanishi, J., Schaal, S., 2004. Feedback error learn-
ing and nonlinear adaptive control. Neural Networks.

[9] Nguyen-Tuong, D., Peters, J., Seeger, M., 2008. Com-
puted torque control with nonparametric regression
models. Proceedings of the 2008 American Control
Conference (ACC 2008).

[10] Nguyen-Tuong, D., Seeger, M., Peters, J., 2008. Local
gaussian process regression for real time online model
learning and control. Advances in Neural Information
Processing Systems.

[11] Plagemann, C., Kersting, K., Pfaff, P., Burgard, W.,
2007. Heteroscedastic gaussian process regression for
modeling range sensors in mobile robotics. Snowbird
learning workshop.

[12] Rasmussen, C. E., Williams, C. K., 2006. Gaussian
Processes for Machine Learning. MIT-Press, Mas-
sachusetts Institute of Technology.

[13] Schaal, S., Atkeson, C. G., Vijayakumar, S., 2002.
Scalable techniques from nonparameteric statistics
for real-time robot learning. Applied Intelligence, 49–
60.

[14] Schölkopf, B., Mika, S., Burges, C. J. C., Knirsch, P.,
Müller, K.-R., Rätsch, G., Smola, A. J., 1999. Input
space versus feature space in kernel-based methods.
IEEE Transactions on Neural Networks 10 (5), 1000–
1017.

[15] Schölkopf, B., Smola, A., 2002. Learning with Ker-
nels: Support Vector Machines, Regularization, Op-
timization and Beyond. MIT-Press, Cambridge, MA.

[16] Schölkopf, B., Smola, A., Williamson, R., Bartlett,
P., 2000. New support vector algorithms. Neural
Computation.

[17] Spong, M. W., Hutchinson, S., Vidyasagar, M., 2006.
Robot Dynamics and Control. John Wiley and Sons,
New York.

[18] Vijayakumar, S., D’Souza, A., Schaal, S., 2005. In-
cremental online learning in high dimensions. Neural
Computation.

[19] Vijayakumar, S., Wu, S., 1999. Sequential support
vector classifiers and regression. International Con-
ference on Soft Computing.

Appendix

Gaussian Process Regression

A powerful probabilistic method for model learn-
ing is Gaussian process regression (GPR). Given
a set of n training data points {xi, yi}ni=1, we in-
tend to discover the latent function f(xi) which
transforms the input vector xi into a target value
yi given by the model yi= f(xi)+εi , where εi is
Gaussian noise with zero mean and variance σ2

n

[12]. A Gaussian process model is determined by
its covariance function and mean function which is

13

often assumed to be zero. In practice, the covari-
ance function can be chosen by the users such as
a Gaussian kernel as given in Equation (2). The
resulting prediction f̄(x∗) and the corresponding
variance V(x∗) of a query input vector x∗ can be
given as

f̄(x∗) = k∗
T (K + σ2

nI)
−1

y ,

= k∗
Tα ,

V(x∗) = k(x∗,x∗)− k∗
T (K + σ2

nI)
−1

k∗ ,
(13)

Here, K = k(X,X) denotes the covariance ma-
trix evaluated on the training input data X, k∗=
k(X,x∗) is the covariance vector evaluated on X
and the query point x∗, and α = (K + σ2

nI)−1y
is the so-called prediction vector. The open pa-
rameters of GPR, i.e., the hyperparameters, can
be optimized from training data. The usual prac-
tice is to maximize the log marginal likelihood us-
ing common optimization procedures, e.g., quasi-
Newton methods [12].

The GPR model as introduced here can also
be obtained incrementally for online applications
[10]. Essentially, the matrix (K+σ2

nI)−1 in Equa-
tion (13) has to be incrementally updated when
including a new point [10]. This approach is equiv-
alent to a rank-one update which yields a com-
plexity of O(m2), where m denotes the current
number of training data points [7]. For real-time
applications, it is necessary to define an upper
bound for m in order to cope with the limited
computational power. Thus, it is essential to de-
velop a method for incrementally selecting a lim-
ited number of informative data points making
the regression real-time capable.

The Authors

Duy Nguyen-Tuong has
been pursuing his Ph.D. since
2007 at the Max Planck Insti-
tute for Biological Cybernet-
ics in the department of Bern-
hard Schölkopf supervised by
Jan Peters. Before doing so, he
studied control and automa-

tion engineering at the University of Stuttgart

and the National University of Singapore. His
main research interest is the application of ma-
chine learning techniques in control and robotics.

Jan Peters is a senior re-
search scientist and heads the
Robot Learning Lab (RoLL)
at the Max Planck Institute for
Biological Cybernetics in Tue-
bingen, Germany. He gradu-
ated from University of South-
ern California (USC) with a
Ph.D. in Computer Science.
He holds two German M.S. de-

grees in Informatics and in Electrical Engineering
(from Hagen University and Munich University
of Technology) and two M.S. degrees in Com-
puter Science and Mechanical Engineering from
USC. Jan Peters has been a visiting researcher
at the Department of Robotics at the German
Aerospace Research Center (DLR) in Oberpfaf-
fenhofen, Germany, at Siemens Advanced Engi-
neering (SAE) in Singapore, at the National Uni-
versity of Singapore (NUS), and at the Depart-
ment of Humanoid Robotics and Computational
Neuroscience at the Advanded Telecommunica-
tion Research (ATR) Center in Kyoto, Japan.
His research interests include robotics, nonlinear
control, machine learning, reinforcement learning,
and motor skill learning.

14

