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1 Abstract

Autonomous car driving is a sophisticated, interdisciplinary topic that consists of various partially inde-

pendent tasks like recognition of the environment, movement control or decision making. It is generally

an interesting topic and is already under research with cars in all sizes. There is also a challenge1 to

compare various attempts on autonomous passenger cars. In this thesis, we are using a low-cost RC

car in combination with a modern microcomputer to build an autonomous low-cost car. In contrast

to prior work, we do all computation on-board, including recognition of the environment and decision

making. This is possible because of new more powerful hardware and novel algorithms for image pro-

cessing. The result is that we did not even use to the full, so there is still spare capacity for extensions

or more complicated tasks, for instance to control a more complex and powerful car in a bigger, catchier

environment.

1 The Darpa Grand Challenge is an international competition to compare driverless cars operating on realistic long distance
routes.
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2 Introduction

Autonomous car driving is the attempt to operate a car intelligent within its environment, controlled by

an on-board or off-board computer. The computer is supposed to navigate at its best through predefined

areas like streets or marked-out routes. To achieve that, sensors like cameras or radar are required to

recognise the environment.

The objective of this thesis is to build such an autonomous car based on a standard low-cost RC car

and replace the original remote control unit by a microcomputer. To perceive the the environment, the

microcomputer will have a webcam attached. The task of this microcomputer is to recognise a target

object and learn how to control the car to drive to this object as visualized in figure 2.1. Consequently

there a two main tasks. First, the microcomputer needs to detect the object and process its position.

Second, it has to learn how to control the car considering its current position. The microcomputer shall

be able to operate autonomously especially without a powerful computer connected that does the tedious

tasks.

Figure 2.1.: Scenario.

The microcomputer that is used is a Raspberry Pi, see figure 3.4. It is a modern credit-card sized

computer, that is very powerful given its size and price1. Of course it cannot keep pace with a modern

desktop PC but they are hard to compare since they have different fields of application. The Raspberry

Pi‘s advantages are its small size and the low power consumption. Therefore, it is a promising platform

for mobile on-board computing.

In contrast to a normal desktop PC, it has 26 general purpose input/output pins (GPIO). Eight do not

have a preallocated purpose but 18 of them are intended for special functions like bus connectors or a

PWM2 signal. Nevertheless, they can be used for any purpose as well. Because of those features, the

Raspberry Pi is well suited for many variable applications.

There was such a high demand after the initial release of the Raspberry Pi that there was a one-per-

customer restriction which has been cancelled in July 20123.

1 The Raspberry Pi Foundation compares the Raspberry Pi with a Pentium 2 PC with 300MHz (www.raspberrypi.org/
faqs).

2 Pulse-width modulation (PWM) is a rectangular pulse wave which can, for instance, be used as clock signal.
3 www.raspberrypi.org/archives/1588
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3 Hardware

The hardware is composed of three parts:

1. Remote-controlled car,

2. Raspberry Pi (including webcam and WLAN adapter),

3. Interlayer.

All components between Raspberry Pi and the car are called interlayer by now. The car as well as the

Raspberry Pi have only connections to the interlayer (see figure 3.1), which transforms and converts the

signals between both of them.

Figure 3.1.: Overview of the hardware elements and their relations.

Compared with an animal the car is like the skeleton and muscles, the interlayer would be the nervous

system and the Raspberry Pi the brain.
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3.1 Car

The car is a market-based toy. It is called Panther Chariot and is probably produced by MATARO1. It

has a non-standard driving behaviour because the front wheels do not work as usual. Instead, the entire

front axle rotates like a propeller of a plane (see figure 3.2).

Figure 3.2.: An illustration of the non-standard driving behaviour.

The car offers two motors and a slot for the batteries. The rear motor is used to drive the rear axle

and, thus, move the car forwards and backwards. The second one is the front motor, which rotates the

entire front axle as visualized in figure 3.2. The front wheels themselves are not driven.

The battery slot is applicable to hold four AA batteries. Each battery provides 1.5V, so all together the

internal battery case provides 6V.

Motors

The motors are standard low cost motors. The front motor has a transmission build into the case, to

support the motor. The transmission is required since the front motor has to raise the entire car when

starting the rotation. Therefore, it needs a high torque and a low rotational speed. Unfortunately, the

motor is not specialized for this use case and has therefore medium torque and rotational speed.

The rear motor has also a transmission but this gearbox is directly attached to the motor (see

figure 3.3). The rear motor does not require a high torque like the front motor does, because it just

pushes the car either direction. That is probably the reason why the gearbox is smaller and directly

attached to the motor.

The electric current flow through a motor can be calculated based on the resistance and the volt-

age. The voltage is known to be 6V and a measurement of the resistance of the front motor resulted

in about 2.3Ω. Using those values, the formula tell us that the front motor has a peak current of

1 www.mataro.co.uk/shop/Panther_chariot_radio_controlled_car.htm
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Figure 3.3.: Below view of the RC car with uncovered rear motor.

I = U
R
= 6V

2.3Ω
≈ 2A. Using this current, the electric power the front motor can take at the maximum

is P = U ∗ I ≈ 6V ∗ 2A≈ 12W .

3.2 Raspberry Pi

As mentioned before, the Raspberry Pi is a modern credit-card sized computer as shown in figure 3.4.

It is comparable in computational power and memory size to a desktop PC 15 years back. It has similar

capabilities but is at the same time much smaller and requires less power.

Model B was released in February 2012 before the lower-cost model A was released in February 2013,

because the expected demand for model A was lower. Model B (revision 2) is the main model which is

more powerful than model A (see table A.1). Both models use the same CPU and GPU, whereby the

CPU uses the ARM architecture. Therefore, the operating system and every program that should run

on the Raspberry Pi has to be compiled to the ARM architecture. The advantage of ARM processors in

comparison to x86 or x86_64 processors is that the ARM instruction set is designed as RISC2, which

means there are less commands but these are executed really fast. In contrast, x86 or x86_64 processors

use a CISC3 instruction set, which provides more and more feature-rich commands but they also need

more time for execution. Additionally, CISC processors internally consist of more transistors since they

need to handle more different commands than RISC processors. Fewer transistors mean less power

consumption and heat and, of course, also result in a lower price.

Both models use the same CPU and GPU. The CPU has 700Mhz and can be overclocked up to 1GHz

without losing the warranty. The main purpose of the GPU is to enable the Raspberry Pi to play 1080p4

videos smoothly and is therefore not used in context of this thesis.

The main difference between both models is the main memory capacity and number of available ports.

Model B is better equipped with 512MB of RAM and, among others, two USB 2.0 and one Ethernet port.

Model A has only 256MB of RAM, one USB 2.0 port but no Ethernet. In return model A has a lower

power consumption than model B. Model B is available in two versions, so called revisions (rev). Rev 1

differs from rev 2 just by its RAM size since it has only 256MB instead of 512MB. Thus, model B rev 1

is comparable with the model A with an additional USB port and Ethernet but also with a higher energy
2 Reduced instruction set computing (RISC).
3 Complex instruction set computing (CISC).
4 1080p is a high-definition video standard with a resolution of 1920x1080 pixels also known as Full HD.
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Figure 3.4.: Raspberry Pi, model B, revision 2.

Source: Paul Beech, Raspberry Pi Foundation, www.raspberrypi.org.

consumption and price. To conclude the advantage of model B rev 2 is to have more main memory and

ports. Model A in contrast requires less energy. See table A.1 for detailed information and table 3.1 for

an illustration of the differences between the models and revisions.

Model A Model B

Rev 1 Rev 2

Ports: − + +

RAM: − − +

Power: + − −

Price: + − −

Table 3.1.: Raspberry Pi models and revisions comparison. (“+” means better, “−” means worse.)

3.2.1 Webcam

The Raspberry Pi needs to determine the current position of the car relative to a target object, in this

context represented by a coffee box. The easiest way to achieve that is using an ordinary webcam. There

are other more sophisticated and more pretentious ways, for instance, the use of a Microsoft Kinect5

camera instead. This would bring some advantages compared with an ordinary webcam, like depth

sensing. At the same time, a Kinect is expensive and does require more power.

The webcam that is used in context of this thesis is a Logitech QuickCam Pro (see figure 3.5(a)). It is

a modern webcam intended to be used for private purposes. In the context of this thesis, it has some

benefits like a good resolution of 2 Megapixels which results in good images. Additionally, it has an

autofocus. This is really important since the car is supposed to be in different positions relative to the

target object. If the camera could not automatically focus the object, the detection range would be a lot

5 A special motion sensing camera initially created for a video game console which has some additional features like depth
sensing.
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(a) Webcam. (b) WLAN adapter.

Figure 3.5.: Webcam and wireless adapter.

smaller. Another simple advantage is the small construction form and the short cable. This is helpful

because the camera has to be mounted on the car without interfering the cars moving parts.

3.2.2 Wireless LAN

A wireless adapter in not mandatory for the task of this thesis. Nevertheless, it makes life a lot easier

because it enables us to be connected to the Raspberry Pi while it is operating. Thereby, it is possible to

get live debugging messages and see what is going on while the car is learning.

Since there are no special requirements to the wireless adapter, it is preferable that it works without

high configuration effort. The TP-Link TL-WN722N USB (see figure 3.5(b)) is a wireless adapter which is

known to work well with the Raspbian operating system (based on Debian Linux, see section 3.2.3). The

adapter is huge in comparison to other wireless adapters but uses an external high gain antenna which

improves signal quality and connection stability.

More about the wireless network and its configuration in section 3.2.3.

