Robotics and Autonomous Systems 105 (2018) 121-137

journal homepage: www.elsevier.com/locate/robot

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

Online optimal trajectory generation for robot table tennis A

Okan Kog¢ **, Guilherme Maeda ¢, Jan Peters a,b

Check for
updates

2 Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tiibingen, Germany
b Technische Universitit Darmstadt, FG Intelligente Autonome Systeme Hochschulstr. 10, 64289 Darmstadt, Germany
¢ ATR Computational Neuroscience Labs, 2-2-2 Hikaridai Seika-sho, Soraku-gun, Kyoto 619-0288, Japan

HIGHLIGHTS

An optimal control framework is introduced in robot table tennis to generate strikes.
Inverse kinematics or a fixed plane to compute joint trajectories are not needed.

Two optimization approaches are presented that encode different styles of playing.
The parameters of the ball prediction models are estimated from demonstrations.
Extensive experiments are shown in simulation and on our robot table tennis platform.

ARTICLE INFO ABSTRACT

Article history:

In highly dynamic tasks that involve moving targets, planning is necessary to figure out when, where and
how to intercept the target. In robotic table tennis in particular, motion planning can be very challenging
due to time constraints, dimension of the search space and joint limits. Conventional planning algorithms
often rely on a fixed virtual hitting plane to construct robot striking trajectories. These algorithms,
however, generate restrictive strokes and can result in unnatural strategies when compared with human
playing. In this paper, we introduce a new trajectory generation framework for robotic table tennis that
does not involve a fixed hitting plane. A free-time optimal control approach is used to derive two different
trajectory optimizers. The resulting two algorithms, Focused Player and Defensive Player, encode two
different play-styles. We evaluate their performance in simulation and in our robot table tennis platform
with a high speed cable-driven seven DOF robot arm. The algorithms return the balls with a higher
probability to the opponent’s court when compared with a virtual hitting plane based method. Moreover,

Received 2 September 2017

Received in revised form 19 March 2018
Accepted 30 March 2018

Available online 9 April 2018

Keywords:
Optimal control
Motion planning
Optimization
Robot table tennis

both can be run online and the trajectories can be corrected with new ball observations.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Table tennis is a challenging game for humans to master. For
robots, it also serves as a testbed to study and validate the ef-
fectiveness of different movement generation algorithms. Com-
bining different estimation, movement generation and execution
schemes and studying how close they come to imitating expert
human behavior will yield important insights for robotics research.

Optimality plays an important role in the search for efficient and
feasible striking trajectories. However, so far most of the research
in robotic table tennis were based on specialized systems, such as
Cartesian coordinate robots [1,2], that eliminate great part of the
difficulties in trajectory generation. Furthermore, most algorithms
for robotic table tennis focused on simplifications of the game

* Corresponding author.
E-mail addresses: okan.koc@tuebingen.mpg.de (0. Kog), g.maeda@atr.jp
(G. Maeda), jan.peters@tuebingen.mpg.de (J. Peters).

https://doi.org/10.1016/j.robot.2018.03.012

that reduced the dimensions of the search space [3] in order to
quickly come up with a movement plan. In this paper, we show the
advantages of incorporating optimality in trajectory generation to
create more flexible movement.

Our robotic setup with an anthropomorphic seven degree of
freedom Barrett WAM arm is shown in Fig. 1. The redundant arm
can achieve high speeds and accelerations. It is a good platform
to study different movement generation schemes. Optimal control
based approaches have the potential to make use of all degrees
of freedom in planning, contributing to more natural and efficient
generation of strikes. The contributions of this paper are as follows:
we introduce an optimal control framework in robot table tennis
where the generation of striking trajectories is the result of an
optimization problem. As opposed to previous works, inverse kine-
matics or a fixed plane to compute joint trajectories are not needed.
Two different optimization approaches are presented that encode
defensive and goal-oriented styles of playing. We show extensive
experiments in simulation and on our table tennis platform, where

0921-8890/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

https://doi.org/10.1016/j.robot.2018.03.012
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2018.03.012&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:okan.koc@tuebingen.mpg.de
mailto:g.maeda@atr.jp
mailto:jan.peters@tuebingen.mpg.de
https://doi.org/10.1016/j.robot.2018.03.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

122 0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137

Fig. 1. Robotic table tennis setup with four cameras on the corners of the ceil-
ing tracking the ball at 60 Hz. We present two optimal control based trajectory
generation algorithms that encode defensive and goal-oriented styles of playing.
A constrained nonlinear optimization problem is solved in both cases to find an
optimal striking trajectory as well as an optimal striking time.

we evaluate and compare the performance of the algorithms. We
do not rely on pure physical modeling to compute desired ball
and racket parameters. Instead, the parameters of the prediction
models are estimated based on offline human ball-racket demon-
strations and the angular velocity (spin) of the ball is estimated
online from actual ball data.

In the remainder of this paper, the framework is described in
detail. A brief survey of robot table tennis research is given and
related work on trajectory generation is introduced in Section 2.
Robot trajectory generation for table tennis is formalized as an
optimal control problem in Section 3. Two efficient solvers are
presented in Sections 4 and 5 for optimizing the cost functional
under additional constraints. The performance of the two result-
ing players are evaluated in Section 6 and it is shown that they
compare favorably with an inverse kinematics based approach in
simulation. Finally, real robot experiments are performed, where
the algorithms run online in the table tennis setup. Based on this
evaluation, conclusions are given with several promising exten-
sions which might be necessary to increase performance further.
Parts of this paper appeared in [4], where one of the algorithms
(Focused Player) was proposed and evaluated in simulation. A
lookup table based approach was suggested to implement it online
in the table tennis platform.

2. Related work

Robot table tennis started as a challenge [5] and Anderson was
the first in 1988 to construct a table tennis playing robot [6]. Dex-
terous motion displayed by expert table tennis players as well as
the challenges in accurate ball state prediction piqued the curiosity
of robot researchers. Since 1988, interest in robot table tennis has
continued with various robotic platforms, for example, [7] and [8].
Earlier Cartesian coordinate robots ([1], [2], among others) were
followed by industrial arms and humanoid robots with a seven
degrees of freedom arm (e.g., [9], [10], [11]). Different control
techniques for humanoid table tennis robots were proposed in [12]
and [11]. A comprehensive categorization and summary of robot
table tennis research was given in [13].

Research in robot table tennis considered ball estimation and
prediction algorithms as well. Physical flight models without spin
were considered in [1], [3]. Flight, rebound and racket contact
models incorporating spin effects were proposed, for example,
in [14] and in [15]. Frameworks estimating spin from cameras
include [16] and [17]. Recently, a framework for estimating the
spin of the table tennis ball using offline clustering and an online
Expectation-Maximization based state estimation algorithm was

VHP

[ly out of reach

Fig. 2. Fixing a virtual hitting plane (VHP) can make the generated trajectories
unnecessarily restrictive and the resulting inverse kinematics may be infeasible.
Instead the whole ball trajectory should be considered in a trajectory generation
framework and the hitting time as well as the hitting point should be optimized.
The predicted ball trajectory and a feasible racket trajectory are shown in red and
black, respectively. VHP is shown as a dotted gray line, the workspace of the robot
is shown as an ellipsoidal light blue region. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

introduced in [18]. The authors argue that the change of spin is very
slow and they assume spin to be constant.

One of the most popular frameworks for trajectory generation
in table tennis is the Virtual Hitting Plane (VHP) method, which is
based on the virtual hitting point hypothesis [19]. In this approach,
the trajectory of an incoming ball is first estimated from a stream of
ball position observations. Usually, a physical flight model is then
used to predict the intersection point of the future ball trajectory
with an appropriately chosen plane. This procedure determines the
striking time as well as the striking point. The remaining task-space
parameters, the desired racket velocity and normal at striking time,
are determined by running the physical flight model backwards
from a desired ball landing position and velocity, and inverting the
ball-racket contact model. For a more general discussion, see [1]
and [3]. A clear limitation of the method is shown in Fig. 2. A player
fixing the VHP may not generate feasible trajectories for some ball
trajectories. By means of trajectory optimization, trajectories can
be generated that are not constrained to a hitting plane.

Another framework that uses a mixture of movement primi-
tives and reinforcement learning (RL) is given in [20]. Initialized
with a set of dynamic movement primitives (DMP) extracted from
demonstrations, RL is applied to select and generalize between the
teach-in movements. A problem with this approach is that not all
robots can be trained well this way. For example, the shoulder
of the robot shown in Fig. 1 weighs 10 kg alone, and the wrist
weighs about 2.5 kg. It is more difficult to move the links with
heavy inertia, whereas it is easier to find optimization algorithms
that make use of them. A different approach in [21] uses RL to learn
robot movements as a response to predicted ball trajectories. The
learned ball trajectories are second order polynomials, restricting
the validity of the proposed approach to the front side of the robot
workspace.

A related dynamic framework involving moving targets is the
ball catching robot of Bduml et al. [22] where a computation-
ally demanding optimization problem is solved online. It includes
also the catching time as another parameter to be optimized.
The framework of Kim et al. [23] considers generating catching
movements for more general objects. Another application of opti-
mal control showing the benefits of spatio-temporal optimization
is given in [24] on a brachiating robot. The computed solutions
require lower torques when compared with traditional optimal
control approaches fixing the time interval.

3. Problem statement

Most of the algorithms for robotic table tennis need to specify
when, where and how to intercept the incoming ball trajectory

0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137 123

b(t). In [1] and [3] for example, the authors calculate the inter-
section point of a predicted ball trajectory b(t) with a virtual
hitting plane (VHP) at y = yyyp to determine the space and time
coordinates of the hitting event. Although additional constraints
like the VHP can simplify trajectory generation, they can also lead
to awkward or infeasible movements. It is possible to eliminate
this plane altogether and include the striking time as another
parameter to be determined in an optimization problem.

When generating striking trajectories for a robot with n degrees
of freedom, trajectories with minimal acceleration can be preferred
for safety and efficiency reasons. Consider the following free-time
optimal control problem [25]

T

min [o) e (1)

4T Jo

st @i (Q(T), T) € A, (2)
Tt (q(T). §(T). T) € N, (3)
P1ana (q(T). 4(T). T) € L, (4)
q(0) = qo. (5)
q(0) = qo, (6)

where the final hitting time T is an additional variable to be
optimized along with the joint accelerations q(t) : [0,T] — R
Initial conditions for the robot are the joint positions qo and joint
velocities . The inequality constraints (2)-(4) ensure that the task
requirements for table tennis are satisfied. The hitting constraint
Uiy € H ensures impact of the racket with the ball at striking
time T. The net constraint ¥, € N makes sure the ball passes
over the net and finally, the landing constraint ¥;,,4 € £ captures
the requirement that the ball should bounce first on the opponents
court. See Fig. 3 for an illustration. The precise definitions of these
constraint functions and the constraint sets will be introduced in
Section 5.

