Policy Learning — a unified perspective with applications
in robotics

Jan Peters?, Jens Kober, and Duy Nguyen-Tuorlg

1 Max-Planck Institute for Biological Cybernetics,
Spemannstr. 32, 72074 Tubingen,
{j rpeters, kober, duy} @ uebi ngen. npg. de,
WWW home pageht t p: // kyb. npg. de/ jrpeters
2 University of Southern California,
Los Angeles, CA 90089, USA

Abstract. Policy Learning approaches are among the best suited neefiood
high-dimensional, continuous control systems such asremimorphic robot
arms and humanoid robots. In this paper, we show two coniits! firstly, we

show a unified perspective which allows us to derive sevestityplearning al-

gorithms from a common point of view, i.e, policy gradieng@ithms, natural-
gradient algorithms and EM-like policy learning. Secondle present several
applications to both robot motor primitive learning as wesl to robot control
in task space. Results both from simulation and severardifit real robots are
shown.

1 Introduction

In order to ever leave the well-structured environmentsaofdry floors and research
labs, future robots will require the ability to aquire nobelhaviors, motor skills and
control policies as well as to improve existing ones. Reicdment learning is probably
the most general framework in which such robot learning femols can be phrased.
However, most of the methods proposed in the reinforcengamhing community to
date are not applicable to robotics as they do not scale loeyaiyots with more than
one to three degrees of freedom. Policy learning methods aogable exception to this
statement. Starting with the pioneering work of Gullapatanklin and Benbrahim [4,
8] in the early 1990s, these methods have been applied toetyaf robot learning
problems ranging from simple control tasks (e.g., balameirball-on a beam [3], and
pole-balancing [11]) to complex learning tasks involvingmg degrees of freedom such
as learning of complex motor skills [8, 15, 21] and locomnotjib0, 23, 13, 6, 25, 16, 7].

In this paper, we expand previous work on policy learningaas the direction
of a unified framework for policy learning. For doing so, wedaliss upper and lower
bounds on policy improvements. From the lower bound, wevdericost function which
allows us to derive policy gradient approaches, naturatparadient approaches as
well as EM-like policy learning methods. Furthermore, wewliseveral applications in
the context of robot skill learning. These applicationdude both learning task-space
control with reinforcement learning as well as motor privagtiearning. Results of both
real robots and simulation are being shown.



2 Policy Learning Approaches

As outlined before, we need two different styles of policgrleng algorithms, i.e.,
methods for long-term reward optimization and methodsrfonediate improvement.
We can unify this goal by stating a cost function

J(0) = /Tpg (r)r(T)dr, Q)

where T denotes a path, e.gr, = [X1.,, u1.,] With statesx;.,, and actionsu.,, ,

r () denotes the reward along the path, exdz) = >°}' ; 7'r, andpe (d7) denotes
the path probability densityy (d7) = p (x1) H?:_f D (Xe41]Xe, ue) m(ug|xe; 0) with a
first-state distributiop (x4 ), a state transitiop (x+1|x¢, u;) and a policyr(u;|x;; ).
Note, thatpe (7) r (7) is an improper distribution, i.e., does not integratel torhe
policy 7(u;|x;; 0) is the function which we intend to learn by optimizing its aar
etersd € RY. Many policy learning algorithms have started optimize tbost func-
tion, including policy gradient methods [1], actor-crititethods [24, 14], the Natural
Actor-Critic [19, 20, 22] and Reward-Weighted Regressi8]] In the remainder of
this section, we will sketch a unified approach to policy oytiation which allows the
derivation of all of the methods above from the variation sfragle cost function. This
section might appear rather abstract in comparison to steoféhe paper; however, it
contains major novelties as it allows a coherent treatmemtamy previous and future
approaches.

2.1 Bounds for Policy Updates

In this section, we will look at two problems in policy leangi, i.e., an upper bound
and a lower bound on policy improvements. The upper bounthestwhy a greedy
operator is not a useful solution while the lower bound wél lsed to derive useful
policy updates.