3.2.3 Operating System

The Raspberry Pi has no classical hard drive like a desktop PC. Instead it uses a normal SD card for

this purpose. Since the Raspberry Pi is delivered without a SD card, it has no operation system (OS)

installed by default. Nevertheless, there are optimised versions of established Linux distributions such as

Debian6 or Arch Linux7 available. The modified Debian is called called Raspbian.

Debian sees itself as “The Universal Operating System”. In fact, it is very adaptable and used in

different environments for example on desktop PCs and servers as well as on embedded devices such as

NAS (network attached storage).
6 www.debian.org
7 www.archlinux.org
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Raspbian is explicitly recommended at the official Raspberry Pi website8. That is the main reason

why it is used in this context. The current Raspbian (at the time of the installation of the operating

system) was based on Debian wheezy. Wheezy is the official name for Debian 7.0, which is still under

development. One of the new features in Debian wheezy is its official support of armhf. This stands for

ARM architecture with hard-float support.

Hard-float EABI

An embedded application binary interface (EABI) specifies how a software program should work on a

specific hardware architecture. This is done by defining how data types should look like, how specific

functions calls should be done and so on. It also defines hardware characteristics and abilities.

armhf means ARM architecture with hard-float. The opposite of hard-float is soft-float which handles

all floating point operations in software9. Hard-float, by contrast, delegates those operations to the

Floating Point Unit (FPU), which is a lot faster. Of course this requires an FPU, which is not invariably

the case. The Raspberry Pi is equipped with an FPU so it is reasonable to make use of it.

Installation

The installation is straightforward. We only have to download the archive of the operating system and

extract it. In there is a .img file that is a exact copy of a drive. The only thing that needs to be done is

to write this image to the SD card. With Linux this can be achieved by using the program dd as shown

here:

1 $ dd i f =2013−02−09−wheezy−raspbian . img of=/dev/ sdc

if (input file) sets the path to the image file that should be written to of (output file), which is in

this case /dev/sdc. An SD card with at least 4GB of space is advisable. In context of this thesis a 8GB

SD card is used. Unfortunately, the SD card offers only 7.1GB of space. Right after the installation, the

operating system already takes about 1.4GB.

Since Raspbian includes a graphical interface, which is not required for this thesis, it makes sense

to remove those features to free SD card space and decrease the time required to boot. The following

commands also remove some other not required packages and freed about 350MB of SD card space.

1 apt−get purge x11−common l i b g t k * python

2 apt−get autoremove

The fresh booted and idle system takes only about 60MB of main memory. This is mainly used by the

Linux kernel, but there are also some daemons10 running. In addition, some memory is required for the

SSH11 connection, which is used to read those values. The current memory consumption as well as the

total available memory can be retrieved using cat /proc/meminfo:

8 www.raspberrypi.org/downloads
9 The operations are simulated with multiple integer operations.
10 A Unix daemon is a process that runs in background, for example sshd, which is responsible for handling incoming SSH

connections.
11 Secure Shell is one way to login into a remote system.
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1 $ ca t / proc /meminfo
2 MemTotal : 497544 kB
3 MemFree : 439152 kB
4 [ . . . ]

The command cat /proc/cpuinfo outputs some information about the Raspberry Pi:

1 $ ca t / proc / cpuinfo

2 Processor : ARMv6−compatible proces sor rev 7 ( v6l )

3 BogoMIPS : 464.48

4 Features : swp h a l f thumb fa s tmu l t vfp edsp java t l s

5 [ . . . ]

6 Hardware : BCM2708

7 Rev i s ion : 000e

8 S e r i a l : 0000000084bf4902

An important value is Revision in line 7. The Raspberry Pi that is used in this thesis has the value 000e

which means it is a model B, rev 2. Another important value is vfp below Features in line 4. It proves

that the processor has a floating point unit attached.

WLAN

The only device that needs to be configured is the wireless network. The interface is detected au-

tomatically but some additional information is required to automatically connect to a local wireless

network.

Therefore, we need to edit the file /etc/network/interfaces. This is the main network configuration

file in Debian. To automatically enable the wireless interface and connect to the local wireless network,

the following lines have to be added to the interfaces file:

1 auto wlan0

2 i f a c e wlan0 i n e t dhcp

3 wpa−s s i d <network−name>

4 wpa−psk <network−password>

wlan0 is the name of the wireless adapter. Whether it should use DHCP or a static IP address is

specified in line 2. Finally, the SSID of the network and its password are required on lines 3 and 4. This

configuration assumes that the wireless network uses the encryption method WPA or WPA2.

To test the new configuration you can restart the Raspberry Pi‘s network by executing:

1 / e t c / i n i t . d/ networking r e s t a r t

Afterwards, the connection should be established successfully. If so, as from now the Raspberry Pi will

connect automatically to this wireless network while booting.
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3.3 Interlayer

The interlayer are the components that are required to connect the car with the Raspberry Pi. Conse-

quently, the interlayer has two main purposes: Motor control and power supply for the Raspberry Pi.

Motor control means that the high current and voltage signals which are used to power the motors

have to be switched by the low current and voltage signals from the Raspberry Pi. As the second task,

the interlayer has to handle the power supply for the Raspberry Pi since the internal batteries supply 6V

but the Raspberry Pi requires 5V.

3.3.1 Motor Control

The GPIO signals of the Raspberry Pi provide 3.3V with a low current of about 10mA. Since a GPIO

port is not supposed to supply the power for a device, the motors cannot be connected directly to them.

For that reason, a specialized component is required to switch the higher voltage of 6V and current of up

to 2A. The Integrated Circuit (IC) L293D is well suited for that case (see figure 3.6) since it is supposed

to control two motors bidirectionally or four motors monodirectional. Additionally, it has some useful

features integrated:

• Separate logic input to minimize IC voltage dissipation.

• Thermal shut down at overuse.

• Output diodes to suppress inductive currents caused by the motors.

(a) Real image of the L293D. (b) Schematic image of the L293D (by Texas Instru-
ments datasheet).

Figure 3.6.: The integrated circuit L293D used for motor control.

Unfortunately the L293D has also a small disadvantage. The motors can take up to 2A as mentioned

above, but the L293D can only output a peak current of 1.2A and a permanent current of 0.6A. This

causes the motors to run weaker as they technically could.
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Motor control in software

The motors are controlled by changing the values of the regarding GPIOs. This can be achieved by

simple file operations on a virtual file system provided by the Raspbian operating system. This file system

is called sysfs, because it is internally connected with the Linux kernel. Any operation on this file system

is synonymous to an interaction with the Linux kernel. This is similar to a syscall12 but easier to use.

Those operations can also be invoked in a normal console using standard Linux commands as shown

in listing 3.1). To do so, it is important to be logged in as root since those commands need privileged

rights. This is also the reason why the final program has to run as root.

Listing 3.1: Manipulation of the GPIO values using a Linux console.

1 $ echo "17" > / sys / c l a s s / gpio / export

2 $ echo " out " > / sys / c l a s s / gpio / gpio17 / d i r e c t i o n

3 $ echo " 1 " > / sys / c l a s s / gpio / gpio17 / value

The command in line 1 writes the value 17 to the gpio/export file where 17 is the number of the

GPIO that should be exported to the user space. This is required because the Linux kernel separates such

components into the kernel space and user space. Any GPIO is initially owned by the kernel space, so

the Linux kernel controls them. The export process brings the GPIO into the user space by moving the

control ability from kernel spaces to user space. Thereafter, any program can use the exported GPIO, if

it has the corresponding permissions. When the export was successful, a new folder, in this case gpio17,

was created. Within this folder, there are some files to change the properties for this single GPIO pin.

In line 2, the value out is written to one of those newly created files called direction. There are two

possible values that can be written into this file: in and out. in would define the GPIO as an input pin,

which means it would only be possible to read whatever the signal on the GPIO pin is high (+3.3V) or

low (GND). This setting is for instance required if the GPIO is supposed to read the values of a button.

Since no inputs are required in the context of this thesis, we only use the value out, which sets the GPIO

into output mode. Subsequently, it is possible to specify the value of the pin as shown in line 3. There

are two possible values that can be written to the value file within the GPIO folder: 0 and 1. 0 would

drive the pin to electrical GND, which means low and 1 represents high, which would bring it to +3.3V.

Using these GPIO pins, the L293D can be instructed to control the motors. It has two direction inputs

for each motor, those are 1A and 2A or 4A and 3A. In table 3.2 is visualized which inputs result in which

outputs and thereby motor behaviours. If both inputs have the equal value, both corresponding outputs

are equals as well and, for this reason, the connected motor is switched off. If the GPIO values are not

equal, the motor is turned on. In which direction the motor is running is determined by the way the

GPIO values differ.

12 A syscall is how a program communicates with the operating system.
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Input 1 Input 2 Output 1 Output 2 Resulting motor behaviour

0 0 GND GND off

0 1 GND VCC2 on in direction 1

1 0 VCC2 GND on in direction 2

1 1 VCC2 VCC2 off

Table 3.2.: Comparison between inputs and outputs of the L293D. 0 means GND or 0V and 1 means
+3.3V.

Implementation

In code, the motor control is split into two domains. The first one is about setting GPIO values and the

second one handles actual movement commands.