Solutions of (1)-(6) can be found using Pontryagin’s minimum
principle [26]. The optimal q(t) is a third degree polynomial for
each degree of freedom, with the inequality constraints (2)-(4)
imposing generalized transversality conditions on the Hamiltonian
and the momenta to satisfy at striking time [27,28]. Solving such
boundary value problems is hard, especially given real time con-
straints. In the later sections we will introduce two algorithms that
will solve this problem efficiently under additional constraints.
These two approaches can be seen as different ways to solve
the underlying table tennis task efficiently and they lead to two
different play-styles.

When given only constraints at the boundary, the striking time
T, the joint position and velocity values at striking time q; and ¢
fully parameterize this problem. The polynomial coefficients for
the striking trajectory

Qsuike(t) = a3t® + ayt% + Qot + qo, (7)

can then be determined in joint-space for each degree of freedom
of the robot

2 1. .
(90 — ar) + — (o + q),

a3 = —

T T (8)
a—3() 1(. +24p)

Z_Tzqf Qo qu qo)-

The notation that is used frequently in the rest of the paper is
shown in Table 1 for the reader’s convenience.

3.1. Background on ball prediction
For the trajectory generation process, three ball models will be

used to determine the table tennis task constraints (2)-(4): ball
flight model, ball-table rebound model and ball-racket contact

0.2 4

-0.2 -

-0.6
-0.8

-1.2 -

05 o ga
0 o5

x (m)

y (m)

Fig. 3. In table tennis, robot trajectories (blue) can be seen as reactions to predicted
ball trajectories. The players are free to decide where, when and how to intercept
the ball. However, the resulting outgoing ball trajectories (orange) need to be
feasible: the ball has to pass above the net and land on the opponent’s court.
The feasible region above the net is drawn in transparent green. The rules of the
game can be captured as constraints for generating robot striking trajectories. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Table of symbols.
Notation Explanation
T Hitting time
Trest Return time
Tand Desired ball landing time after hit
bygoal Desired ball landing positions
q(t) Joint trajectory
b(t) Predicted ball trajectory
r(t) Racket center position
v(t) Racket velocity
n(t) Racket normal
K, Kinematics function for racket center position
K, Kinematics function for racket normal
Jqr) Jacobian at hitting time
Nges(T) Desired racket normal at hitting time
Vaes(T) Desired racket velocity at hitting time

® Ball spin

Bm, Bout Ball velocity before and after impact

N Minimum number of balls to start prediction
qQo. qo Initial joint positions and velocities

Qeur: Geur Joint position and velocity estimates

a5, gy Joint position and velocity at hitting time
Qext Joint extreme values of trajectory

Amax;> Amin Joint angle upper and lower limits

R Weighting matrix

Qstrike(t) Joint striking trajectory

Greturn(t) Joint returning trajectory

Dhit, Plands Pnet Table tennis task constraints

model. Whenever an incoming ball is detected in midair, a flight
model will first be used to predict the trajectory b(t) of the ball
center of mass coordinates b = (by, by, b,)! until impact with a
racket, table or ground.

Flight model. Table tennis balls are very light, a standard ball
weighs about 2.7 g, which makes nonlinear effects due to air drag
and spin noticeable especially when the ball speed v = ||b||; is
high. The flight model [14]

b=g— Cub+Cw x b, 9)

is a nonlinear dynamics model that incorporates air drag and spin
effects. The air drag constant Cp and the lift constant C; as well
as gravity g, g = (0, 0, g)", parameterize this model. The magnus
effect due to spin (angular velocity) @, for example, acts as an
additional downward force for an incoming ball if the angular

124 0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137

Flight model

Contact model

Bout = (I - AT)V G Arbin + RrotBrw

Rebound model

bout = Atbin + Btw

Fig. 4. Ball prediction schema for table tennis. After estimating the initial ball position, velocity and spin, the future path of the ball can be predicted using the flight model,
the rebound model and the racket-ball contact model. The trajectory generation framework uses these models to compute desired striking trajectories.

velocities are in the negative x-direction (topspin). It is assumed
that spin stays constant throughout the ball motion.

Rebound model. Formally, rebound is a discrete event which re-
flects the ball velocity when the ball hits the table. The incoming
velocities by, at bouncing time are transformed to outgoing veloci-
ties boyt. The following nonlinear rebound model [14] for a standard
ball with radius r3 = 2 cm,

bouc = Acbiy + Bro, (10)

is parameterized by the dynamic coefficient of friction w; and the
coefficient of restitution ¢; of the table

1—« 0 0 0 arg 0
A = 0 1-a 0 |,Bi=|—ary 0 O], (11)
0 0 —€; 0 0 O
where the nonlinearity comes from the sliding parameter
_ by
o = 1+ e, (12)

by is the tangent velocity at contact

l.)T = (bx — I'pwy, by + Tpwy, O)T’ (13)

forw = (wy, wy, @,)T. This model suggests, for example, that some
amount of topspin is transferred at sliding impact to linear velocity
in the y-direction. See Fig. 4 for a table tennis schema.

Racket contact model. We assume the following linear racket con-
tact model holds for a standard racket with radius rz ~ 7.6 cm,

0 = Ari+Brw» (14)

between the outgoing ball velocity o and the incoming ball ve-
locity i, similar to (10) but in the moving racket frame. The out-
going ball Cartesian velocities are hence found by multiplying o
with the racket rotation matrix and adding the racket velocities,
i.e., bout(t) = Ryot0(t) + v(t), where the rotation matrix R;o:(q(t))
of the racket is given by the kinematics function. The impact model
is parameterized by the constants « and ¢,

1—« 0 0 0 kg O
A= 0 1—-« 0 |,B.=|—-«krg 0 0]. (15)
0 0 —e 0 0 0

Letting A, := RiotA/R"

Tot?
the Cartesian velocities:

we get the following relationship between

l.)out =(I- Ar v+ Ar'.)in + RiotBro. (16)

Ball prediction. The models (9)-(16) can be composed together to
predict the future ball trajectory given camera observations. We
use an Extended Kalman Filter (EKF) to estimate the ball state from
observations [29]. The ball state for the filter is the ball positions
and velocities, since we assume that the ball spin is constant
throughout motion. The ball spin can be seen as a parameter of the
prediction functions.

EKF instantiated with the models (9)-(16), the initial ball posi-
tions by and velocities by and spin w, estimates the evolving ball
state and predicts the future ball trajectory at each time instant ¢:
a multivariate normal distribution p,(b, b) of ball states parame-
terized by time is generated

(b(t)". B(t)")" ~ pe(b. b) = N(u(t), X(1)). (17)

where u(t) = (b(t)7, b(t)™)" is the mean ball position and velocity
predictions. The covariance matrix X(t) is updated along with the
mean estimate u(t) using the EKF predict and update equations.
The covariance matrices are used to reject outliers and hence make
Kalman Filtering more robust to ball detection errors.

4. The focused player

A higher-level strategy in table tennis could, based on a per-
ceived state of the opponent, command to return an incoming
ball to a desired location. A reliable trajectory generation algo-
rithm for that purpose should be flexible and easily find safe
joint movements. The optimal control based approach penalizing
sum of squared accelerations, in this regard, leads to a flexible
optimization problem where it is easy to find good hitting postures,
while satisfying additional safety constraints.

4.1. Racket constraints

For a table tennis player that wants to guarantee the return of
the incoming ball to a desired location at a desired landing time, the
optimal control problem introduced in (1) can be solved efficiently
under additional racket constraints

Ky(q(T)) = b(T), (18)
Kn(q(T)) = Nges(T), (19)
J@(THA(T) = Vaes(T). (20)

The racket center position r(T) and the racket normal n(T) at
hitting time T are computed using the kinematics functions K, (-)

0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137 125

and K,(-), respectively. The Jacobian J(-) € R3*" [30] at hitting
time transforms the joint velocities in (20) to racket velocities v(T).
To maximize the probability of hitting the ball, the desired racket
center is set at hitting time equal to the mean ball position estimate
in (18), i.e., r(T) = b(T). To return the ball to the opponent’s court,
the constraints on the racket normal n(T) and velocity at hitting
time v(T) are imposed in (19) and (20), respectively.

The imposed racket constraints (18)-(20) can satisfy and hence
effectively replace the table tennis task constraints (2)-(4) for
suitable nges(T), Vaes(T), if the future path of the incoming ball
is predicted before the optimization for calculating the hitting
movement takes place.

Calculating desired racket parameters. After predicting the future
ball path b(t) at a discrete set of time instants t € (0, Tpreq),
the next step is to compute desired racket velocities vges(t) and
desired racket normals on this path nges(t). These desired racket
parameters will give the incoming ball during the impact, a desired
outgoing ball velocity according to (16). They are calculated by
first specifying a desired landing point bgy, and a desired dura-
tion of flight after strike Tj,ng. A desired ball outgoing velocity is
then found by solving the boundary value problem for the flight
model (9) with the boundary values

bout(o) = b(t)v
bout(Tland) = bgoal,

for each t. Spin w is assumed to be constant throughout. After-
wards, Vges(t) and nges(t) are calculated by inverting the racket
contact model (16) given the outgoing ball velocities Bout at impact.

In practice, (21) can be solved very fast for each t with a
gradient-based optimizer. The desired outgoing ball velocities for
the sequence of boundary value problems in (21) can be initialized
with the previous solutions. The closed form solution of the ballis-
tic flight model (i.e., zero drag and spin) can be used to initialize
the process.

(21)

4.2. Nonlinear constrained optimization

We briefly show here that the solution q(t) to the optimal con-
trol problem posed in (1) under additional racket constraints (18)-
(20) is a third order polynomial for each degree of freedom, i =
1,...,n
Derivation from minimum principle. Using the minimum principle

for unconstrained inputs u(t) = q(t) € R", the Hamiltonian

H(u, g, %, p) =u'u(t) +1'q+ p'u (22)
for the momenta [A(t), u(t)] € R*" is minimized at
1

u(t) = ‘E"*(”' (23)
Costate equation for the momenta gives

V() =0,

F=0. (24)
RE(E) = —A7(1),
or in other terms, A* = 12a3, u* = —2(6ast + 2a,), for some
constant vectors as, a; € R". Plugging it into (23) we get
q'(t) = 6ast + 2ay, (25)

which shows that the optimal accelerations are linear functions
of time. The joint positions q(t) are then third order polyno-
mials as in (7) with 2n coefficients to be determined using
Nges(T), b(T), vges(T) and free final time T as another variable. The

transversality condition resulting from the boundary constraints
w(q(T), q(T), T) = 0 can be written as

—H(T) T
MT) |=D@"v=[Dr® Dq¥ Dyq¥]v, (26)
m(T)
Ky(q(T)) — b(T)
¥ = | Ku(q(T)) —nges(T) |, (27)
J((T)Q(T) — Vaes(T)

for some v € R°. The necessary condition (26) supplies the addi-
tional 2n — 8 equations to determine all the variables. A nonlinear

equation solver can be used for this purpose. Alternatively, the first
order optimality conditions of the augmented cost function

j(qf’qf7T7 lJ) = WTV +](qf’ qfaT)v (28)

T
I 4. T) = f G (0T (0) dt.
0

T
= / (6ast + 2a,)T(633l’ + 2ay) dt,
0
= 3T%ala; + 3T?ala, + Tala,, (29)
directly satisfy (26) and the boundary equality constraints.