Upper Bound on Policy Improvements. In the stochastic programming community,
it is well-known that the greedy approach to policy optintiaa suffers from the major
drawback that it can return only a biassed solution. Thisvdeek can be formalized
straighforwardly by showing that if we optimiz& @) and approximate it by samples,
e.g., byJs () = Zlepg (1s) 7 (75) = J(0), we obtain the fundamental relationship

E{maxg Jg(0)} > maxg E{Js(0)}, 2)

which can be shown straightforwardly by first realizing thattthe maximum is always
larger than any member of a sample. Thus, a subsequent atipaawill not change
this fact nor the subsequent optimization of the lower bodrdis, a policy which is
optimized by doing a greedy step in parameter space is giga@ito be biased in the
presence of errors with a bias bf(8) = E{maxe J5(0)} — maxe E{Js(8)} > 0.
However, we can also show that the bias decreases over theenwhsamples, i.e.,
bs(0) > bs+1(0), and converges to zero for infinite samples, lieng .o, bs(6) = 0



[17]. This optimization bias illustrates the deficienciéshe greedy operator: for finite
data any policy update is problematic and can result intdalnhes learning processes
with oscillations, divergence, etc as frequently obseinettie reinforcement learning
community [2, 1].

Lower Bound on Policy Improvements. In other branches of machine learning, the
focus has been on lower bounds, e.g., in Expectation-Masitiain (EM) algorithms.
The reasons for this preference apply in policy learninghé lower bound also be-
comes an equality for the sampling policy, we can guaratgethe policy will be im-
proved. Surprisingly, the lower bounds in supervised le@riecan be transferred with
ease. For doing so, we look at the scenario (suggested irth&j)we have a policy
@’ and intend to match the path distribution generated by thlyto the success
weighted path distribution, then we intend to minimize tlgtahce between both dis-
tributions, i.e.,D (pg' (7) ||pe (T) r (7)). Surprisingly, this results into a lower bound
using Jensen’s inequality and the convexity of the logarithinction. This results into

log J(0') = log/ zz Eg pe (T)r (1) dT, 3)

(T

> [0 (r)r (r)10g 22ty oD (oo () o (1) 7 (7). )
po (T)

whereD (pg: (T) ||pe (1)) = [ peo (T)log(pe (T) /per (T))dT is the Kullback-Leibler

divergence, i.e., a distance measure for probabilityitigtions. With other words, we

have the lower bound(8") > exp (D (pg’ (7) ||pe (7) 7 (7))), and we can minimize

I = Do () e (1) (1) = [ o (7)1 (7106 20T 4 s)

pe’ (T)
without the problems which have troubled the reinforcentearining community when
optimizing the upper bound as we are guaranteed to impraveadticy. However, in
many cases, we might intend to punish divergence from theéqare solution. In this
case, we intend to additionally control the distance whighmove away from our
previous policy, e.g., minimize the terth. = —D (pg (7) ||pe’ (T)). We can combine
these into a joint cost function

JrLt+ = JkL + A4, (6)

where\ € RT is a positive punishment factor with < A\ < J(8). Note that the
exchange of the arguments is due to the fact that the Kulthaiier divergence is
unsymmetric. This second term will play an important rulbeth baselines and natural
policy gradients are a directly result of it. The proper d@i@ation of \ is non-trivial
and depends on the method. E.g., in policy gradients, thisrhes the baseline.

2.2 Resulting Approaches for Policy Learning

We now proceed into deriving three different methods fordowound optimization,
i.e., policy gradients, the natural actor-critic and retvereighted regression. All three
of these can be derived from this one perspective.