Gp io

+Gpio(int)
+Set(bool): void
+SetFor(int,bool): void

Mot o rCon t r o l le r

+MotorController()
+ExecuteAction(char): bool

uses

The first class is called GPIO. This class is supposed to initialize a GPIO and control its value. It does

exactly what is described above in section Motor control in software. The constructor of this class expects

the desired GPIO number. At the time an instance of this class is created, the GPIO port will be initialized

and set to 0. Afterwards, it is possible to specify the value for this GPIO by using the Set(bool) command

and pass the new value in. Additionally, there is a function SetFor(int,bool) that can be used to change

the value for a period of time. After the given time in milliseconds expires, the value is reset to the value

before calling this function.

The second class MotorController composes GPIO classes to create actual movements. When a new

MotorController instance is created, the constructor will create all required GPIO instances. By then, the

function ExecuteAction(char) can be used to perform predefined movements. All available movements

are shown in table 3.3.

There are four elemental actions, since there are two motors that can run in two directions each.

These actions are "drive forward" or "drive backward" and "rotate the front axle left" or "rotate the

front axle right". There are other actions possible because an action can be aggregated of elemental

actions. Elemental actions do only control one GPIO that is turned on, and after a timespan turned off

again. By contrast, aggregated actions do control more than one GPIO and change the value of those

GPIOs potentially multiple times as shown in table 3.3. They are supposed to perform a more complex

movement. There are four additional actions, and one special action. The additional actions are "go

forward" or "go backward" and at the same time "turn left" or "turn right". This cannot be done just

by starting both motors simultaneously in one direction, because the rear motor would push the car

although the front axle did not move yet due to the fact that the front motor needs a lot more time to

perform its action than the rear motor. Besides of that, both motors must share the available energy

and the shortened energy is not enough for the front motor to operate because it has to lift the entire
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Movement Effect Control

identifier sequence

f Go just forward Rear motor on for 250ms (direction forward)

b Go just backward Rear motor on for 250ms (direction backward)

l Rotate just left Front motor on for 500ms (direction left)

r Rotate just right Front motor on for 500ms (direction right)

L/R Go to the front left/right 1.) Front motor on (direction left/right)

2.) Wait 250ms

3.) Rear motor on for 250ms (direction forward)

4.) Front motor off

5.) Rear motor on for 125ms (direction forward)

K/E Go to the back left/right 1.) Front motor on (direction left/right)

2.) Wait 250ms

3.) Rear motor on for 250ms (direction backward)

4.) Front motor off

5.) Rear motor on for 125ms (direction backward)

0 Do nothing

Table 3.3.: List of available motor control commands.

car. Therefore, the front motor has to start a little bit earlier, so it has a small advance. After the front

axle rotated a little, the rear motor is started to push the car in the specified direction. The result is a

movement that is similar to steering.

Unfortunately, the current angle of the front axle is unknown and cannot be measured by the hardware

that is used in the context of this thesis. This is a problem because, especially the front motor does not

always behave identically. In a unpredictable manner, it sometimes works very well, and in the next

second it is not strong enough to achieve a rotation any more. Besides that, the time needed to perform

a total rotation differs strongly. Also, the front motor works better if it is used recently in comparison to

a cold start. That results in different outcomes after an action was executed. In the best case, all four

wheels touch the ground again. Sad to say, but often the front axle stays bent after an action including

the front motor was executed. This is an issue, the controlling software has to deal with, since there is

no feedback that could be used to determine the current situation.

3.3.2 Power supply

The second job of the interlayer is to provide a stable power supply for the motors and most of all for

the Raspberry Pi. The power source is the internal battery case that holds four AA batteries. Since each

battery provides 1.5V, a total of 6V is available.
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Raspberry Pi

The Raspberry Pi normally gathers its power by its USB port. The USB standard defines a power supply

voltage of 5V (± 0.25V). Unfortunately, the internal batteries provide 6V. Therefore, it is necessary to

regulate the voltage within the interlayer.

There is also another way to power the Raspberry Pi using its static power pins as power input. This

method is not recommend because the USB port has circuit protection components attached that the

static power pins does not have.

There a various different ways how the voltage can be regulated. The following list is not exhausting

but contains some possible methods and an explanation why this method would or would not work in

this context.

Standard Voltage Regulator 7805

A voltage regulator is a basic component that maintains a certain output voltage. These components

are very small and cheap. A 7805 is a standard fixed-output voltage regulator with an output voltage of

5V. Unfortunately, most standard voltage regulators need an input voltage that is at least 2V higher than

the output voltage, which in this case means at least 7V (see A.2). Therefore, the 7805 voltage regulator

cannot be used with an input voltage of 6V.

DC-DC Converter

DC-DC converters have a higher efficiency than voltage regulators. This means, while a voltage regu-

lator simply wastes excessive energy as heat, the converter does not absorb this energy in the first place.

A DC-DC converter is huge and expensive in contrast to a voltage regulator. Therefore, it is not used in

this context, mainly due to its price. Additionally, the size would also be a problem, since the available

space on the car is limited.

Voltage Divider

A voltage divider is a very common method to decrease the voltage. A basic voltage divider is a circuit

of two resistors (R1 and R2) and the load (see figure 3.7(a)). The resistance of each resistor defines the

resulting voltage on the load VL =
R2

R1+R2
∗ VCC .

A voltage divider does not work in the context of this thesis because of various reasons. First of all,

the resistors limit the current that can flow into the load. Since the Raspberry Pi needs a high current,

those resistors must have a low resistance. This would result in a high power consumption through the

resistors.

Another problem is the power source. The actual voltage differs between full and empty batteries

since the power is delivered by batteries. Unfortunately, the voltage would be divided in either case. So

it would be too high on full batteries or too low on empty batteries.

A third problem is that the motors are connected to the batteries as well. Therefore they would pull

down the available voltage while running and, thereby, cut the power supply for the Raspberry Pi. All

together this would be a very wasteful and unreliable power supply.
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(a) Simple voltage divider circuit.
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R1

Raspberry Pi
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(b) Simple Zener diode circuit.

Figure 3.7.: Example circuits with a voltage divider or Zener diode.

Zener Diode
The Zener diode is a special diode that restricts the current flow in one direction but allows the flow

in the opposite direction if a certain breakdown voltage is exceeded. The problem with this component

is that it is too inaccurate. A common Zener diode has a breakdown voltage of 5.1V with a precision of

about 10%. In the worst case this Zener diode would permit a voltage of about 5.6V, which is too high

for the Raspberry Pi and would damage or even break it.

7805 with additional batteries
With two additional batteries there is a total of 6 batteries and, thereby, 9V available for the

7805 voltage regulator. In this case, the 7805 works well but the additional batteries cause new prob-

lems. The car is not build to carry so much equipment and weight. Therefore, the additional battery case

had to be mounted somewhere on the car. Another problem is the weight of the batteries because the

motors, especially the front motor, are already fully stretched with the additional weight by the Rasp-

berry Pi and interlayer. Even more weight would result in even weaker motor responses or no responses

at all.

Low Drop-out Voltage Regulator MIC29300-5
The low drop-out voltage regulator MIC29300-5 has shown to be the best solution for this task. It can

provide a stable 5V signal if it has an input of at least 5.25V with a current of 1.5A which is enough for

the Raspberry Pi and its appliances. If the current is lower, the input voltage can even be lower as well,

for example, if the wireless adapter is removed or a model A Raspberry Pi is used.

The MIC29300-5 is easy to use because it has the TO-220 form factor, hence it has only three pins.

The left one is the input, the middle one is for GND and the third is the output.

The Raspberry Pi has two voltage test points to check the actual on-board voltage while the Rasperry Pi

is running. This is really helpful if the power supply is not reliable yet and the Raspberry Pi does not

work properly. Those test points are labelled TP1 and TP2 as shown in figure A.4.
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3.3.3 Final Wiring

The schema of the entire interlayer is shown in figure 3.8. The interlayer is located in the middle of

the image and on the right is the Raspberry Pi. Left and right of the interlayer are the motors of the

car. On the bottom of the schema is the battery case of the car that holds four AA batteries. This is the

main power source for the entire circuit. Directly behind the power source is a switch that controls the

entire circuit and thereby the power supply for the Raspberry Pi and the motors. Behind the switch is a

capacitor that is supposed to stabilize the power supply for all components.

Figure 3.8.: Schema of the interlayer.

At the lower end of the interlayer is the voltage regulator for the Raspberry Pi. It has three pins which

are connected to VCC and GND. The third one is the output pin that is bound to a capacitor and to a USB

cable that powers the Raspberry Pi. The capacitor is not crucial but makes the power supply more stable.

The Raspberry Pi can also be powered by an external power source to save battery energy. In this case,

the USB cable of the interlayer is unused.
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Enable for the front motor 1,2EN VCC1 power input to minimize
electrical potential dissipation

First direction for the front motor 1A 4A Second direction for the rear motor

First power source for the front mo-
tor

1Y 4Y Second power source for the rear
motor

Common ground
GND GND

Common ground
GND GND

Second power source for the front
motor

2Y 3Y First power source for the rear motor

Second direction for the front motor 2A 3A First direction for the rear motor

Power input (bound to the batteries) VCC2 3,4EN Enable for the rear motor

Table 3.4.: Integrated circuit L293D wiring (motor control).

At the upper end is the motor controlling chip (L293D). It has 16 ports as shown in figure 3.6, and

table 3.4 shows what these ports are supposed to do. This chip can handle either four motors in one

direction or two motors in both directions. Because we need to control two motors in both directions,

the motor enable pins (1,2EN and 3,4EN) are not required and therefore bound to VCC (+6V). If a motor

is running or not, is specified by its two direction pins (1A and 2A or 3A and 4A), see table 3.2. If a

direction pin is set to GND, then its corresponding output is GND as well, for example if 1A is set to GND

then 1Y outputs GND. If 1A would be at +3.3V, 1Y connects though to VCC2, which is directly bound to

the batteries. When both direction pins for one motor have the same value, the motor is either connected

to GND twice or to VCC2. In both cases the motor is turned off.