Parameter optimization. The optimal trajectories are third order
polynomials in joint-space for each degree of freedom of the robot,
where the coefficients of the polynomials can be parameterized in
terms of final joint positions qp, final joint velocities q; and hitting
time T. That is, along with the hitting time T as a free parameter,
the optimization problem is 2n + 1 dimensional with nonlinear
equality constraints. The integrand in (1) can be rewritten in terms
of these free parameters and integrated over time as in (29) to form
the following optimization problem
min 37°aja; + 3T%a3a; + Taja, (30)
q5.q5.T
s.t. Kp(qr) = b(T), (31)
Kn(qf) = ndes(T)v (32)
J(qf)qf = Vdes(T)s (33)
Omin =< qr = Qmax; (34)
Qmin = fext = Qmax- (35)

The returning trajectories that bring the robot from striking joint
positions ¢y to the fixed rest position qp in joint space are also taken
as third order polynomials

Qrerrn(t) = 3362 + 3t + @5t + qf, (36)

for a fixed return time Tyes;, 0 < t < Tiesr. The coefficients as, a,
of (36) are as in (8) but with qq, q and ¢, gy reversed

. 2 1 . .
a3 = ——(qr — qo) + ——(qr + qo),
Trest TI’CSt (37)
- 3 1 . .
Q= ——(q —q) - (9o + 2q5).
Trest Trest

The optimization variables gy, qy fully parameterize the returning
polynomials as well as the striking polynomials.

Joint limit satisfaction. Inspired by the simplicity of the Minimum
Principle based solution, the same parameterization can be ex-
tended to the more realistic scenario where joint limits are in-
cluded additionally as inequality constraints in the optimization.
When optimizing (30) the final joint positions q; are enforced
in(34) torespect the joint limits for each component. However, the
whole trajectory, both the striking and returning segments, needs
to respect the joint limits at all times. Third order polynomials can

126 0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137

Algorithm 1 Focused Player (FP)

Require: qo, bgoal? Tiand> Tpreda Trest, N,R
1: Move to initial posture g, qo = 0.
2: loop
3: Query vision sys. for new observation bgps.
4: Observe current state Qcyr, Qeur-
5: if N new ball observations b,p,s then
6: Initialize EKF.
7: end if
8: if EKF is initialized and valid obs. bobs then
9: Estimate position b and vel. b with EKF.

10: Predict b(t) till horizon Tpreq.

11: Compute Vges(t), Nges(t) using racket model
and boundary values by, Tjand-

12: Compute param. g5, g5, T from Qeyr, Geur
using desired resting posture (g, time to
return Tiest, weighting matrix R, and
task constraints b(t), Vges(t), Nges(t).

13 Update strike and return trajectories
qdes(t) = {qstrike(t)s qretum(t)}-

14 end if

15: Track qges(t) with Inv. Dyn. fi="£(qqes, Qdes, Gdes)-

16: end loop

each have at most 2 extrema (e in the interior of their domains,
corresponding to the conditions

Gstrike(t) = 3ast? + 2a5t +qp = 0, (38)
‘lreturn(t) = 353t2 + 252f + qf =0. (39)
Therefore, checking the joint extrema candidates qey in (35) at
times

2 —ayj + ‘/a%’j — 3(13’1‘(']0,]'
U= 3as ’

3 (40)

. G2 V@55 — 33,y
V: = por N

] 3(13,]'

for eachj = 1, ..., n makes sure that the joint limits are satisfied
both for the striking trajectory (at times ul’z) and for the returning

J
trajectory (at times v].3’4). These candidate times are fully param-
eterized by the optimization variables since the coefficients as, a,
(8) and as, a, (36) appearing in (40) can be determined whenever
qy, 4y, T are computed. The values v!? are clamped to the interval
[0, Tprea] and v*? t0 [0, Ties] if they are imaginary or outside their

corresponding intervals.

Online trajectory generation. Using a constrained nonlinear opti-
mizer, the algorithm can be run online whenever there are enough
ball samples N = 12 available to estimate the incoming ball state
and spin reliably. After computing an initial striking trajectory and
starting to move, the trajectories can be corrected online whenever
new ball samples are available.

The full trajectory generation framework and the resulting table
tennis player Focused Player (FP) is summarized in Algorithm 1.
After bringing the robot to a desired initial posture qq, the vision
system is queried (line 3) for new reliable ball observations. The
Extended Kalman Filter (EKF) is initialized (line 6) using the first
N = 12 ball positions. EKF then updates the ball state whenever
new ball observations b,,s are available. The ball state is used
to predict every dt = 2 ms, a discrete set of ball positions and
velocities along the future ball path b(t), up to a horizon of Tpreq =
1.0 s. Desired racket parameters are then computed (line 11) for
eacht = dt, ..., Tyreq, before the optimization for the robot joint
movements is launched. With an optimized implementation, the

optimization (line 12) takes on average 25 ms to find the trajectory
parameters for the Barrett WAM. The optimized implementation
thus makes it possible to implement the approach online in the
robot table tennis setup. See Section 6 for the implementation
details.

The desired landing position bgo, and Tiang are important free
parameters of the algorithm, that can possibly be set by a higher-
level strategy. For instance, a fast playing robot would prefer to set
Tang Tather low, and given an opponent state, a robot that wants
to score a point could profit from adapting the desired landing
position as well. We discuss in the Experiment section the effects
of changing these parameters for the overall returning accuracy of
the Barrett WAM.

The optimization takes place online (line 12) whenever new
reliable ball observations and robot joint sensor recordings qcyr
are available. The desired robot movement can be updated to
accommodate for modeling and control errors. Feasible striking
and return trajectories are then formed or updated (line 13), which
are executed with an existing inverse dynamics controller. In ac-
tual table tennis experiments, we apply high gain PD-control in
addition to inverse dynamics (computed torque). See Section 6 for
more details of how the algorithm runs online in actual robot table
tennis experiments.

For simplicity we have not introduced a weighting matrix in
(30). We include in Algorithm 1 an arbitrary positive definite
weighting matrix R, which can be used to emphasize for each
degree of freedom the difficulty of accelerating that particular
joint.

5. The defensive player

The optimal control problem introduced in (1) can be solved
directly without the additional Cartesian constraints considered
in the previous section. As opposed to fixing a desired landing
point and a desired landing time to satisfy the requirements of a
higher-level strategy, there can be times during table tennis where
it is much more important to safely return the ball. A defensive
table tennis player could relax the previously imposed racket con-
straints (18)-(20) by requiring only that the task constraints (2)-
(4) are satisfied. See Fig. 5 for an illustration.

5.1. Table tennis task constraints

The indoor environment that is modeled contains a standard
ping pong table with coordinates

T={(xy z1)eR’| — 5 <x <4,
Yedge — Ir <y S .Vedge}y

where the origin is placed at the robot base. The table with width
wr = 152 cm and length It = 276 cm is approximately at z; =
—0.89 cm height and placed |yedge| = 115 cm away from the robot
base, see Fig. 1. The racket and the table tennis ball have a radius
of rr &~ 7.6 cm and rg = 2 cm, respectively. The condition for
successful landing can be put succinctly as follows: the ball after
the hit has to pass over the net, below the wall and land on the
opponents court. See Fig. 3 for an illustration.

(41)

Hitting constraint. All possible impacts of the racket with the ball
at time T are captured by the hitting set H

H={(T, o(T), n(T)) e R” | T >0,
0 < n(T)"(B(T) — x(T)) < 13, (42)
IP-(T)(B(T) — x(T))I| < 1z},

0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137 127

where PnL(t) = I—n(t)n"(t)is the projection matrix onto the racket
plane. The hitting function

T
e ((T), T) = (KpngT;g) (43)
K,.(q(T

enforces the kinematic constraints for hitting when @&y (q(T), T) €
H.

Net constraint. When crossing the net at time t, the ball should be
above the net height z,; and below the wall z,y, that is, (t, b(t))
should belong to the set

N = {(Tnet, b(Tnet)) € R* | Ther > O,
by(Tnet) = Ynet = Yedge — %T, (44)
Znet < bz(Thet) < Zwan)-

The net hitting time Ty is calculated by using the ball prediction
functions,

Thee(A(T), 4(T), T) = {t | by(t) = Ynet}- (45)

The net function @, that predicts the future ball position on the
vertical net plane

Tnet

bX(Tnet) (46)
Ynet

bz(Thet)

is then the composition of a ball-racket contact model with the ball
flight model.

Wnet(q(T)v Q(T)» T) =

Landing constraint. The desired condition for landing afterwards
in the opponents court will then be
L = {(Tiand, b(Tiana)) € R* | Tiand > Thet,

bz(Tland) = Zr + 13,

- wTT = bx(Tland) = %»

Ynet — %T < by(Tiand) < Ynet}-

The landing time Tj,nq at which the ball hits the horizontal table
plane, is found using the ball prediction functions

(47)

Tland(q(T)a ('I(T), T) = {t > Tnet| bz(t):ZT + rB}~ (48)

The landing function @,,,q that predicts the future ball position on
the horizontal table plane,

Tland

bx(Tland) , (49)

by(Tland)
Zr + 1

Pland (Q(T)a q(T)7 T) =

is, as before, the composition of a ball-racket contact model with
the ball flight model.

5.2. Nonlinear constrained optimization

We briefly show here that the solution q(t) to the original
optimal control problem posed in (1)-(6), with additional penalties
for landing and hitting, is a third order polynomial for each degree
of freedom, i = 1, ..., n.The penalties for landing and hitting can
be grouped together as ¢pen, where

Bpen = niePnie(dr, T) + QandPrana(dy, G5, T),

nie = (B(T) — 1(T)) P (T)(B(T) — K(T)), (50)
d’land = (b(Tland) - bgoal)T(b(Tland) - bgoal)-
with tunable weights apj and @jang.

Racket constraints

Parameters

Task constraints

Fig. 5. Graphical representation of table tennis interactions. The hybrid system
for the table tennis ball is described by the flight dynamics, governed by a set
of differential equations, as well as a discrete hitting event # that changes the
ball velocity from b(T~) to b(T™) at the hitting time T. The control variables for
the reduced optimization problem are located in the light blue rectangle. Racket
constraints that are enforced by Focused Player to land the ball to a fixed location are
indicated in the red rectangle. Defensive Player on the other hand, directly enforces
the task (landing and net) constraints, located in the orange rectangle, without
additional constraints. By additionally checking for the hitting condition # in the
optimization, this problem can be cast as a (standard) continuous optimal control
problem, where the decision variables gy, qr and T continuously affect the outgoing
ball velocity, the ball net and landing positions, through the repeated application of
the flight model (9) and the contact model (14).

Derivation from minimum principle. The same derivation in Sec-
tion 4.2 applies for the Hamiltonian and the momenta. Instead
of the boundary equality constraints we get the more general
inequality constraints at striking time

T = 0P
—H(T) = .
AN(T) = ai, (51)
aq(T)
M) = o
24(T)’

where the generalized boundary cost is

&(q,q,T,v)= Ppen + v Ystrike (52)

for some Lagrange multipliers v € R'> and @y e < O repre-
senting the hitting, landing and net inequality constraints (2)-(4).
The conditions (51) along with primal feasibility, complementary
slackness and dual feasibility conditions

Wstrike(q(T)v él(T)a T) =< 0,
gl v=0, (53)

strike
v >0,

respectively, supply the additional equations to determine all the
variables. The first order optimality conditions of the augmented
cost function

Jas, a5, T, v) = ®(q7, 45, T, v) + J(q5, qr, T), (54)

directly satisfy (51) and the associated boundary inequality con-
straints.