Policy Gradients Approaches. It has recently been recognized that policy gradient
methods [2, 1] do not suffer from the drawbacks of the gregurator and, thus, had a
large revival in recent years. We can derive policy gradi@piroaches straightforwardly
from this formulation using the steepest descent of thedidr taylor extension

0 =0+ a(Vi — A\V.J,) )

—0+a / po (7) (r () — \) ¥ log pgr (7) ®)

whereq is alearning rate. This is only true as for the first deriva¥D (pg (T) ||pe’ (T)) =
VD (pe () ||pe (7)). The punishment factor from before simply becomes the base-
line of the policy gradient estimator. A€ log pg' (T) = ?;11 V log 7(ut|x¢; 6), we
obtain the straightforward gradient estimator also knos'REINFORCE, policy gradi-

ent theorem or GPOMDP, for an overview see [1]. The punistiteem only constrains

the variance of the policy gradient estimate and vanish8.4g. = V Jk_ for infinite
data. However, this policy update can be shown to be ratber[§, 19, 20, 22].
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Fig. 1. (a) Mitsubishi PA-10 robot arm with seven degrees of freedisad in the experiments in
this paper. (b) This figure illustrates the task performamideoth the analytical and the learned
resolved velocity control laws. Here, the green dotted fihews the desired trajectory which
the robot should follow, the red dashed line is the perforreasf the real-time learning control
law while the blue solid line shows the performance of the@lke=i velocity control law. Note,
that while the online learning solution is as good as theyical solution, it still yields compa-
rable performance without any pre-training of the localtoonaws before the online learning
(Nevertheless, the predictors were pre-trained).

Natural Policy Gradient Approaches. Suprisingly, the speed update can be improved
significantly if we punish higher order terms &f , e.g., the second term of the taylor



expansion yields

0' = argmaxy (6’ — 0)" (VJkL — AV Jy) — %)\(0’ -0V, (6 —0) (9)
=M\ (V2) T (W — AVJ4) = AF g, (10)
whereF = V2D (pg (7) ||pe (7)) = VD (per (T) ||pe (1)) = V>.J, is also known
as the Fisher information matrix and the resulting policgateg, is known as the Nat-
ural Policy Gradient. Surprisingly, the second order tea® ot yet been expanded and

no Natural second-order gradient approaches are knowrs, Tiis could potentially be
a great topic for future research.

EM-Policy Learning. In a very special case, we can solve for the optimal policy
parameters, e.g, for policy which are linear in the log-gives such as

Vlog m(ug[xs;0) = A (x4, ;) 0 + b (x4, 1), (11)
it is straightforward to derive an EM algorithm such as

0 =a'p, (12)

a=/pe<r><r<f>—A>

NE

A (x¢,u) dr, (13)

~
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M=

8= /pg (T)(r(T)=AX) b (x¢, ) dr. (14)

~
Il

1

This type of algorithms can result into very fast policy ugedaif applicable. It does
not require a learning rate and is guaranteed to convergeléast a locally optimal
solution.

2.3 Sketch of the Resulting Algorithms

Thus, we have developed two different classes of algorithms the Natural Actor-
Critic and the Reward-Weighted Regression.

Natural Actor-Critic. The Natural Actor-Critic algorithms [19, 20] instantiati® of
the natural policy gradient previously described with géaor infinite horizom. They
are considered the fastest policy gradient methods to detéthe current method of
choice” [1]. They rely on the insight that we need to maxinttze reward while keep-
ing the loss of experience constant, i.e., we need to med#samistance between our
current path distribution and the new path distributiorated by the policy. This dis-
tance can be measured by the Kullback-Leibler divergendeagproximated using
the Fisher information metric resulting in a natural polgnadient approach. This nat-
ural policy gradient has a connection to the recently inticedl compatible function
approximation, which allows to obtain the Natural Actomtcr Interestingly, earlier
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Fig. 2. This figure shows (a) the performance of a baseball swing wdsn using the motor
primitives for learning. In (b), the learning system isiialized by imitation learning, in (c) it is
initially failing at reproducing the motor behavior, ang édter several hundred episodes exhibit-
ing a nicely learned batting.

Actor-Critic approaches can be derived from this new apgitoln application to motor
primitive learning, we can demonstrate that the NaturabA@ritic outperforms both
finite-difference gradients as well as ‘vanilla’ policy grant methods with optimal
baselines.