The first and last two ports are directly bound to the battery. The VCC2 port provides the power that is

used to drive the motors. VCC1 is normally used to minimize the electrical potential dissipation but this

is only required for the enable pins (1,2EN and 3,4EN). Since they are not used in this context, VCC1 and

the enable pins are connected to the batteries just like the main power source VCC2. Finally the Y outputs

are connected to the motors and the A input to the Raspberry Pi.
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4 Object Detection

Object detection is required to determine the car’s position relative to the target object. Images taken

by the webcam are the only input that is available in the context of this thesis. Therefore those images

have to be processed to extract information. That is what object detection is used for. It is supposed to

find the target within the scene. Based on this information it is possible to estimate the position of the

car relative to the target.

The program is written in C++, because it is the standard for embedded and low level programming.

Additionally, C/C++ has many other advantages, for instance:

• It is fast, efficient and mature.

• It is compiled and, therefore, does not need a virtual machine as for instance Java would.

• It is a high-level programming language with low-level support.

• It is statically typed and provides object orientation.

• It is very popular and there are many libraries available.

4.1 Build Environment

The software consists of multiple source files and has some dependencies like the OpenCV library

which is used for image processing. To make building the software as simple as possible, a program like

CMake1 is required. It manages the build process by creating the necessary Makefiles for the standard

C/C++ compiler2. Roughly speaking, those Makefiles describe what the compiler should do and what it

will need to do that.

Another advantage of CMake is its platform independence. This means it makes it is possible to

compile the program on a desktop PC to check for any syntax errors before starting the compilation

process on the Raspberry Pi. This helps a lot since the compilation takes some time, especially on the

Raspberry Pi.

Listing 4.1: CMake file (extract).
1 f ind_package ( OpenCV REQUIRED )
2 add_executable ( ReinforcementPi
3 s r c /main . cpp
4 [ . . . ]
5 )
6 t a r g e t _ l i n k _ l i b r a r i e s ( ReinforcementPi ${OpenCV_LIBS} )

Listing 4.1 shows an extract of the CMakeLists.txt file. Lines 1 and 6 tell CMake that the OpenCV

library is required for this build and the resulting ReinforcementPi binary has to be linked against it.
1 www.cmake.org
2 A compiler is a program that translates the human readable source code into executable code.
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Line 2 tells CMake what the name of the resulting binary should be. The source files, which should

actually be compiled, are added in line 3 and below.

4.2 OpenCV

OpenCV3 (Open Source Computer Vision) is an open source library mainly developed by Intel4 and

Willow Garage5. It is licensed under the BSD license and available for C/C++ programming language,

but also for some others like Python.

The following command will install the library including their development files:

1 $ sudo apt−get i n s t a l l l i b cv−dev l ibopencv−dev

This needs about 170MB of space and will take a while to install because it has many dependencies.

4.2.1 Getting a Picture

Now, gathering a picture is pretty easy, at least in theory. There are two different ways to receive an

image as shown in listing 4.2.

Listing 4.2: Ways of capturing an image with OpenCV.

1 cv : : VideoCapture * capture = new cv : : VideoCapture (0 ) ; // 0 −> d e f a u l t webcam

2 cv : : Mat frame ;

3

4 /** P o s s i b i l i t y 1 **/

5 bool readSuccess = capture−>read ( frame ) ;

6 // or

7 * capture >> frame ;

8

9 /** P o s s i b i l i t y 2 **/

10 bool grabSuccess = capture−>grab ( ) ;

11 bool r e t r i e v e S u c c e s s = capture−>r e t r i e v e ( frame ) ;

First of all, the webcam is opened by creating a new instance of the cv::VideoCapture class with 0

as the only parameter. By the time the camera gets opened, the first error type VIDIOC_QUERYMENU is

displayed as shown in listing 4.3. Those errors are not critical since the program execution continues

without further errors of this type. In line 2, a new cv::Mat is being created. This is the place where the

new image will be stored. cv::Mat is a matrix datatype that is provided by OpenCV. Lines 5 and 7 show a

possibility to get an image. Both lines are equivalent, with the small difference that the first one returns

a bool value, which should be false if no image was grabbed. Those functions do internally call the grab

and retrieve functions as shown in possibility 2 in lines 10 and 11. If they are called individually, each

function returns a bool value that should indicate whether any problems occurred or not. Unfortunately,

3 www.opencv.org
4 www.intel.com
5 www.willowgarage.com
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this does not work. grabSuccess, retrieveSuccess and readSuccess are always true, regardless of

an image was grabbed or not. This behaviour is probably caused by the problem that also triggers the

VIDIOC_QUERYMENU errors. Each time, no image could be grabbed, a “select timeout” error occurs as

shown in listing 4.3.

Listing 4.3: Errors while initializing the camera and grabbing an image.

1 $ . / ReinforcementPi

2 VIDIOC_QUERYMENU: I n v a l i d argument

3 [ . . . repeated 20 t imes . . . ]

4 VIDIOC_QUERYMENU: I n v a l i d argument

5 s e l e c t t imeout

6 s e l e c t t imeout

7 [ . . . ]

It is easy to handle the “select timeout” errors by checking each image for its range of minimum

and maximum brightness values. If they are equal, an invalid image was returned.

Unfortunately there is another odd behaviour. The first image that is not just black contains nothing

but noise. Comparing the minimum and maximum brightness does not work either, because its darkest

value is pure black and its brightest is pure white. This image is probably delivered from an internal

uninitialized buffer. To avoid this problem, this image has to be dropped while initializing the camera.

The buffer causes another problem. It seems to hold four images. In case a new image shall be

grabbed, the oldest image within the buffer is actually returned and the free slot within the buffer is

filled with a new image based on the FIFO (First In, First Out) strategy. The actual returned image is

potentially no longer up to date since it was taken in the past and then stored in the buffer.

In the context of this thesis this behaviour is very problematically. The learning algorithm requires

current images of the environment because all decisions are made based the the current environments

state. The upcoming actions that will be chosen are suboptimal if the processed image does not show the

actual state. To handle this issue, each time an image shall be taken, actually five images are grabbed

but the first four images are dropped immediately and only the last image is going to be forwarded.

Implementation

There is a special class, called Camera that gathers all those workarounds and abstracts from those

problems to make further coding easier.

Cam er a

+Camera()
+~Camera()
+SetResolution(int,int): void
+GetFrame(cv::Mat&,int): void

As visualized, the Camera class has a constructor and destructor (Camera() and ~Camera()). The

constructor opens and prepares the camera. Thereafter, it adjusts the resolution of the camera and

rejects the first image since this is the noisy one. The destructor releases the camera again to make sure
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it is not locked although the program itself terminated already. The function SetResolution is used to

change the resolution and, thereby, the resolution of the future images. The parameters are used to pass

in the desired width and height.

The most important function is the last one. It is used to read a current image from the camera and

store it in a given reference to an OpenCV matrix object (cv::Mat). This function drops four images

and returns the fifth to make sure the image is up to date and it also checks the brightness values. All

images returned by this function are valid and current images. The second parameter is used to specify

the desired color space. In the context of this thesis, this function is only used with the parameter

CV_RGB2GRAY so the image will be transformed into gray scale.

4.2.2 SURF

The object detection algorithm that is used in this thesis is called SURF (Speeded Up Robust Fea-

tures). SURF was published by Herbert Bay et al. in 2006 and is an improvement of the widely used

SIFT (Scale-invariant feature transform) method, which was published in 1999. The authors of SURF

claim it to be faster and more robust than the existing methods. “SURF approximates or even outper-

forms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can

be computed and compared much faster.”6 Another paper by Luo Juan and Oubong Gwun compared

SIFT and SURF with a similar result:

“SIFT is slow and not good at illumination changes, while it is invariant to rotation, scale

changes and affine transformations. SURF is fast and has good performance as the same as

SIFT, but it is not stable to rotation and illumination changes.” Juan and Gwun (2010)

Since the resources of the Raspberry Pi are limited and object detection is a very frequent task, SURF is

the better choice in contrast to SIFT. The rotation weakness compared to SIFT does not matter so much,

because the object within the scene is always at the same angle and does not rotate.

SURF is patented in the US7 but can be freely used for educational, research and non-commercial

purposes if this copyright notice is passed on. OpenCV, which is licensed under the BSD license, includes

a rewritten SURF implementation that is used in context of this thesis. Anyway, the entire SURF license

is attached to this thesis to make sure no licenses are disregarded (see appendix A.5).

SURF can detect the position of a predefined object within a scene. The object and scene are given

as standard monochrome images. As mentioned, rotation, scale and affine transformations do not affect

the detection result, at least in theory. To achieve that, SURF is divided into three main steps which are

executed on the object image as well as on the scene image:

1. Detection of important points so called interest points

“The search for discrete image point correspondences can be divided into three main steps. First,

‘interest points’ are selected at distinctive locations in the image, such as corners, blobs, and T-

junctions. The most valuable property of an interest point detector is its repeatability. The

repeatability expresses the reliability of a detector for finding the same physical interest points

under different viewing conditions.” Bay et al. (2008)
6 See Bay et al. (2008).
7 Patent number: US2009238460
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2. Description of the detected interest points using their neighbourhood

“Next, the neighbourhood of every interest point is represented by a feature vector. This descriptor

has to be distinctive and at the same time robust to noise, detection displacements and geometric

and photometric deformations.” Bay et al. (2008)

3. Matching of the descriptors between object and scene images

(a) Object image. (b) Scene image. (c) Enlargement of the
object within the scene
image.