128 0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137

Parameter optimization. With the same parameterization as in
Focused Player (FP), the cost functional is extended with an addi-
tional penalty term @pen(qy, §r, T) while enforcing the more gen-
eral inequality constraints

min_3T3ala; + 3T2ala, 4+ Talay + Ppen (55)
qr.qr, T

S.t. Wstrike(qfv éIfs T) <0, (56)

Qmin =< qf =< Qmax; (57)

Amin = Fext = Qmax- (58)

The components ¢nd(qys, qr, T) and ¢hic(qs, T) of ¢pen impose
additional penalties on the hitting joint positions and velocities.
Unlike the FP, the joint extrema (ey: are only checked for the
striking trajectory, as the returning trajectory is the result of an
additional optimization.

Resting state optimization. For the DP, we additionally consider a
resting posture optimization to find a more defensive posture for
the robot. By finding a joint resting state q, that minimizes both
the distance from the hitting state q; and the squared Frobenius
norm of the Jacobian at the resting state

gy%—wﬂ%—wnwmmﬁ (59)
s.t.0 <t < Tpred, (
K,(o) = b(t), (61
Amin = qo = qmax, (
(

Omin = Qext = Qmax,

such that the Cartesian resting state intersects the ball path for
somet, 0 <t < Tyed, We can minimize the amount of movement
necessary to return the next incoming ball. The feasibility of the
third order polynomials that goes from hitting state qf, ¢ to
qo. Qo = 0 is ensured by including the joint extrema candidates
throughout the returning trajectory in (63). Including the Frobe-
nius norm of the Jacobian in the cost function makes sure that
the striking trajectories will be easy to generate (i.e., have low
accelerations) for the next predicted ball trajectories near the last
ball trajectory.

Online trajectory generation. The resulting table tennis player is
summarized in pseudocode format in Algorithm 2. As in Algorithm
1, the algorithm can be run online whenever there are enough ball
samples N = 12 available to estimate the incoming ball reliably.
The ball state is used, as before, to predict every dt = 2 ms, a
discrete set of ball positions and velocities along the future ball
path b(t), up to a horizon of Tyeq = 1.0 s. The optimization for
the striking trajectory (line 11) is then launched, which takes on
average 25 ms to find a local optimum for the Barrett WAM. Good
initialization and an optimized implementation make it possible to
implement the approach online in our robot table tennis setup. See
Section 6 for the implementation details.

After computing an initial striking trajectory and starting
to move, the trajectories can be corrected online (line 11-13)
whenever there are new ball samples available. Compared to
Focused Player, the gained flexibility due to relaxed constraints is
increased with the addition of the resting posture optimization
(line 12) that reduces the accelerations of the next hitting move-
ments for similar incoming balls.

Similar to Algorithm 1, we include in Algorithm 2 an arbitrary
positive definite weighting matrix R, which together with the task
weights apir and oyan4, adjusts the weight of a particular degree of
freedom’s accelerations in calculating the total cost (55).

Algorithm 2 Defensive Player (DP)

Require: qo, R, N, Tpreds Qhit, Xland
1: Wait at initial posture qg.

2: loop

3: Query vision sys. for new observation bgps.

4 Observe current state Qcyr, Qeur-

5: if N new ball observations b,p,s then

6: Initialize EKF.

7: end if

8: if EKF is initialized and valid obs. bobs then

9: Estimate position b and vel. b with EKF.

10: Predict b(t) till horizon Tpreq.

11: Compute gy, G, T from qeyr, Geyr using b(t)
and the weights R, apit, ®jang.

12: Update qg using qy, b(t)

13 Update strike and return trajectories
Qdes(t) = {Gstrike(t), Greturn(t)}-

14: end if

15: Track qqes(t) with Inv. Dyn. fi = f(qqes, Qdes, Gdes)-
16: end loop

6. Experiments & evaluations

In this section, we will evaluate the performance of the online
trajectory generation algorithms in simulation and in real robot
table tennis experiments. We first start by comparing the ball
returning performance of Focused Player (FP) in simulation against
the virtual hitting plane (VHP) method.

6.1. Simulation studies

In simulation the performance of the new table tennis players
can be extensively evaluated without robot control or ball predic-
tion errors. We will make controlled experiments to first show that
the player FP outperforms the VHP based player, and can generate
striking trajectories more robustly.

Virtual hitting plane method. The VHP method that we implement
is a close variant of Miilling et al. [3]. In this approach, the spec-
ification of the VHP (see Fig. 6) fixes the hitting time T as well
as the hitting point b(T) for the racket trajectory. The remaining
parameters, the desired racket velocity v4es(T) and the desired
racket normal at hitting time nges(T) are calculated by inverting
the models (9) and (14) at the hitting time T.

To run inverse kinematics (IK) on the desired hitting point, one
needs to additionally specify a desired racket slide [30]. An easy
and convenient way to generate a desired racket slide at hitting
time is to rotate the initial racket slide until the initial racket
normal aligns with the final desired racket normal. This procedure
determines the full orientation of the final robot posture at hitting
time.

After specifying the orientation of the robot at hitting time,
Jacobian pseudoinverse based IK can be run to determine the final
joint positions. IK typically takes less than 2 ms to converge to ;.
Final joint velocities are then found by using the Jacobian at hitting
time J(qy)) and the desired racket velocities

a5 = J'(ar Vaes(T). (64)

The computed parameters q, q; along with the fixed hitting time
T fully determine a third degree polynomial in joint space for
each degree of freedom of the robot i = 1,...,n. The joint
limitations are then checked and the procedure is repeated if the
accelerations are too high. When the ball is coming close to the
robot’s initial posture qq, this complicated IK procedure results in
feasible trajectories if the VHP is chosen appropriately. However, it
is rather inflexible and can easily fail to find good configurations.

0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137 129

Table 2
Results comparing FP and VHP.
Returns Not valid Infeasible Miss/Out
FP 151 24 19 6
VHP 125 24 45 6
-0 VHP1 VHP3

05 -

2
~ 0s 1 - y (m)

x (m) °
-0.5

Fig. 6. For simulating the performance of the virtual hitting plane (VHP) based
method in a fair way, the results are averaged over four different VHP locations.
The first and third plane locations are shown in the figure. Out of 50 balls each,
the VHPaty = —0.7,y = —0.6,y = —0.5,y = —0.4 return 31, 37, 28, 29 balls
respectively.

Comparison with the VHP Method. To make a fair comparison be-
tween the VHP approach and our algorithm FP, in our simulation
environment! the initial ball state variance is fixed such that most
balls end up close to the initial robot posture. This ensures that
a fair evaluation between the two algorithms can be given. Both
methods filter the incoming stream of ball position estimates using
the same Extended Kalman Filter (EKF) and equally start moving
whenever N = 12 balls are detected.

Evaluations are summarized in Table 2. A total of 200 balls are
launched towards the robot in single-ball solo trials from varying
initial positions and velocities, binic ~ N(Ripit, 02 1). The initial
ball mean positions are fixed on the left corner of the opponent’s
court and the initial covariance matrix is diagonal with a standard
deviation of oj,;; = 0.1. Some balls are illegal, for example they
might not bounce on the robot’s court. Such balls are detected with
our ball prediction models and they are not considered for strike
generation. They are marked as Not Valid in Table 2.

Comparing with the VHP method, it can be seen that FP is able
to return more balls to the other side, with 26 more balls returned
to the opponent’s court. One of the main reasons for this increase
in performance is the fixed location of the VHP. Depending on the
incoming ball velocity, trajectories generated using a fixed VHP
can result in joint limit violations or infeasible solutions. A second
reason is the explicit incorporation of joint limits both for the
striking trajectory and the returning trajectory in the optimization
problem. Both cases are included as Infeasible in Table 2. See Fig. 6
for an illustration. Out of 50 balls each, the VHP methods with the

planes fixed aty = —-0.7,y = —06,y = —05,y = —0.4
locations return 31, 37, 28, 29 balls respectively. For this particular
ball distribution, the plane aty = —0.6 seems to be the most robust

option. In terms of landing point accuracy, both methods achieve a
roughly isotropic Gaussian distribution with variance 6> = 0.15m,
with varying desired landing points b, as the mean.

Lookup table. A naive implementation of FP in MATLAB using
Sequential Quadratic Programming (SQP), takes about two seconds
on our system on average. [4] proposed a lookup table as a remedy
to replace online optimization. Whenever a strike computed offline
is successful in returning the ball in simulation, ball positions, ve-
locities at the start of the movement and the optimized parameters

1 Code for the simulation platform as well as a video showing some example tra-
jectories is available in the GitHub repository: https://github.com/RobotLearning/
traj-gen-and- tracking.git.

+Lookup Table
80 4 +Online Optimization
a} 80
£
=} ©
60| & 60 £
° E
3 a0/ 2
401 R =
20 @
X
Offline samples Standard deviation

100 300 500 700 900 0.0 0.1 0.2 0.3

(a) Lookup table performance vs. sam- (b) Performance vs. std. dev. of initial
ple size. ball distribution mean.

Fig. 7. As an alternative to computing the trajectory parameters online, Koc et al.
[4] proposed a lookup table to generate trajectories. Performance of the trajectory
generation framework using a lookup table is shown in blue. Results are averaged
over 5 different runs. As the number of stored lookup table samples increase, the
performance approaches that of the online trajectory generation in (a). However,
as shown in (b), even the performance of a lookup table with 4000 entries degrades
quickly whenever ball position and velocity estimates are not close to the values
stored in the lookup table. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

gy, gy, T can be stored in a lookup table. One can then at runtime
simply lookup the optimized parameters that have the closest
stored ball position and velocity estimates to new ball estimates.
The performance of this lookup table based approach is evaluated
in Fig. 7. The same initial ball distribution with the same p;;;, Ginic
values is used as before. As the number of lookup table samples
increase, the percentage of incoming balls returned successfully
approaches that of the online trajectory generation.

The simple lookup table approach that is employed here corre-
sponds to k-nearest neighbor interpolation with k = 1. Machine
learning based methods that regress between lookup table entries
using more sophisticated approaches are discussed extensively in,
for example, [31].

Online trajectory generation. The lookup table proposed above is
based on a fixed initial posture qo while the robot is at rest,
ie, qo = 0. Its performance degrades whenever filtered ball
positions by and velocities by are not close to the values stored in
the lookup table, or when the initial posture is different. See Fig. 7
for the decrease in performance of a lookup table with 4000 entries,
as the mean of the initial ball distribution, gt ~ N(f;p, 021), is
randomized with increasing variances o-2.