Reward-Weighted Regression.In contrast to Natural Actor-Critic algorithms, the
Reward-Weighted Regression algorithm [18] focuses on idiate reward improve-
ment, i.e.,n = 1, and employs an adaptation of the expectation maximizdfdm)
policy learning algorithm for reinforcement learning agyously described instead
of a gradient based approach. The key difference here isathab using immediate
rewards, we can learn from our actions directly, i.e., useths training examples sim-
ilar to a supervised learning problem with a higher priofdy samples with a higher
reward. Thus, this problem is a reward-weighted regregmioblem, i.e., it has a well-
defined solution which can be obtained using establishe@ssimpn techniques. While
we have given a more intuitive explanation of this algoritlincorresponds to a prop-
erly derived maximization-maximization (MM) algorithm weh maximizes a lower
bound on the immediate reward similar to an EM algorithm. &aplications show that
it scales to high dimensional domains and learns a goodypelibout any imitation of
a human teacher.

Policy Learning by Weighting Exploration with Rewards. A recent developmentis
the policy learning by weighting exploration with rewardsRDWER method [12]. In
this case, we attempt to extend the previous work of the werighted regression
from the immediate reward case to longer horizons. Whergusia reward-weighted
regression, we suffer from a multitude of artificial locahfgaus and will not converge
to the optimal solution. However, the insight that statpatelent exploration rates re-
sult into this algorithm. Again, an EM algorithm is obtainaad turns out to be highly
efficient in the context of learning Kendama [12].
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Fig. 3. This figure illustrates the successfully learned motiorhefkendama trial. For achieving
this motion, motor primitives with external feedback had®learned. Only an imitation from
a human trial recorded in a VICON setup and, subsequenthforeement learning allowed to
learn this motion reliably.

3 Robot Application

The general setup presented in this paper can be appliedatice using analytical
models as well as the presented learning algorithms. Thicappns presented in this
paper include motor primitive learning and operationaktgpeontrol.

3.1 Learning Operational Space Control

Operational space controlis one of the most general framesfior obtaining task-level
control laws in robotics. In this paper, we present a leayfiiamework for operational
space control which is a result of a reformulation of opersl space control as a
general point-wise optimal control framework and our ihsgginto immediate reward
reinforcementlearning. While the general learning of agienal space controllers with
redundant degrees of freedom is non-convex and thus glapahgised learning tech-
niques cannot be applied straightforwardly, we can gainibwights, i.e., that the prob-
lem is locally convex and that our point-wise cost functiiowas us to ensure global
consistency among the local solutions. We show that this/idd the analytically de-
termined optimal solution for simulated three degrees eédiom arms where we can
sample the state-space sufficiently. Similarly, we can stimxframework works well
for simulations of the both three and seven degrees of fregdbot arms as presented
in Figure 1.

3.2 Motor Primitive Improvement by Reinforcement Learning

The main application of our long-term improvement frameisrthe optimization of
motor primitives. Here, we follow essentially the prevityusutlined idea of acquiring
an initial solution by supervised learning and then usingfeecement learning for
motor primitive improvement. For this, we demonstrate batimparisons of motor
primitive learning with different policy gradient methqde., finite difference methods,
‘vanilla’ policy gradient methods and the Natural Actoritier;, as well as an application
of the most successful method, the Natural Actor-Critic-8Ball learning on a physical,
anthropomorphic SARCOS Master Arm, see Figure 2.

Another example for applying policy learning to the motoingtive frame is the
children’s game Kendama [12]. Here, we have managed to Egood policy again



from a human demonstration which fails to bring the ball itite cup. Subsequently,
we have learned how to improve our policy with the POWER meétHi®] and have
managed to learn a good motor primitive-based control polibe results are shown in
Figure 3.

4 Conclusion

In conclusion, in this paper, we have presented a generakfrerk for learning motor
skills which is based on a thorough, analytically underdiagof robot task representa-
tion and execution. We have introduced a general framevasrgdlicy learning which
allows the derivation of a variety of novel reinforcememtrieing methods including the
Natural Actor-Critic and the Reward-Weighted Regressigo@thm. We demonstrate
the efficiency of these reinforcement learning methodseraipplication of learning to
hit a baseball with an anthropomorphic robot arm on a phi/Sié&RCOS master arm
using the Natural Actor-Critic, and in simulation for thetaing of operational space
with reward-weighted regression.
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