(d) Matches between object and scene image. (e) Detected object corners within the scene.

Figure 4.1.: SURF object detection example.

Figure 4.1 is a visualisation of those steps. Image 4.1(a) shows the real object image. This is the

exact image that is also used by Raspberry Pi to detect the target. All images here are colored for

demonstration purposes although the SURF algorithm operates only on monochrome images. Images

4.1(a) and 4.1(b) show the interest points that were found by step 1 of the SURF algorithm. Image

4.1(c) is an enlargement of the object in image 4.1(b). The shape of the interest points in those images

is similar. Smooth surfaces like the background in the scene image do not have interest points because

there are no corners or edges.

Step 2 is not visualised here because it is just an internal step.
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Image 4.1(d) demonstrates step 3. All matching interest points between object image and scene image

are connected by a line. Remarkably many lines link between object image and the actual object in the

scene.

Finally the algorithm returns four points, that describe the position of the located object as visualized

in image 4.1(e).

Based on the detected corners of the object, it is possible to calculate the geometrical area, the center

point of the object and the angle at which the observer looks at the object (see A.6 for examples). The

area is a measure for the distance to the object. The closer the car gets, the bigger is the area of the object

within the scene. Therefore, the learning algorithm needs to maximize the area. The second inducible

value is the position of the object within the scene image. This calculation is done based on the center

point of the detected object. With this center point it is possible to determine the horizontal deviation

within the scene.

Since the target object is fixed in context of this thesis, the image of this object does not change as

well. Therefore steps 1 and 2 are only executed once for the object image to save computational effort.

For each new scene image, all three steps are executed whereby the precomputed values of the object

image will be used in step 3.

Implementation

There is a specialized class in the source code of this thesis to abstract from these three steps and

automatically compute the values for the object image. This class is called TargetDetector since it is

supposed to detect the target object.

Cam er a

+Camerah)
+~Camerah)
+SetResolutionhint,int):Avoid
+GetFramehcv::MatT,int):Avoid

<<abstract>>

ITargetDetector
+CalculateAreahstd::vector<cv::Point2f>T):Aint
+CalculateCenterhstd::vector<cv::Point2f>T):Acv::Point2f
+CalculateAnglehstd::vector<cv::Point2f>T):Afloat
+<<virtual>>ADetectStateh):Astate

uses

Tar ge t Det ect o r

+TargetDetectorhCamera*,char*)
+DetectStateh):Astate
+GetCamerah):ACameraT

TargetDetector is a class that inherits by the abstract class ITargetDetector. The super class

ITargetDetector is abstract. That means, it is not possible to instantiate this class because it defines

an abstract function, in this case DetectState(). This function is just declared, but not implemented.

That is why any child class has to implement this function or needs to be abstract as well. Additionally,

ITargetDetector offers some common functions to calculate the area, center point and angle of the

detected object based on the corner points of the object within the scene.
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The list of corner points looks like C = (c1, c2, . . . , ci) where each point is a tuple of x and y values

(see figure 4.2). Usually this list is of size 4 since there are exactly 4 object corners. Nevertheless,

CalculateArea() and CalculateCenter() work with any number of corners if |C |> 1 is satisfied.

CalculateArea(C) =
1

2

|C |
∑

i=2

|x i−1 yi − yi−1 x i| where ci = (x i, yi)

CalculateCenter(C) = (
1

|C |

∑

(x ,y)∈C

x ,
1

|C |

∑

(x ,y)∈C

y)

Figure 4.2.: Functionality of common functions CalculateArea and CalculateCenter of class
ITargetDetector.

The TargetDetector class requires an instance of the Camera class and a char array or in other words

a string. The Camera instance is used to gather new images each time DetectState() is called. The

char array is supposed to be the path to the object image. This image is only required once because the

constructor executes the SURF steps 1 and 2 on the given image and keeps the result for future use.

The function DetectState() is the main function of this class. It gathers a new scene image and

executes all SURF steps with the use of the previously stored results of the object image. When the

object is detected within the scene, four points are returned, which describe the border of the object (see

image 4.1(e)). The new state can be calculated from that, by the help of the common methods provided

by the ITargetDetector class (see figure 4.2).

The state space is defined by the set {(area, direction)} ⊆ N×Z. States are implemented as a structure

composed of two variables, area and direction, see listing 4.4. Furthermore, each state knows whether it

is a final state (line 5), and can calculate the reward respecting its previous state (line 6). A state is a

final state if its area value exceeds a predefined threshold.

Listing 4.4: Snippet of the state structure.

1 s t ruc t s t a t e {

2 in t area ;

3 in t d i r e c t i o n ;

4

5 bool I s F i n a l S t a t e () const [ . . . ]

6 in t Reward( const s t a t e l a s t _ s t a t e ) const [ . . . ]

7 [ . . . ]

8 } ;

The mapping from the detected objects position and size to a state instance is done in the func-

tion DetectState() of class TargetDetector. The area value of the state is calculated using the
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equation 4.1, whereby the function CalculateArea() is used to calculate the geometrical area of the

detected object within the scene.

area=

&r

CalculateArea()
1000

'

∈ N (4.1)

The square root is required to maintain equal distances between different area ranges. This is visual-

ized in figure 4.3. Both plots show the geometrical area of the detected object based on the formula

A= width ∗ height, whereby the x-axis shows the width of the object and the y-axis shows the height.

The contours separate the geometrical area space into 15 steps. Based on the non-linear growth of the

geometrical area, the contours of the naive approach width ∗ height ∗ 10−3 in the left plot are unequally.

The right plot shows the same calculation but with an additional square root
p

width ∗ height ∗ 10−3.

With that, the contours are consistent.

Figure 4.3.: Comparison between geometric area of detected object and calculated state area value.

The effect of equal area sizes is that the states magnitudes are comparable, regardless of whether the

car is close to the target or far away. Without the square root, there would be more states close to the

target and those would be smaller than states further away.

The direction is calculated by using just the x-coordinate of the center point of the detected object,

as shown in equation 4.2. The y-coordinate does not matter, since the car cannot move within this

dimension. 1
2
CAM_IMAGE_WIDTH is the center of the scene in x-direction. If the center point of the

detected object is exactly at this position, the resulting direction is 0. The deviation from the center of

the scene is divided by 100 to reduce the number of possible states and to increase the tolerance for

detection deviations.

28



(x , y) = CalculateCenter()

direction=

$

x − 1
2
CAM_IMAGE_WIDTH

100

%

(4.2)

where CAM_IMAGE_WIDTH is the width in pixels of the scene image

Target object

The target object in this thesis is an ordinary coffee bag. The coffee bag has some advantages in this

context, because it

• has a good size,

• is easy to set up since you just place it on the ground,

• will not fall over if the car drives against it,

• is well suited to be detected by the SURF algorithm.

The advantages for the SURF algorithm are that it is not too small and, within its cover, it has a lot edges

and corners. In other words, it has many possible interest points. The color of the object does not matter

since SURF only works on monochrome images.

Problems

Noisy images
Since images taken by the webcam are noisy8, the position and size of the detected object varies.

Unfortunately, the detected points differ even if neither the camera nor the object was moved (see

figure A.6 for examples). Those differences increase with increasing distance to the object. In other

words, the detection quality decreases with increasing distance.

Image size
The SURF algorithm works better with increasing image resolutions, but bigger images also require

more memory and the computational effort increases rapidly. A resolution of 640x480 pixels has shown

to be a good compromise, although a higher resolution would result in less object detection errors and a

increased operational range of the car.

8 There are some techniques to reduce this noise like blurring or bilateral filtering, see section A.2.2.
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5 Reinforcement Learning

Reinforcement learning is an effort to copy how animal learn. Especially young animals learn by

interacting with their environment and judge the result, so called trial-and-error learning. Reinforcement

learning tries to imitate this behaviour to some extent.

“Reinforcement learning is learning what to do–how to map situations to actions–so as to

maximize a numerical reward signal. The learner is not told which actions to take, as in most

forms of machine learning, but instead must discover which actions yield the most reward

by trying them. In the most interesting and challenging cases, actions may affect not only

the immediate reward but also the next situation and, through that, all subsequent rewards.”

Sutton and Barto (1998), p. 4

The scenario was that the car is placed somewhere in front of the target object and the Raspebrry Pi

can perceive this object by its webcam. With this information it is supposed to learn how to control the

motors correctly to drive towards the object.

As from now the car, Raspberry Pi and all its components are called agent. The agent’s task is to

interact with its environment. The environment is, in this case, limited to the surface the car stands on

and the target object. Mathematically speaking, the environment has only two dimensions since the

agent can just move forth and back, left and right but not up and down.

The interaction between agent and environment is restricted as shown in figure 5.1. The environments

current condition is modelled as a state it is in. The agent chooses actions considering the current state.

Not all actions must be available in any state, so there could be a case where there is a state that has

only a subset of actions available. An action can potentially modify the environment and thereby result

in a state change.

Executing an action produces a numerical reward that is a measure of the actions quality in connection

with the state it was invoked in and the state the agent ended up after the action was executed.

Figure 5.1.: Agent-environment interaction.

Source: R. S. Sutton and A. G. Barto (1998). Reinforcement Learning: An Introduction. MIT Press, p. 44

The current state is the only information that is available to the learning process about its environment,

at any point in time. Therefore, it is important that the state contains all important information about

the current condition of the environment.
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5.1 Components

A reinforcement learning model is build of these main components:

• States

Set S of states the agent and environment can be in.