To overcome the shortcomings of a lookup-table based ap-
proach, we implemented the optimizations in C++ with an inter-
face to the simulation environment SL [32].? SL is also our real-
time interface to the robot and runs at a frequency of 500 Hz, termi-
nating any processes that do not finish within 2 milliseconds. It is
mainly responsible for running the inverse dynamics and feedback
control loop computations. To run the optimization online, a thread
separate from the one running the inverse dynamics is launched,
whenever there are reliable ball observations available and another
thread is not running.

We use the NLopt library [33] to run both optimizations. For
the Focused Player (FP), we found that among the nonlinear con-
strained optimization routines, only COBYLA respects the equality
constraints given in (18)-(20). The algorithm COBYLA is a simplex
method implemented in NLopt that uses direct search with linear
approximations [34]. Gradients of the cost function (30) can be
easily calculated and fed to a gradient based solver, but this direct

2 C++ code for the online optimization run in the real-time simulation platform
SL can be found in: https://github.com/RobotLearning/polyoptim.git.

https://github.com/RobotLearning/traj-gen-and-tracking.git
https://github.com/RobotLearning/traj-gen-and-tracking.git
https://github.com/RobotLearning/polyoptim.git

130 0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137

100
[T | 23 Focused Player

80 [Defensive Player
8 1
S 60
g7
g L
2 40 | |
&

20

0 \
0 20 40 60 80

ms

Fig. 8. Histogram of the runtime distributions of the two players, evaluated over 500
random test instances. Both algorithms FP and DP have an average runtime of about
25 ms, but for FP, the distribution is wider. For evaluating DP we have regressed on a
lookup table using k-nearest-neighbor (kNN) regression. Without kNN, the runtime
distribution for DP concentrates sharply around 50 ms.

search routine takes only about 25 ms to converge, i.e., about the
same frequency as the incoming ball observations.

Before the optimization for robot striking movements take
place, the desired outgoing ball velocities and the corresponding
racket parameters Vqes(t), Nges(t) necessary to enforce the equality
constraints (18)-(20) are predicted every 2 ms for 0 < t < Tpreq.
The prediction horizon Tyeq = 1.0 is more than enough, given the
speed of the balls, for the balls to pass the robot workspace. Racket
computations take on average 1-1.5 ms for the whole sequence
of predicted ball states. The discretization of 2 ms is natural, since
the robot control runs at 500 Hz. During the optimization for a
continuous T, the corresponding racket variables (racket desired
positions, velocities and normals) are interpolated linearly be-
tween the discrete predicted values.

For the Defensive Player (DP), the Augmented Lagrangian
(AUGLAG) method is used to convert the problem to an uncon-
strained optimization problem, which is then solved with a Quasi-
Newton algorithm. In this case, only incoming ball positions and
velocities are predicted, again discretized over 2 milliseconds.

Good initialization does not always guarantee faster conver-
gence, but it can help escape bad local minima of the cost functions.
The optimization parameters for FP are first initialized to the rest-
ing posture, qf = qo, ¢f = 0and T = 0.5 s. Whenever the robot is
already moving and corrections are being computed, the parame-
ters are initialized to their previously computed values. For DP, we
initialize by regressing on a lookup table using k-nearest-neighbor
(kNN) regression, with k = 5, to speedup the optimization process.
Fig. 8 shows the runtime distributions of the two algorithms over
500 test instances. In each trial, the ball is launched from different
sides with the same distribution as described before, and the robot
initial posture is also chosen randomly. Both algorithms FP and DP
have approximately an average runtime of 25 ms, but for FP, the
distribution is wider. Without regressing on a lookup table, the
distribution for DP concentrates sharply around 50 ms.

Online corrections. In order to show the performance increase due
to online corrections, we first put Gaussian white noise with o =
0.02 m standard deviation on the ball observations and apply
Extended Kalman Filter (EKF). As the ball approaches, the robot
gets increasingly better estimates of the ball state. Our real-time
simulator runs at 500 Hz, while the ball observation is limited to
60 Hz, limiting the frequency of online corrections. The results
are summarized in Fig. 9(a), averaged over three different ballgun
locations: left, center, and right. The initial pose of the robot is

% 6o 65
60 53
40
27
20
0
FP DP VHP FP DP VHP

(a) Performance under ball ob-
servation noise.

(b) Performance under addi-
tional ball model mismatch.

Fig. 9. Simulation results comparing the return accuracy of three table tennis
players. In (a), ball positions are observed with Gaussian white noise. In (b), there
is an additional mismatch due to unknown topspin. Out of 200 balls, 14 and
12 incoming balls did not bounce legally and were not considered for trajectory
generation, respectively. The other balls that were not counted as returns were
either missed, or did not land legally on the opponent’s court.

placed opposite accordingly, i.e. on the right side of the table if
the ball is coming from the left. Out of 200 balls, 14 incoming
balls did not bounce legally and were not considered for trajectory
generation. The other balls that were not returned successfully
were either missed, or did not land legally on the opponent’s court.
The online optimization is started whenever there are N = 12 ball
samples available. This is enough to ensure that the estimated ball
velocities will not cause robot movements that are far off from
the ball. The solver then continues at a rate of 25 Hz until the
ball appears behind the racket center, i.e.,, b, > r,. Any ball that
suddenly appears on the opponent’s court causes the Kalman Filter
to reset, reinitialized with that ball observation as the initial mean
and with a high variance.

The players that generate trajectories only once are able to re-
turn only very few balls (10 on average) in this mode of evaluation.
Correcting with the VHP method improves the returning perfor-
mance significantly. However, balls that are not feasible for the
robot in the Virtual Hitting Plane intersection cannot be returned
at all with this player. Focused Player (FP) and Defensive Player (DP)
on the other hand, can find and generate feasible movements more
flexibly. FP and VHP methods both return the balls with a roughly
isotropic Gaussian distribution around the center of the table, with
avariance of o2 ; = 0.3m, while the ball landing positions byng of
DP follow roughly a uniform distribution.

As an additional challenge, we also consider the model mis-
match case where there is a very high topspin on the ball, around
3000 revolutions per minute (rpm). EKF assumes a nonspinning
model for the ball, i.e., C; = 0. The solver is run with an increased
rate of 50 Hz to be able to return the balls. The players that generate
trajectories only once are not able to return any balls in this aggres-
sive mode of evaluation. The results are summarized in Fig. 9(b). 12
incoming balls out of 200 did not bounce legally and were not con-
sidered for trajectory generation. As in the previous experiment, FP
and DP correct the trajectories more easily and overall return more
balls. The advantage of DP over FP in this setting is due to the more
flexible returning criterion, as the resting state optimization was
not applied. In terms of landing point accuracy, both algorithms
have similar ball landing distributions as before, but the means
have an offset of 0.3m closer to the other side of the table. The
offset is due to the fact that the racket computations for FP and
the landing point calculations for DP in this case do not assume a
spin model for the ball.

6.2. Real robot table tennis

In this section we describe and discuss our experiments on the
robotic table tennis setup, see Fig. 1.

0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137 131

Description of the setup. Our robot is a seven degree of freedom
Barrett WAM arm that can easily reach 10g m/s? accelerations. It is
torque-controlled and cable-driven. A standard size racket (7.6 cm
radius) is attached to the end-effector. The vision system tracks the
balls at a rate of 60 Hz and consists of four cameras on the corners
on the ceiling. See [35] for platform details. The table and the tennis
balls are standard sized, the balls have a radius of 2 cm, the table
geometry is approximately 276 x 152 x 76 cm.

In the robot experiments, we use a ball-launcher (see Fig. 1) to
throw balls to the robot, approximately once every 2-3 s. The balls
generally come with a high variance, especially the velocities are
quite unpredictable even without oscillating the ball-launcher. The
robot base is at a distance of 115 cm to the end of the table and 95
cm above the table. Robot base is centered with respect to the table
in the x direction, see Fig. 1.

Estimation and outlier detection. The ball detection algorithm de-
tects the center of mass of the orange balls from each image sepa-
rately and fuses them together to form two ball position estimates.
These are then filtered with an Extended Kalman Filter (EKF) to
estimate ball position and velocity.

After the ball-launcher shoots a ball, N = 12 ball observations
are used to initialize the Kalman Filter state and launch the trajec-
tory generation process, see Algorithms 1 and 2. Balls that suddenly
appear on the opponent’s court after disappearing for more than
0.5 s from the cameras cause the Kalman Filter to reset. The filter
state and the ball spin (assumed constant throughout motion) are
then estimated together with a truncated Newton’s method® using
N = 12 ball samples. We have experimentally confirmed the value
of N to be a good compromise between ball estimation accuracy
(which requires waiting) and moving early (which can reduce the
accelerations).

Online correction of computed trajectories. Since the ball is moving
at fast speeds, our online trajectory generation algorithms need
to be on the order of tens of milliseconds, in order to reliably
intercept the incoming ball. The optimizers take on average 25 ms
to converge, and they can be re-run in the real-time platform
whenever there are new reliable ball observations b,,s. Before
launching the trajectory optimizers, the path of the ball is predicted
each time for Tpeg = 1.0 s and the algorithms are initialized
with current joint state estimates qcy,, qcur- The optimizations are
performed in the same way as described in the previous sections.
The only difference is that during the optimization process, the ball
is approaching the robot, hence we subtract the optimization time
Tiun from the computed desired hitting time T before generating
the hitting trajectory, i.e., T < T — Tyyp.

During the correction process, we make sure that the updates
are always incremental and feasible. For completeness, we list here
our software checks. We make sure that:

1. Atleast N = 12 reliable ball observations are available. This
typically happens before the balls pass the net.

2. The new ball estimate is not too far off from the previous
estimates.

3. Our previous optimization thread has terminated before
another one is launched.

4. The resulting Cartesian trajectory intersects with the ball
and all the task constraints are satisfied.

5. The corrections are never excessive, i.e., the acceleration and
joint limits (34) and (35) are always respected.

6. The ball estimate appears to be in front of the robot, i.e., by, <

Ty.

3 The optimization is launched on another thread using the TNEWTON algorithm
in NLopt [33].

0.2

0.18 -
= 0.16
S
C
© oaaf
= I
w N TN
o
@ 012 NS
et
©
=}
o L
& o1
c
©
O 0.08 |
=
0.06 -
0.04 -
0.02 | | | | | | |
0 5 10 15 20 25 30 35 40

Number of observations

Fig. 10. Mean squared prediction error (red curve) is reduced as more balls are
observed. The ball observations are used until contact with racket occurs and the
results are averaged over 100 different real ball trials. Correcting for ball prediction
error is critical for a robust table tennis performance, as the balls typically come
with a high spin. Balls seem to lose some spin after rebound and the prediction
error decreases faster. In this case this phenomenon can be observed after about 25
ball observations, where the change in the average slope of the red curve can be
seen.

If any of these conditions are violated, then the trajectories
are not updated, and the previous striking trajectory is followed
without interruption. The balls come with a high variance in po-
sition and especially in velocity. Typical incoming ball velocities
imparted by the ball-launcher are around 4-6 m/s range in the y-
direction, which implies that in practice there can be a maximum of
10 ball corrections till the ball passes the robot. The ball-launcher
gives in addition a lot of topspin to the ball. This makes the cor-
rections provided by the repeated optimization critical, as the ball
models (9)-(14) are unable to capture some of the aerodynamic
effects due to spin. Fig. 10 shows the decrease in mean squared
prediction error as more ball observations are acquired.