• Actions

Set A of actions the agent can invoke. This set can be restricted depending on the current state.

• Rewards

A function that provides numerical rewards for state transitions. It is used to estimate the quality

of action a in state s based on the state change it causes.

• State Values

The value map memorize what outcomes an agent expects for given states.

• Policy

A policy is a structure that maps states to actions. Roughly speaking, it defines what action to take

in a specific state.

• Model (optional)

A model of the environment and agent predicts the new state s′ when action a is invoked in state s.

The model can be probabilistic or unavailable.

5.1.1 States

The only variable element in this scenario is the agent itself, because the environment does not change,

but the agent can move within the environment by invoking actions. The agent can perceive its position

relative to the target that is detected using the object detection. The state that is perceived by the object

detection is actually the state that is also used in the learning algorithm. There are other imaginable

inputs as well, for instance the current rotation angle of the front axle which can, unfortunately, not be

measured with the current hardware set up. The only input in this thesis is the image that was taken by

the webcam and processed with the object detection module, see section 4.2.2 for more information.

The state is a tuple composed of two values and can be written like (area, direction):

• area

A measure for distance to the target. If the car get closer to the target, the size (area) of the target

object increases within the scene taken by the webcam. If it departs, the size of the object decreases

as well. Therefore, a larger area value means the agent is closer to the target.

• direction

A measure for the viewing direction (left-right-deviation) of the car relative to the target object.

Theoretically, there is also a third value describing the viewing angle. This value can be calculated but

due to noise in images taken by the webcam this value is too inaccurate to be useful.
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The state space in this case is finite due to the capabilities of the webcam. The target cannot be detected

if the agent is too far away. Therefore, the area the agent can operate in, is limited backwards. In the

front, the operational area is limited because the agent can only reach its target or miss it. Missing would

result in the special state (0,0) that is used if the target could not be detected any more. Furthermore,

the operational area is also limited to the sides because the webcam does not perceive the target object,

if the car drove to far either left or right or it rotated on the spot. In this case, the same special state is

used as mentioned above.

State (0,0) is used as the special state since it represents the situation where there is no information

about the position of the agent relative to the target because the agent cannot perceive the target any

more. Getting into this state should be avoided by the agent.

The set of states can be accurately described by:

S ⊂ N×Z

S = {(a, d) : a ∈ [1, 16] and d ∈ [−4,4]} ∪ {(0, 0)},

where a is the area of or distance to the target and d the direction.

5.1.2 Actions

Due to the hardware constraints, there are four elemental actions like forward, backward, rotate left

and right and four aggregated actions like go forward or backward and steer left or right. For a detailed

explanation see section 3.3.1. Finally, there is a last action that just does nothing.

The set of actions is in the context of this thesis defined by A= {f,b,l,r,L,R,K,E,0}. This set could be

restricted depending on the current state. This is not done in this context since the agent cannot harm

itself or anything within its environment. Besides that, it is more interesting to see that the agent learns

what actions are useless in which states instead of manually specifying that.

5.1.3 Rewards

A reward is a numerical value that compares two states with another. This is crucial for learning

because this is the feedback the agent gets after executing an action. After the execution of an action,

the environment can potentially be in a different state s′, but that is not compelling. A reward is also

gained if s = s′. The reward is calculated based on the old and new state, not on the action.

Most of the time, the reward an agent receives is negative since only final states do have a positive

reward. This is called delayed rewards because previous states give a negative reward although they are

maybe a good step on the way to a final state. That last transition into the final state will receive a

positive reward. Therefore, that positive reward has to be back-propagated to the previous states.

The scenario that is handled by this thesis encloses delayed rewards as well, because all non-final

states are technically the same and will have a negative reward. The final state, just in front of the

target, will have a positive reward that needs to be back-propagated to previous states.
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5.2 Markov Decision Process

A reinforcement learning problem is a Markov decision process (MDP) if the Markov property holds.

The Markov property requires, that the transition probability of action a to lead to state s′, when invoked

in state s, depends only on the state s, and not on any previous state. In other words, it does not matter

how the agent got into state s to specify the probability that an action a leads to state s′ when invoked

in state s.

To achieve that, it is important that a state instance contains all modifiable elements of the agent and

environment. If not so, previous states could have changed one of those unrepresented elements, which

results in a different behaviour in a future state. Thus, this elements are not negligible and hurt the

Markov property.

“Note that although both transitions and rewards may be probabilistic, they depend only

upon the current state and the current action: there is no further dependence on previous

states, actions, or rewards. This is the Markov property. This property is crucial: it means that

the current state of the system is all the information that is needed to decide what action to

take–knowledge of the current state makes it unnecessary to know about the system’s

past.” Watkins (1989), p. 39

All in all, the Markov property demands that the entire configuration of the agent and environment is

fully represented by any state.

5.3 Q-Learning

The learning algorithm that is used in the context of this thesis is called Q-Learning, which is a model-

free Temporal-Difference (TD) algorithm. TD learning methods combine the ideas behind Monte Carlo

and dynamic programming methods. Therefore, a Q-Learning algorithm does not need a model just like

Monte Carlo methods. Furthermore, TD methods update the state value directly after each step like

dynamic programming methods.

Q-Learning does only work with MDP’s, because all values are calculated based on the current state.

Therefore, each state instance must represent the entire configuration of the agent and environment.

The basic Q-Learning update is defined by:

Q′(s, a)← Q(s, a)
︸ ︷︷ ︸

old value

+α











r(s, s′) + γmax
a

Q(s′, a)
︸ ︷︷ ︸

learned value

−Q(s, a)
︸ ︷︷ ︸

old value











(5.1)

As shown in equation 5.1, a Q-Learning update consists of the old Q-value and a learned value. The

learned value is the sum of the reward r(s, s′) the latest action received, and the expected future value

maxa Q(s′, a) based on the new state s′. Since the Q-value is supposed to converge to the optimal value,

the old value needs to be subtracted from the learned value. There are two variables in this equation to

fine-tune Q-Learning updates:
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• Learning rate α

The learning rate specifies how strong an update alters the existing Q value. With a learning rate

value close to 1, the update value has a big effect on the new Q value, whereas a learning rate

value close to 0 would affect the new Q value only slightly. The learning rate can be reduced as the

agent becomes more experienced, to preserve older experience from being overwritten by random

variations.

• Discount factor γ

The discount factor defines how long-sighted the agent should be. With a discount factor close

to 1, the agent would learn long-sighted, because the expected future reward is fully taken into

account. A lower discount factor close to 0 would result in a short-sighted behaviour because the

reward for the latest action is more important than the expected future reward.

Q-Learning as shown in equation 5.1 operates as an off-policy reinforcement learning method, because

the maximum expected future value is used. In contrast, on-policy algorithms would use the expected

future value based on the action that is chosen by the policy.

5.4 Implementation

The implementation of the Q-Learning algorithm is split into two classes: QLearner and

StateActionQuality. The class QLearner is responsible for the learning sequence, whereas the class

StateActionQuality manages the state values, chooses what action to take and updates the Q-value as

shown in equation 5.1.

<<abstract>>

IMotorController
y<<virtual>>DExecuteAction*charp:Dbool

<<abstract>>

ITargetDetector
yCalculateArea*std::vector<cv::Point2f>,p:Dint
yCalculateCenter*std::vector<cv::Point2f>,p:Dcv::Point2f
yCalculateAngle*std::vector<cv::Point2f>,p:Dfloat
y<<virtual>>DDetectState*p:Dstate

QLear ner

yQLearner*ITargetDetector,~IMotorController,~float~charGp
yLearnEpisode*intp:Dvoid
yGetQ*p:DStateActionQualityG

uses

uses

St at eAct ionQual i t y

yStateActionQuality*charGp
y~StateActionQuality*p
yGetBestAction*statep:Dchar
yUpdate*state~char~state~float~floatp:Dvoid
yRandomAction*p:Dchar

QLearner is the main class. To instantiate this class, a specialization of ITargetDetector1 and

IMotorController2 is required as well as a float value and a char pointer. The char pointer is sup-

posed to be the path to the memory file. This is the file where the learned experience will be saved. If

this file exists, the prior experience is automatically loaded.

1 See class TargetDetector in section 4.2.2.
2 See class MotorController in section 3.3.1.
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The float value is the Explore-Exploit ratio. This value defines the ratio between exploration of new

knowledge and exploitation of existing knowledge. A value close to 0 forces a high exploration proba-

bility, whereas a value close to 1 forces the exploitation of knowledge. This parameter is comparable to

the ε-greedy action selection strategy, whereby the Explore-Exploit ratio corresponds to ε.

In contrast to an exploration step, an exploitation step chooses the best known action for the current

state if possible. This is not possible if there is no knowledge for the current state. In that case, an

exploitation step chooses a random action like an exploration step always does.

Regardless of which strategy was chosen, after the execution of the selected action, the new state

is detected and, based on that information, the Q-value can be updated. This is done by the

StateActionQuality class. This class receives the char pointer containing the path to the memory

file. The main part of this class, is its double mapping to store the knowledge:

1 s td : : map< s ta te , s td : : map< char , double > > exper ience ;

This double std::map can be thought of as the Q-matrix as used in equation 5.1. It has an independent

field for each state-action pair. The initial value of each field is 0.

The Update() function does exactly what is described in equation 5.1. Hence, it requires the same

values as used in the equation above: two states s, s′ and an action a whereby the state s′ is the current

state that was observed after executing action a in state s. The last two parameters are the learning rate

and discount factor. In the following source code snippet, the state s is called last_state and s′ is called

new_state:

1 double l earned_va lue = new_state . Reward( l a s t _ s t a t e ) +

2 d i s c o u n t _ f a c t o r * maxValue ( new_state ) ;

3 exper ience [ l a s t _ s t a t e ][ a ] = exper ience [ l a s t _ s t a t e ][ a ] +

4 l e a r n _ r a t e * ( learned_va lue − exper ience [ l a s t _ s t a t e ][ a ] ) ;

The internal function maxValue() searches the maximal value that is known for the given state. The

states reward is calculated considering the previous state by using a equation as shown in figure 5.2.

r(s, s′) = r((a, d), (a′, d ′)) =























30− (d ′)2, a′ >= 14 (s′ is a final state)

−10, a′ = 0 s′ has area value of 0

−1, a < a′ ∨ |d|> |d ′| s′ is an improvement against s

−5, else

Figure 5.2.: Reward calculation equation.

The function GetBestAction() chooses the best action based on the given state. Internally, this is

just a Q-matrix filter. This function is used, when the QLearner class chooses to do an exploit-step. In

contrast, if an explore-step should be done, the function GetRandomAction() is used. It is supposed

to choose a random action, whereby each action has the same likelihood. It is also imaginable to use
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different likelihoods to make good actions be chosen more often compared to bad actions. This was used

in early implementations but has been removed to make sure the car is actually learning without a given

preference.

LearnEpisode() is the main function of class QLearner. It composes the object detection, motor

control and class StateActionQuality as visualized in figure 5.3.

Figure 5.3.: Nassi–Shneiderman diagram of function LearnEpisode in class QLearner.

The first step is to detect the initial state. Afterwards, a loop is started that repeats for each learning

step. The number of iterations of this loop can be limited using the int parameter of the function

LearnEpisode(). For each learn step, the function chooses between an explore or exploit step. The

Explore-Exploit ratio is used to influence this decision. After an action was chosen, it is executed by the

IMotorController class. Thereafter, the agent and environment can potentially be in a different state.

The new state is detected by using the ITargetDetector. Eventually, all information required to update

the Q-value is available, because the start state, the action that was taken and the new state is known. By

repeating this loop, the agent will improve its Q-value and can make use of the knowledge by choosing

exploit steps.

Figure 5.4 is a movie demonstrating the final result. The Raspberry Pi is connected to an external

power source because the batteries cannot supply the Raspberry Pi and both motors at the same time.

Unfortunately, it is crucial that both motors can operate at once, because complex actions like L or

R depend on that. In this case, the voltage drops below the acceptable threshold for the low drop-out

voltage regulator and thus the power supply for the Raspberry Pi collapses. The batteries can only supply

the Raspberry Pi and one motor at once.
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In the first part of the movie, the car is learning. It starts without any prior knowledge. After about

20 minutes of learning, the car has enough experience to reach the target optimal. Therefore, an explore-

exploit ratio if 1 was used to make sure no explore steps are used. Instead, each step executes the action

that was learned to be best in the current state. After reaching the target, the car enters a state it was

not in before and thus has no experience. In this case, the car does an explore step. This is marked in

the movie.

Figure 5.4.: Demonstration movie of the car while exploring and exploiting.

This movie is also on Youtube: www.youtube.com/watch?v=5ZjxUtCXSDs

Problems

Steering

The biggest problem is the steering behaviour. Since the front motor has to lift the entire car, is requires

a much power to do that. With full batteries, this works, of course, better than with batteries that are

already used for some time. Unfortunately, batteries are already too low after being about half an hour

in use. Therefore, action can have different outcomes, for example action l3, even within a very short

timespan.

Another odd behaviour is that steering works better, if the motors did run just a few seconds ago. So

if the agent starts operating, rotating does not work, but after some trails, it starts to work.

3 Just rotate to the left.
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Different surfaces
Another problem are different surfaces. The front axle rotation takes more time on a carpet than on a

smooth surface like a desk. For instance, if the rotation works as intended on a carpet, it would result in

a 450° rotation on a smooth surface. This means, the front axle is directly in front of the webcam and

covers the target object.

Target out of sight
There is only one state to indicate that the target is out of sight. This is state is active in many different

situations, for instance if the car is too far away or too close but also if the front axle blocks the view to

the target object. Because those situations are very different, no good action can be found for this state.

For example, when the car is too close, drive backward is a good idea but drive forward not. In contrast,

when the car is too far away, drive backward is bad and drive forward good. In other words, the actions

of too close are the complete inverse of the actions of too far away.

Since there is no other input expect the webcam image, especially no feedback by the motors, the car

cannot do any predications if the target could not be detected.

5.5 Simulation

Since the agent has to try any action in each state multiple times, this can be extremely time-

consuming. In the context of this thesis, there are 16 possible area-values and 5 direction-values,

thereby 16 ∗ 5 = 80 possible states times 9 possible action. In total, the agent has to execute at least

80 ∗ 9= 720 actions to have a basic knowledge of any action in any state.

Simulation can help to solve this problem because it is done just virtually, without real world interac-

tion. Simulating the agent and environment has multiple applications:

• Verify the learning algorithm.

• Debug the program.

• Generate knowledge, which can, for example, be used and approved by the real agent and envi-

ronment.

• The simulation can be used as a framework to test algorithm modifications or even different algo-

rithms.

This simulated knowledge can be much closer to the optimum than knowledge that was learned by the

agent, because the simulation can do more episodes in the same time than the real agent. Of course, the

simulated knowledge is only as good as the model, that is used to simulate the agent and environment.

When the model is not close enough to the reality, the generated knowledge is not usable by the real

agent. Therefore, the aim is to model the agent and environment as good as possible.

Furthermore, the simulation should be using the same code as used for the real agent to ensure that

the simulation really acts like the real agent. That is the reason why class QLearner expects instances of

the abstract classes ITargetDetector and IMotorController.
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<<abstract>>

IMotorController
+<<virtual>>DExecuteAction(char):Dbool

<<abstract>>

ITargetDetector
+CalculateArea(std::vector<cv::Point2f>&):Dint
+CalculateCenter(std::vector<cv::Point2f>&):Dcv::Point2f
+CalculateAngle(std::vector<cv::Point2f>&):Dfloat
+<<virtual>>DDetectState():Dstate

Tar get Sim u la t o r

+TargetSimulator()
+DetectState():Dstate
+ExecuteAction(char):Dbool
+ResetState():Dvoid

The class TargetSimulator inherits from both classes and, thereby, acts as both, target detector and

motor controller. This is really helpful, because the TargetSimulator is supposed to simulate a state

and modify this state whenever an action shall be executed. This can be achieved by having the current

simulated state and ExecuteAction() function within one class.

The class TargetSimulator picks a random valid state when being created and stores this state inter-

nally. That state can be accessed, as usual, by the function DetectState(). Whenever ExecuteAction()

is called, the internal state is modified based on the given action and on random values. Randomness is

used because the cars behaviour is not predictable in reality as well. To describe that in the simulation,

the outcome of any action is calculated based on random values:

1 in t v1 = rand () % 2 , v2 = rand () % 2;

2 switch ( ac t i on ) {

3 case ’ f ’ : s . area += ( v1+v2 ) ; break ;

4 case ’ b ’ : s . area −= ( v1+v2 ) ; break ;

5 [ . . . ]

6 }

In line 1, two variables are initialized with a random value, either 0 or 1. Those values are used differ-

ently, depending on the action that shall be executed. In case of action f, both values are added to the

area value of the current state. There are three possible outcomes of this operation: The area value does

not change because both variables are 0, the area value is increased by 1 because one of the variables

is 1 and the other one is 0, or both variables are 1 and the area value is increased by 2. The meaning

by that is, that the forward action mostly will bring the car closer to the target, but sometimes there are

detection errors or other circumstances so that the state changes not or stronger than normal. The other

actions operate similarly, always based on those random variables.

Classes QLearner and StateActionQualtity do not need any modification to work within a simula-

tion. In this manner, the simulation uses exactly the same algorithm as the real agent does.
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5.6 Q-Value Animation

By the help of the simulation environment, animations can be created that document the learning

progress of the Q-value. Such animations could also be created using the real agent, but with a much

higher effort.

In the example as shown in figure 5.5, each frame visualizes the result of a simulation of 25 explo-

rations. The first animation shows the best value of the entire Q-matrix. The following animations

visualize the values of single actions, like 0 or L.

The shown graph does not reflect the simulated values absolutely accurately, because the mesh is

calculated by the help of interpolation. Nevertheless, the shape corresponds to the real shape.

As time goes by, the values improve visible and advance towards an optimum.

Figure 5.5.: Visualization of the Q-value while improving through simulated exploration.

This movie is also on Youtube: www.youtube.com/watch?v=xEtVddFG7c8
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6 Lookout

During the work, some ideas came up, how the current set-up could be enhanced or upgraded.

Motor control

There is an open source library to control the GPIOs of the Raspberry Pi called wiringPi1. It has some

advantages compared with the current implementation, for instance programs using wiringPi do not

need to run as root user to access the GPIOs.

Front Motor

As mentioned, the front motor does not work reliable because it cannot perform a rotation at any time,

with the same outcome. Sometimes, the motor is too weak to achieve a full rotation, after some trials

this works suddenly. Additional, the time required to perform a full rotation differs. Unfortunately, there

is no feedback by the motor. It could, for instance, indicate what the current angle of the front axle is.