Discussion of results. We compare and evaluate the performance
of the two players FP and DP in the robot table tennis setup, see
Figs. 11-13. Results are averaged over 200 trials where the ball-
launcher is fixed at different positions or is oscillating, and the
robot is placed at three different initial postures. For FP, we also
consider the variation in performance due to selecting different
desired landing positions and landing times. Overall, FP is able to
return about 40-60% of the balls to the opponent’s court. Setting
the desired landing position on the right side of the table, with a
desired landing time of Tj,,q = 0.4 s, leads to the best performance
(~60%) in our table tennis setup. The ball landing distribution
follows roughly an isotropic Gaussian distribution with variance
olfmd = 0.2m and a mean offset of ||tiand — Pgoatll = 0.25m,
see Fig. 12b. Increasing the time and setting the desired landing
position closer to the center of the opponent’s court makes the
player less robust, decreasing the accuracy down to 40—50% and
increasing the variance of the landing locations, see Fig. 12a. We
believe this decrease in the performance is due to inaccuracies in
the racket model.

The Defensive Player (DP) is able to return about 80—90% of
the balls, the performance varying depending on the incoming
balls and the ballgun settings. The gain in accuracy is due to the
increased flexibility of the algorithm, as well as the additional rest-
ing posture optimization which simplifies the task significantly.
The algorithm finds counterintuitive resting postures that lead to

132 0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137

—

FP DP

VHP

Fig. 11. Summary of real robot table tennis experiment results comparing three
table tennis players. Bar plot values show the successful return % averaged over
different starting postures and initial ball positions. The error bars indicate the
standard deviation over a total of 200 trial runs.

smaller movements with less control error, see Fig. 14 for four
consecutive trials of DP. The ball landing distribution in this case
is roughly uniform but shifted to the left side of the table, with
an offset mean of about 0.15m, see Fig. 12c. The duration of the
returning trajectory Ty = 1.0 s for all players. The weighting
matrix R is set to identity and the weights for hitting and landing
penalties are both set to ten: o = 10, ajang = 10.

VHP can return about 10-40% of the balls. The best setting
for the hitting plane location depends strongly on the ballgun
settings, which affect the distribution of the incoming ball. In our
experiments the hitting plane at y = 30 cm in front of the robot
lead to the best performance (~40%). However, the accuracy can
drop down significantly (to 10%) if the ballgun is oscillating, or
the initial ball velocities are not appropriate for the particular VHP
setting. For all three algorithms, without applying any corrections,
the robot is able to hit most balls but cannot return most balls
successfully to the other side (only 5% of the balls are returned).
Applying the corrections about three times, and at least once after
rebound, increases the performance to the indicated values, see
Fig. 11. This indicates that the rebound model chosen might not
be accurate with high topspins that the ballgun imparts to the ball
(around 3000 rpm). Two example trials are shown in Fig. 13. The
deviation from the desired hitting point, shown as an orange dot,
was for the first example within three cm of the racket center,
resulting in a hit. The deviations in the reference velocities are
higher and lead to approximately 10 cm/s difference in Cartesian
space. The successful strike and the landing on the opponent’s

court can be seen in the upper right figure. In the first example,
player FP tries to return the ball to the right side of the opponent’s
court, with a desired landing time of T;,n4 = 0.4 s. The blue dots
are the ball observations acquired from cameras 3 and 4, which
are located on the corners of the ceiling on the robot side. In the
second example (screenshots 3—6), the player DP also returns the
ball successfully, but unlike the other player, DP does not bring
the robot back to the same initial posture. Control errors on the
joint positions and velocities for this example are shown in Fig. 15.
After the desired trajectories are calculated, high gain PD-control
is applied along with an inverse dynamics controller (computed-
torque). The inverse dynamics model is not very precise, but the
feedback with high gains compensates for it well, especially in the
shoulders and the elbow.

7. Conclusion

In this paper we have presented two new algorithms (FP and
DP) for generating table tennis striking trajectories that extend
previous work in table tennis strike movement generation.

7.1. Summary of the contributions

The two table tennis players use an optimal-control based ap-
proach for generating striking trajectories. The striking and re-
turn trajectories are third order polynomials that intercept the
ball at the optimized hitting point at the optimized hitting time.
Unlike previous approaches, our optimization based framework
respects the joint limits, while leading to efficient movements with
low accelerations. Furthermore, by varying the hitting time T the
problem of finding feasible joint trajectories is simplified. Further
constraints can be easily imposed on the system, and we have
considered, for instance, racket constraints for FP and an additional
resting posture optimization for DP.

The optimizations can be run online in the robotic setup shown
in Fig. 1 and given new joint position and ball position mea-
surements, the trajectories can be updated. Correcting for new
ball positions, by repeating optimization, makes our table tennis
players more robust to execution errors and inaccuracies in ball
estimation & prediction. We show the performance of our two
table tennis players in the real robot platform and compare with
previous approaches.

7.2. Outlook & future work

The two players Focused Player and Defensive Player can gener-
ate trajectories more flexibly than before and lead to two different
play-styles which could potentially be utilized by a higher-level
strategy. We believe that this is a promising direction, where a
higher level learning algorithm could switch between different

(a) FP with the desired ball landing location at the
center of the opponent’s court.

right side.

(b) FP with the desired ball landing location at the

(c) DP with a more flexible returning criterion.

Fig. 12. Overall, FP is able to return about 40-60% of the balls to the opponent’s court. Setting the desired landing position on the right side of the table, with a desired
landing time of Tjng = 0.4 s, leads to the best performance (~60%) in our table tennis setup. Some example landing locations are indicated in orange in (b). Setting the
desired landing position closer to the center of the opponent’s court decreases the accuracy down to 40-50%, increasing also the variance of the landing locations, as shown
in (a). DP in (c) with a landing accuracy of 80% has the highest variance in terms of the ball landing locations, as its returning criterion considers the whole opponent’s court.

0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137 133

0 * cameras 1-2

Ay * cameras 3-4
z(m) . *, /- filter
-0.5 | ._.«l(" ? robot des

o o ? © robot act

des
°act
des-hit

-0.5

~ -1
x (m) 1 0.8

-0.2 0.4 \’0'6
y (m)

Fig. 13. Two example table tennis trials recorded in the table tennis setup are shown on the left hand side. The top two screenshots show the Focused Player (FP) in action,
and the bottom four the Defensive Player (DP). Unlike FP, DP does not bring the robot back to the same initial posture (screenshots 3 vs. 6). Successful strike and the valid
landing on the opponent’s court for DP can be seen in the screenshots 4—5. Balls are highlighted with green dashed circles for visibility. The plot in the upper right figure
shows the recordings from the cameras and the robot sensors, corresponding to the hitting movement in screenshots 1 and 2. The blue dots are the ball observations coming
from cameras 3 and 4. The desired Cartesian trajectory is drawn in red, and the actual trajectory, in black. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Fig. 14. Four consecutive lands are shown for the Defensive Player (DP). In each trial,
the arm goes back to a different resting posture.

trajectory generation schemes. The weights and the additional
parameterization for the two algorithms can be explored based on
feedback on the robot’s performance. Reinforcement learning [36]
with rewards based on observed ball landing positions, provides a
suitable framework to tune the proposed algorithms’ performance
online.

Finally, the cost functionals that we have introduced consider
the accelerations as the quantity to be minimized. Whenever the
cancellation in feedback linearization is imperfect due to inac-
curate robot dynamics models, execution errors will prevent the
robot from achieving the desired trajectories or the minimal ac-
celerations. A more robust and adaptive way to include execution
errors in trajectory generation will be considered in future work.

Acknowledgments

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7-
ICT-2013-10) under Grant agreement 610878 (3rdHand). This arti-
cleis based onresults obtained from a project commissioned by the
New Energy and Industrial Technology Development Organization
(NEDO).

2 5
e ow
—desired
0 -5
0 0.5 1 1.5 0 0.5 1 1.5
2 5
0—/\ 0/___’/
2 -5
0 0.5 1 1.5 0 0.5 1 1.5
1 5
Ok/— 0/\//\
wn
ol 0,5 1 1590 0,5 1 15
52 - 010 :
51 \/_ 8 9 \/\
@© o
“0 ©-10
0 0.5 1 1.5 0 0.5 1 1.5
0 10
2T~ O —
-4 -10
0 0.5 1 1.5 0 0.5 1 1.5
0.5 10
-0.5 -10
0 0.5 1 1.5 0 0.5 1 15
2 5
1_/\ 0%’
0 -5
0 0.5 1 1.5 0 0.5 1 1.5
time (s) time (s)

Fig. 15. Tracking errors are shown for each joint. The desired joint positions
and velocities are tracked with a PD controller. The deviation from the desired
hitting point, shown as an orange dot in Fig. 13, was for this example within three
centimeters of the racket center, resulting in a hit.

Appendix A. Parameter estimation

In order to reach successful performance in real robot table
tennis, accurate ball prediction models are needed. For this pur-
pose, we collect data from a human table tennis demonstration
recording and estimate the parameters of the ball models. In these
sessions, we record the ball position observations from the cam-
eras as well as the robot joint angles. A ball-launcher is used to
launch balls with high topspin. The noisy dataset of human table
tennis demonstrations

D = {t;, b, @}, (A1)

134 0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137

%88 o 000 o
0.4 o ¢ ® RECERAN

z (m)

-1 15 2 25 3
y (m)

Fig. A.16. Using Extended Kalman Smoothing (EKS) to estimate the parameters of
the rebound model from actual noisy ball data during a demonstration recording.
Ball observations are acquired from two different sets of cameras on opposite sides
of the table, shown as red and blue circles respectively. They are then smoothened
with the EKS, shown in yellow, to obtain velocity estimates before rebound and just
after rebound. Nonlinear least squares is then used to estimate the rebound model
parameters u; and €. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

consists of N = 90 trials. Each trial i contains M; ball position and
K; joint position recordings sorted by time, i.e.,
bi = (b} qi = (a1}, (A2)
sorted by t; = {t,-j}J'i]. Typically K; > M;, e.g., for the Barrett
WAM, we record the robot joint values with a frequency of 500 Hz,
whereas our vision system outputs ball observations at around
60 Hz.

Whenever the future path of the ball is predicted with the
ball models, the accuracy of the predictions using the rebound
model (10) and the racket contact model (14) clearly depend on
that of the flight model (9). Hence we first start by estimating the
parameters of the flight model using nonlinear least squares (NLS).
We collect the time stamps and the ball positions detected by the
vision system before rebound. The rebound index for each trial i is
estimated as

jnli) = argminb,
J

st — % <b, <, (A.3)

Yedge — Ir < by,-j =< Yedge-

We then use all of the observations until rebound, {(t;, by jb:('l)},
to estimate the parameters g, Cp and C;. This procedure requires
to estimate as well the trial specific topspin parameter, i.e., @ =
(0, 0, w,)" for some topspin value w,, separately for each trial i =
1..., N.We use the flight model with the estimated parameters to
smoothen the ball path before rebound and after rebound. Using an
Extended Kalman Smoother [29], the ball velocities are calculated
before and after rebound, by,, by respectively. NLS is again used
to estimate the rebound parameters u; and ¢;. See Fig. A.16 for an
illustration.

In order to estimate the parameters, i.e., ¥ and ¢, of the ball-
racket interaction model (14) we first use the dataset to esti-
mate the striking times T;. By considering the minimum distance
between the ball samples and the demonstrated Cartesian robot
trajectories

Jn(i) = argmin |[b; — Kpy(qy)ll2,

1 (A4)

Ti & tijy(i),

for each trial i = 1, ..., N we can roughly estimate the striking
times T;. As in estimating the rebound model parameters, the
Extended Kalman Smoother is then used to smoothen the ball
demonstrations before and after the striking time separately. This
procedure results in estimating the incoming and outgoing ball
velocities, biy(T;), bout(T;) as well as the required racket quantities
v(T;), n(T;) at striking times T;. Linear Least Squares is then used
with regularizer A = 0.001 to estimate the coefficients « and

Table A.3

Ball model parameter estimates.
Parameter Description Estimate
Cp Air drag coefficient 0.141 1/m
(@) Lift coefficient 0.001 1/rad
g Gravity —9.802 m/s?
o Coeff. of friction of table 0.102
€ Coef. of restitution of table 0.883
K Coeff. of friction of racket 0.020
& Coeff. of restitution of racket 0.788

O cameras 3 & 4

GO0 0o

2

05) - y (m)

(a) Filtering the noisy and corrupted data acquired from cameras 3 and 4 on
the robot side.

O robust filter
O cameras 1 &2

0000000,
0@ ¢}
Yoo She

*y (m)

(b) Filtering the noisy and corrupted data acquired from cameras 1 and 2
opposite to the robot side.

-1

Fig. B.17. Kalman Filtering with simultaneous outlier detection. The ball detection
algorithm sometimes outputs outliers, typically more as the ball approaches the
racket. Such corrupted data can be identified and discarded using the covariance of
the Kalman Filter.

€r. See Table A.3 for the estimated values of all the ball model
parameters.

An alternative approach would be to estimate all the model
parameters together with a smoothing Expectation-Maximization
(EM) [37] algorithm, yielding additionally covariance estimates for
noisy ball observations.

Appendix B. Robust Kalman Filtering

The ball detection algorithm sometimes outputs outliers, possi-
bly meters away from the actual ball. This typically happens more
as the ball approaches the racket and new ball observations be-
come more valuable. In order to prevent the outliers from ruining
the estimation and the overall performance, we have implemented
a robust EKF that does not perform measurement updates, if the
ball observations lie more than 2 standard deviations away from
the predicted state. See Fig. B.17 for actual table tennis ball data.
We adjust the covariance estimates ¥(t) accordingly to make this
procedure work in practice, e.g., covariances are initialized with
a large X, value and the noise covariances W(t) ~ 1073I are
adjusted to make sure that X(t) decreases suitably over time.

0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137 135

Appendix C. Derivations

We will give a self-contained derivation of the fact that the solu-
tions to the parametric optimization problem (55) are also locally
optimal solutions to (1). The same holds for the solutions of (30)
under the additional racket constraints (18)-(20). First, we start
by deriving the fixed final-time version of the Minimum Principle
(MP) from the Hamilton Jacobi Bellman equation (HJB). Sufficient
continuity of the introduced variables are assumed throughout
to simplify the presentation. The solutions of the following fixed
final-time optimal control problem

(C.1)

T
min/ I(x, u) dt + ¢(x(T)),
ueld 0

s.t.x = f(x, u),

from arbitrary initial conditions are given by the solutions of the
HJB partial differential equation (PDE)

T
min <z(x, o+ VD e mx, r))) + Wé’;’ D_0 (2
V(x, T) = ¢(x(T)). (C.3)

For every state x, V(X, t)is the optimal cost to (C.1) for following the
optimal policy (X, t), also called the value function. MP [26] can be
seen in the smooth case as a solution technique® that reduces (C.2)
to afamily of ordinary differential equations (ODE). Introducing the
momenta p(t) = % and the Hamiltonian H(X, u, p) = I(x,u) +
p(t)Tf(x, u), the HJB equation (C.2) becomes

min H(x(t), u(t), p(t)) + I = 0. (C4)

u(t)

Given an initial condition X(0) = xg € R", solving (C.4) is reduced
to solving a Boundary Value Problem (BVP)

x(t) = f(x(t), u*(t)), (C.5)
V(x,t 1% *
238 (x,)ziiz_aﬂ(x,u ,p), C6)
Jat Ix ox ot 0x
u*(t) = arg muin H(x(t), u(t), p(t)), (C.7)
with prescribed boundary values
x(0) = Xo,
ovV(x, T) 0p(x) (C.8)
p(r) = =)
X x(T) 0X Ix(T)

The state equation (C.5) and the costate equation (C.6) that de-
scribes the evolution of the introduced momenta are 2n first-order
coupled ODEs that can be solved numerically with a BVP solver.

Free final-time. If the final time T is free, the optimal control
problem

T
miTn/ I(x, u) dt + ¢(x(T), T),
u, 0

s.t.x = f(x, u),

(C9)

can be transformed to the standard form (C.1) by using the trans-
formation 7 = Tt

1
min f TI(X, u) + ¢(x(T), T) d,
0

b (C.10)
dx
s.t. — = Tf(x(1), u(r)),
dt
and the associated HJB, similar to (C.4) can be written as
rg%l} (TH(X(t), u(t), p(t)) + ¢(X(T), T)) + 5 = 0. (C11)
u(t),

4 More generally, the solution technique is called the method of characteristics for
hyperbolic PDEs.

In this case, the state and the costate differential equations are
preserved

d

% = f(x(1), u(7)),

i oHxu.p) (C.12)
dr ax ’

while the additional minimization with respectto T in (C.11)yields
an additional time variation to constrain the Hamiltonian
ap(x, T)

oT
The 2n first-order coupled ODEs (C.12) can again be solved numer-
ically with a BVP solver, but with the additional parameterization
T of the boundary values (C.8) that is resolved implicitly through
(C.13).

H(X, u*, p) + =0. (C.13)

Equality constraints. When m equality constraints at final time
T are present rather than a final cost term ¢, the (generalized)
HJB equation (C.2) still holds but the boundary term (C.3) con-
straining the value function is replaced with an equality constraint
w(X(T), T) = 0. The value function is undefined for states violating
the equality constraint at final time, and zero otherwise [38].

Equality constraints at the boundaries do not affect the differ-
ential equations (C.12), they are still valid for t € (0, T). The time
variation (C.13) has to be adapted with the addition of Lagrange
multipliers v € R™

dw(X(T), T) v

H(X, u*, p) + — a1 = 0. (C.14)
This can be combined with the boundary term
dw(x(T), T)'v
p(T)= oy (C.15)
X x(T)
to form the transversality conditions®
T
p(T) aT X

When solving (C.12) starting from Xg, the additional parameters
v € R™and T can be found by solving the nonlinear set of
Egs. (C.16) along with w(x(T), T) = 0.

Inequality constraints. When minequality constraints #(x(T), T) <
0 are present at final time T rather than equalities, the equality
constraints are replaced with the Karush-Kuhn-Tucker (KKT) con-
ditions,

2(x(T), T) =0,
#'(X(T), T)v =0,
v>0.

(C.17)

These are known as primal feasibility, complementary slackness
and dual feasibility conditions, respectively. Transversality condi-
tions (C.16) still hold.

Local & global sufficiency. The state and costate equations (C.12)
along with the transversality conditions (C.16) are only necessary
conditions [26]. Necessary solutions can be strengthened with HJB
to form sufficient conditions for global optimality. Solutions found
with MP are (globally) sufficient if the optimal controls (C.7) satisfy
HJB (C.2) for a continuously differentiable V(x, t) € ¢(R", [0, T]),
which is hard to find for free-time control problems. Sufficient
conditions for local optimality, on the other hand, are easier to
verify, see for example, Chapter 6 of Bryson and Ho [27] or Chapter
5 of Speyer and Jacobson [38].

5 With slight abuse of notation, the derivatives of the boundary term & are
evaluated at optimized T and x(T), which is found by evolving the state equation
till T.

136 0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137

Numerical solution by direct optimization. Numerical integration of
BVP when free-parameters are present can be very difficult and/or
time consuming. An alternative approach suitable for generating
minimum-acceleration trajectories is given in this paper. Inserting
(C.5)-(C.7) into (1), yields for our particular problem Eq. (25).
The integrand of the cost functional, parameterized by the free
parameters as, a,, T (or equivalently, qy, qy, T using Eq. (8)) of the
momenta, is integrated from O to T to form the cost function (30)
of the Focused Player optimization. The Defensive Player optimiza-
tion (55) changes the racket equality constraints to ball landing
inequalities while adding additional penalties ¢pen(qy, qy, T) to the
cost function.

Local optima of the augmented cost functionals (28) and (54)
can be shown to satisfy the remaining necessary conditions for
optimality, namely the transversality conditions (C.16) and (C.17).
Parameterizing the Hamiltonian H and the momenta p at striking
time w.r.t. optimization variables q¢, ¢, T, (C.16) and (C.17) are
consequences of the necessary first order optimality conditions for
Problems (30) and (55), respectively.

References

[1] M. Matsushima, T. Hashimoto, M. Takeuchi, F. Miyazaki, A learning approach

to robotic table tennis, IEEE Trans. Robot. 21 (4) (2005) 767-771.

Y. Huang, D. Xu, M. Tan, H. Su, Adding active learning to LWR for Ping-Pong

playing robot, IEEE Trans. Control Syst. Technol. 21 (4) (2013) 1489-1494.

K. Miilling, J. Kober, J. Peters, A biomimetic approach to robot table tennis,

Adapt. Behav. 19 (5) (2011) 359-376 arXiv:http://adb.sagepub.com/content/

19/5/359.full.pdf+html.

[4] O.Kog, G. Maeda,]. Peters, A new trajectory generation framework in robotic
table tennis, in: 2016 IEEE/RS] International Conference on Intelligent Robots
and Systems, 2016.

[5] J. Billingsley, Robot ping pong, Pract. Comput. (1983).

[6] R.L. Anderson, A Robot Ping-pong Player: Experiment in Real-time Intelligent

Control, MIT Press, Cambridge, MA, USA, 1988.

L. Acosta,]J. Rodrigo, J.A. Mendez, G.N. Marichal, M. Sigut, Ping-pong player

prototype, IEEE Robot. Autom. Mag. 10 (4) (2003) 44-52. http://dx.doi.org/10.

1109/MRA.2003.1256297.

H. Li, H. Wu, L. Loy, K. Khnlenz, O. Ravn, Ping-pong robotics with high-speed

vision system, in: 2012 12th International Conference on Control Automa-

tion Robotics Vision, ICARCV, 2012, pp. 106-111. http://dx.doi.org/10.1109/

ICARCV.2012.6485142.

C.H. Lai, T.L]J. Tsay, Self-learning for a humanoid robotic ping-pong player, Adv.

Robot. 25 (9-10) (2011) 1183-1208. http://dx.doi.org/10.1163/016918611X5

74678.