This could be improved using a more sophisticated motor. First, it has to be stronger than the current

motor. Second, and this is really important, it must give some feedback about the success of an instruc-

tion or indicate the current angle or similar information. This information would be really helpful for

the learning algorithm to refine the current state of the car.

Power supply

Another idea is to use an external power source and rechargeable batteries to either power the entire

car including the Raspberry Pi by the external power source or to charge the batteries while the car can

operate as usual. After unplugging the power source, the car could run without any interruption on

batteries again.

A addition to that would be a chip that measures the current charge of the batteries and provides that

value to the Raspberry Pi. It could use this information to modify the motor control to make sure all

action behave the same at all charge levels. Eventually, the Raspberry Pi could shut down if the batteries

get to low to power the circuit properly.

Camera

A special webcam for the Raspberry Pi is available since May, 20132. It is smaller and lighter than the

webcam that is used in the context of this thesis but it has similar features.

In contrast to that, a Microsoft Kinect camera could improve target detection a lot, because it can

actually sense depth and, thereby, measure the distance to the target. On the other hand is it probably

too heavy for the car and consumes too much power for batteries. Another disadvantage is its price,

because it costs about as much as the car, interlayer and Raspberry Pi together.

1 projects.drogon.net/raspberry-pi/wiringpi
2 http://www.raspberrypi.org/archives/3890
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Raspberry Pi
Since the Raspberry Pi is not used to the full in the context of this thesis, it could be replaced by a

model A Raspberry Pi that consumes roughly a third of the power that a model B consumes. Additionally,

a model A Raspberry Pi is cheaper.

Learning
Right now, whenever the target object is out of sight, state (0,0) is active. This is the case when the

car is too far away, too close or drove too far left or right. Actually, this state is active at any time the

car can not see its target, therefore, also if the front axle blocks the view to the target object or the car is

fallen over.

A possible solution for this is using additional markers in combination with a Hidden Markov model.

For example, distinct markers could be placed all around the target so that the Raspberry Pi can perceive

markers at any time, also if the target is out of sight. An additional marker on the ceiling would be

helpful if the car was fallen over. Based on this set-up, a Hidden Markov model could be used to extract

information from those markers to find the way back to the target. This could be done with the current

low-cost webcam.
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7 Conclusion

This thesis did evaluate the abilities of the Raspberry Pi as a mobile, low-cost, on-board computer. The

aim was to do sophisticated image processing and learning on-board a rebuild RC car.

Thereby, three major tasks had to be solved. First, the hardware had to be prepared to be able to supply

the Raspberry Pi and vice versa that the Raspberry Pi is in control of the car. This was done by using

a low drop-out voltage regulator for the power supply and a particular integrated circuit component to

control the car based on the low-level signals of the Raspberry Pi. Second, the Raspberry Pi needed to

be able to perceive its environment. For that reason, a webcam was attached to the Raspberry Pi. By

the help of this, the car could identify its current position relative to a target using an object detection

algorithm. Third, actual learning was implemented based on the Q-Learning algorithm.

The result of this investigation is, that all computational work can be done on-board by the Raspberry

Pi, without being stretched to its limits. Taken together, these findings do support a strong recommenda-

tion in using the Raspberry Pi even for expensive tasks. By doing so, many tasks could be solved by this

low-cost microcomputer with no need for an off-board computer.
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A Appendix

A.1 Hardware

Model A Model B (Revision 2)

CPU: 700MHz ARM11 (overclockable up to 1GHz)

GPU: Broadcom VideoCore IV (24 GFLOPS)

RAM: 256MB 512MB

Video output: Composite or HDMI

Ports:

SD card slot

8x GPIO (among others)

1x USB 2.0 2x USB 2.0

10/100 Ethernet port

Power Supply:
5V ± 0.25V (USB specification)

300mA (1.5W) 700mA (3.5W)

Price: US$25 US$35

Table A.1.: Raspberry Pi hardware specification and comparison.

A.1.1 Motor Control with Single Transistors

I also tried using a couple of MOSFETs. A MOSFET is a special kind of a transistor that is able to

switch big potentials (for instance up to 36V). After some research I decided to try the IRFU 9024N and

IRFZ 24N. These are very similar MOSFETs but the IRFU 9024N is a P-Channel and the IRFZ 24N is a

N-Channel transistor. You see them in figure A.1.

Figure A.1.: The MOSFETs (IRFU 9024N left, IRFZ 24N middle and right).
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The left one is the front view of the IRFU 9024N and the middle one is the IRFZ 24N. On the right side

is the IRFZ 24N again on the back side. If you look at the left or middle one, the pins from the left to

the right are: source, gate, drain. The source is where the signal that should be controlled is connected,

in this case the batteries. The drain is the output of the transistor, usually implicitly connected with the

device that should be controlled. The gate affects the current flow between source and drain and thereby

the current flowing to the device.

A N-Cannel transistor works in the following manner: If the voltage at the gate is below the transistor-

specific threshold voltage, the transistor will cut off, otherwise it connects through. Unfortunately there

is no perfect threshold voltage and no MOSFET will cut off entirely.

I tested the circuit mainly with the IRFZ 24N which is a N-Channel MOSFET. I tried multiple configu-

rations, for instance the source connected to GND and drain connected to a motor of the car. With GND

at the gate, the MOSFET connected through correctly, but the MOSFET burnt through often. I think that

is caused by the current peak when the motor starts. Therefore I successfully used a resistor between

drain and motor.

Unfortunately there also was a bigger problem. The cutoff worked well if the gate was connected to

VCC which, in this case, is delivered by the batteries and has 6V. That is the same potential that is between

source and drain because the motor is connected to VCC as well. If I used the high signal of the Raspberry

Pi instead, the MOSFET did not cut off properly. There was still a leak flow that was strong enough to

run the motor very weak. The high signal of the Raspberry Pi should reach 3.3V but it had only about

2.8V. I thought this should be enough because the MOSFET has a gate threshold voltage between 2.0

and 4.0V. However, since it is not working a higher voltage is required.

As one of my last experiments I tried to use a voltage regulator between the Raspberry Pi GPIO signal

and the MOSFET gate. The cutoff was better but still not good enough. Finally I quit this idea and

searched for a new attempt.
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A.1.2 Power Supply

Figure A.2.: Snippet of the 7805 voltage regulator data sheet by Texas Instruments.

Figure A.3.: Snippet of the LP38500 voltage regulator data sheet by National Semiconductor.

xiii



Figure A.4.: Power supply diagnostics points (TP1 and TP2) on the Raspberry Pi.

A.2 Object detection

1 LICENSE CONDITIONS
2
3 Copyright (2006): ETH Zurich , Switzer land
4 Katho l i eke U n i v e r s i t e i t Leuven , Belgium
5 A l l r i g h t s reserved .
6
7 For d e t a i l s , see the paper :
8 Herbert Bay , Tinne Tuyte laars , Luc Van Gool ,
9 "SURF: Speeded Up Robust Features "

10 Proceedings of the ninth European Conference on Computer Vis ion , May 2006
11
12 Permiss ion to use , copy , modify , and d i s t r i b u t e t h i s sof tware and
13 i t s documentation fo r educat ional , research , and non−commercial
14 purposes , without fee and without a s igned l i c e n s i n g agreement , i s
15 hereby granted , provided tha t the above copyr igh t no t i c e and t h i s
16 paragraph appear in a l l cop ie s modi f i ca t ions , and d i s t r i b u t i o n s .
17
18 Any commercial use or any r e d i s t r i b u t i o n of t h i s sof tware
19 r e q u i r e s a l i c e n s e from one of the above mentioned es tab l i shment s .
20
21 For f u r t h e r d e t a i l s , con tac t Andreas Ess ( aess@vis ion . ee . ethz . ch ) .

Figure A.5.: License of the SURF algorithm.xiv



A.2.1 Object Detection Examples

Figure A.6.: Object detection examples. nothing was changed while those images were taken but the
detection result still differs caused by noise.
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A.2.2 Smoothing of noisy images

To minimize those variations I tried to blur the scene image or use a bilateral filter. A bilateral filter

is similar to simple image blurring but tries to preserve edges within the image. Especially the bilateral

filter consumes a lot of CPU time and makes the object detection slower. Both methods did not improve

the detection quality significantly. Therefore I do not use those filtering methods.

A.3 Class Diagram

Real Simulation

Gpio
+Gpio(int)
+Set(bool): void
+SetFor(int,bool): void

Camera
+Camera()
+~Camera()
+SetResolution(int,int): void
+GetFrame(cv::Mat&,int): void

<<abstract>>

IMotorController
+<<virtual>> ExecuteAction(char): bool

<<abstract>>

ITargetDetector
+CalculateArea(std::vector<cv::Point2f>&): int
+CalculateCenter(std::vector<cv::Point2f>&): cv::Point2f
+CalculateAngle(std::vector<cv::Point2f>&): float
+<<virtual>> DetectState(): state

MotorController
+MotorController()
+ExecuteAction(char): bool

TargetDetector
+TargetDetector(Camera*,char*)
+DetectState(): state
+GetCamera(): Camera&

uses

uses

QLearner
+QLearner(ITargetDetector&,IMotorController&,float,char*)
+LearnEpisode(): void
+GetQ(): StateActionQuality*

StateActionQuality
+StateActionQuality(char*)
+~StateActionQuality()
+GetBestAction(state): char
+Update(state,char,state,float,float): void
+RandomAction(): char

uses

TargetSimulator
+TargetSimulator()
+DetectState(): state
+ExecuteAction(char): bool
+ResetState(): void

Figure A.7.: Complete class diagram.
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