[10] Z.Yu,Y. Liy, Q. Huang, X. Chen, W. Zhang, J. Li, G. Ma, L. Meng, T. Li, W. Zhang,
Design of a humanoid ping-pong player robot with redundant joints, in: 2013
IEEE International Conference on Robotics and Biomimetics, ROBIO, 2013, pp.
911-916. http://dx.doi.org/10.1109/ROBIO.2013.6739578.

[11] Y.Sun,R.Xiong, Q. Zhuy,]. Wu,]. Chu, Balance motion generation for a humanoid
robot playing table tennis, in: 2011 11th IEEE-RAS International Conference
on Humanoid Robots, 2011, pp. 19-25. http://dx.doi.org/10.1109/Humanoids.
2011.6100826.

[12] R. Xiong, Y. Sun, Q. Zhu, J. Wu, J. Chu, Impedance control and its effects on a
humanoid robot playing table tennis, Int. J. Adv. Robot. Syst. 9 (5) (2012) 178.
http://dx.doi.org/10.5772/51924.

[13] Y. Huang, B. Scholkopf, J. Peters, Learning optimal striking points for a ping-
pong playing robot, in: 2015 IEEE/RS] International Conference on Intelligent
Robots and Systems, IROS, 2015, pp. 4587-4592. http://dx.doi.org/10.1109/
[R0OS.2015.7354030.

[14] A. Nakashima, Y. Ogawa, Y. Kobayashi, Y. Hayakawa, Modeling of rebound
phenomenon of a rigid ball with friction and elastic effects, in: Proceedings
of the 2010 American Control Conference, 2010, pp. 1410-1415. http://dx.doi.
org/10.1109/ACC.2010.5530520.

[15] Y. Huang, D. Xu, M. Tan, H. Su, Trajectory prediction of spinning ball for ping-
pong player robot, in: 2011 IEEE/RS] International Conference on Intelligent
Robots and Systems, 2011, pp. 3434-3439. http://dx.doi.org/10.1109/IROS.
2011.6095044.

[16]]. Glover, L.P. Kaelbling, Tracking the spin on a ping pong ball with the quater-
nion bingham filter, in: IEEE Conference on Robotics and Automation, ICRA,
2014.

[2

[3

[7

[8

[9

[17] Y.Zhang,R.Xiong, Y.Zhao,]. Wang, Real-time spin estimation of ping-pong ball
using its natural brand, IEEE Trans. Instrum. Meas. 64 (8) (2015) 2280-2290. h
ttp://dx.doi.org/10.1109/TIM.2014.2385173.

[18] Y. Zhao, R. Xiong, Y. Zhang, Model based motion state estimation and tra-
jectory prediction of spinning ball for ping-pong robots using expectation-
maximization algorithm, J. Intell. Robot. Syst. 87 (3) (2017) 407-423.

[19] M. Ramanantsoa, A. Durey, Towards a stroke construction model, Int. J. Table
Tennis Sci. 2 (1994) 97-114.

[20] K. Miilling, J. Kober, O. Kroemer,]. Peters, Learning to select and generalize
striking movements in robot table tennis, Int.]. Robot. Res. 32 (3) (2013) 263~
279. http://dx.doi.org/10.1177/0278364912472380.

[21] Y. Huang, D. Biichler, O. Kog, B. Scholkopf, . Peters, Jointly learning trajectory
generation and hitting point prediction in robot table tennis, in: 2016 IEEE-
RAS 16th International Conference on Humanoid Robots (Humanoids), 2016,
pp. 650-655. htp://dx.doi.org/10.1109/HUMANOIDS.2016.7803343.

[22] B.Bduml, O. Birbach, T. Wimbdck, U. Frese, A. Dietrich, G. Hirzinger, Catching
flying balls with a mobile humanoid: System overview and design considera-
tions, in: 2011 11th [EEE-RAS International Conference on Humanoid Robots,
2011, pp. 513-520.

[23] S.Kim, E. Gribovskaya, A. Billard, Learning motion dynamics to catch a moving
object, in: 2010 10th IEEE-RAS International Conference on Humanoid Robots,
2010, pp. 106-111.

[24]].Nakanishi, A. Radulescu, D.J. Braun, S. Vijayakumar, Spatio-temporal stiffness
optimization with switching dynamics, Auton. Robots (2016) 1-19.

[25] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise
Introduction, Princeton University Press, Princeton, NJ, USA, 2011.

[26] L.S.Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Math-
ematical Theory of Optimal Processes, Interscience, 1962 (English translation).

[27] A.E.Bryson, Y.-C. Ho, Applied Optimal Control : Optimization, Estimation, and
Control, Rev. printing., Hemisphere Pub. Corp.; distributed by Halsted Press
Washington, New York, 1975, p. 481.

[28] H. Schittler, U. Ledzewicz, Geometric optimal control : theory, methods and
examples, in: Interdisciplinary Applied Mathematics, Springer, New York, Hei-
delberg, Dordrecht, 2012.

[29] H.W. Sorenson, Kalman Filtering: Theory and Application, IEEE Press, Los
Alamitos, CA, 1985.

[30] M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control, John
Wiley & Sons, Hoboken (NJJ.), 2006.

[31] R.Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, J. Peters, Trajectory
planning for optimal robot catching in real-time, in: 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 3719-3726.

[32] S.Schaal, The SL Simulation and Real-Time Control Software Package,
University of Southern California, 2006.

[33] S.G. Johnson, The nlopt nonlinear-optimization package, 2016, http://ab-
initio.mit.edu/nlopt.

[34] M.].D. Powell, A direct search optimization method that models the objective
and constraint functions by linear interpolation, in: S. Gomez,].-P. Hennart
(Eds.), Advances in Optimization and Numerical Analysis, Springer Nether-
lands, Dordrecht, 1994, pp. 51-67.

[35] C.H. Lampert,]. Peters, Real-time detection of colored objects in multiple
camera streams with off-the-shelf hardware components, J. Real-Time Image
Process. 7 (1) (2012) 31-41.

[36] R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, first ed., MIT
Press, Cambridge, MA, USA, 1998.

[37] RH. Shumway, D.S. Stoffer, An approach to time series smoothing and fore-
casting using the em algorithm, J. Time Series Anal. 3 (4) (1982) 253-264.

[38] J.L. Speyer, D.H. Jacobson, Primer on Optimal Control Theory, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2010.

Okan Kog received his B.S. degrees in Electrical Engineer-
ing and Mathematics from Bogazigi University, Turkey in
2009. He received his M.S. degree in 2013 in Applied Math-
ematics from ETH Ziirich. He is currently a Ph.D. candidate
in Intelligent Autonomous Systems at Technische Univer-
sitdit Darmstadt and working in the Max Planck Institute
for Intelligent Systems, Empirical Inference department
in Tiiebingen. His research interests are in the areas of
optimal control and learning control.

http://refhub.elsevier.com/S0921-8890(17)30616-4/sb1
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb1
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb1
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb2
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb2
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb2
http://arxiv.org/abs/http://adb.sagepub.com/content/19/5/359.full.pdf%2Bhtml
http://arxiv.org/abs/http://adb.sagepub.com/content/19/5/359.full.pdf%2Bhtml
http://arxiv.org/abs/http://adb.sagepub.com/content/19/5/359.full.pdf%2Bhtml
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb5
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb6
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb6
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb6
http://dx.doi.org/10.1109/MRA.2003.1256297
http://dx.doi.org/10.1109/MRA.2003.1256297
http://dx.doi.org/10.1109/MRA.2003.1256297
http://dx.doi.org/10.1109/ICARCV.2012.6485142
http://dx.doi.org/10.1109/ICARCV.2012.6485142
http://dx.doi.org/10.1109/ICARCV.2012.6485142
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1163/016918611X574678
http://dx.doi.org/10.1109/ROBIO.2013.6739578
http://dx.doi.org/10.1109/Humanoids.2011.6100826
http://dx.doi.org/10.1109/Humanoids.2011.6100826
http://dx.doi.org/10.1109/Humanoids.2011.6100826
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.5772/51924
http://dx.doi.org/10.1109/IROS.2015.7354030
http://dx.doi.org/10.1109/IROS.2015.7354030
http://dx.doi.org/10.1109/IROS.2015.7354030
http://dx.doi.org/10.1109/ACC.2010.5530520
http://dx.doi.org/10.1109/ACC.2010.5530520
http://dx.doi.org/10.1109/ACC.2010.5530520
http://dx.doi.org/10.1109/IROS.2011.6095044
http://dx.doi.org/10.1109/IROS.2011.6095044
http://dx.doi.org/10.1109/IROS.2011.6095044
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://dx.doi.org/10.1109/TIM.2014.2385173
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb18
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb18
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb18
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb18
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb18
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb19
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb19
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb19
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/htp://dx.doi.org/10.1109/HUMANOIDS.2016.7803343
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb24
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb24
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb24
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb25
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb25
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb25
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb26
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb26
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb26
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb27
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb27
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb27
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb27
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb27
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb28
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb28
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb28
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb28
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb28
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb29
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb29
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb29
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb30
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb30
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb30
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb32
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb32
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb32
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb34
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb34
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb34
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb34
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb34
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb34
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb34
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb35
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb35
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb35
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb35
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb35
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb36
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb36
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb36
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb37
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb37
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb37
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb38
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb38
http://refhub.elsevier.com/S0921-8890(17)30616-4/sb38

0. Kog et al. / Robotics and Autonomous Systems 105 (2018) 121-137 137

Jan Peters is a full professor (W3) for Intelligent Au-
tonomous Systems at the Computer Science Department
of the Technische Universitdt Darmstadt and at the same
time an adjunct senior research scientist at the Max-
Planck Institute for Intelligent Systems, where he heads
the interdepartmental Robot Learning Group between the
departments of Empirical Inference and Autonomous Mo-
tion. Jan Peters has received a few awards, most notably,

Guilherme Maeda is a research scientist at ATR Compu-
tational Neuroscience Laboratories in the Department of
Brain Robot Interface, Kyoto, Japan. From 2013 to 2017 he
was a team leader at the Intelligent Autonomous Systems
group (IAS) in TU Darmstadt. He has a Ph.D. in robotics
from the Australian Centre for Field Robotics and a masters
in control engineering from the Tokyo Institute of Tech-
nology. His research interests are in robotics, specifically
in control, learning methods for control, and their appli- he has received the Dick Volz Best 2007 US Ph.D. Thesis
cations to physical human-robot interaction and collabo- Runner Up Award, the 2012 Robotics: Science & Systems—
ration. Early Career Spotlight, the 2013 IEEE Robotics & Automa-
tion Society’s Early Career Award, and the 2013 INNS Young Investigator Award.

	Online optimal trajectory generation for robot table tennis
	Introduction
	Related work
	Problem statement
	Background on ball prediction

	The focused player
	Racket constraints
	Nonlinear constrained optimization

	The defensive player
	Table tennis task constraints
	Nonlinear constrained optimization

	Experiments & evaluations
	Simulation studies
	Real robot table tennis

	Conclusion
	Summary of the contributions
	Outlook & future work

	Acknowledgments
	Parameter estimation
	Robust Kalman Filtering
	Derivations
	References

