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Abstract— Off-policy reinforcement learning is aimed at To overcome the instability problem, we propose using
efficiently using data samples gathered from a policy that an adaptive importance samplingechnique used in statis-
is different from the currently optimized policy. A common tics [15]. The proposed adaptive method, which smoothly
approach is to use importance sampling techniques for com- brid th di timat di t' -weighted
pensating for the bias of value function estimators causedb ,” ges the ordinary estimator and importance We'g_ ed es
the difference between the data-sampling policy and the tget ~ timator, allows us to control the trade-off between bias and
policy. However, existing off-policy methods often do notake variance. Thus, given that the trade-off parameter is deter
the variance of the value function estimators explicitly ifro  mined carefully, the optimal performance can be achieved
account and therefore their performance tends to be unstalal. in terms of both bias and variance. However, the optimal
To cope with this problem, we propose using an adaptive . . ’
importance sampling technique which allows us to actively value of the tradg-qf‘f parameter Is heaV|I.y dependent oa d,at
control the trade-off between bias and variance. We further Samples and policies, and therefore using a pre-determined
provide a method for optimally determining the trade-off parameter value may not be always effective in practice.
parameter based on a variant of cross-validation. The usefaness For optimally choosing the value of the trade-off parame-
of the proposed approach is demonstrated through simulated o \ye propose using an automatic model selection method
swing-up inverted-pendulum problem. based on a variant of cross-validation [16]. The methockdall
importance-weighted cross-validati@mables us to estimate
the approximation error of value functions in an almost

Policy iterationis a reinforcement learning setup where theinbiased manner even under off-policy situations. Thus we
optimal policy is obtained by iteratively performing polic can adaptively choose the trade-off parameter based on data
evaluation and improvement steps [17], [2]. When policiesamples at hand. The usefulness of the proposed approach is
are updated, many popular policy iteration methods requigmonstrated through simulated swing-up inverted-pemdul
the user to gather new samples following the updated policgroblem.

and the new samples are used ¥afue function approxima-

tion. However, this approach is inefficient particularly when II. BACKGROUND AND NOTATION

the sampling cost is high and it would be more cost-efficient ] ) ) o

if we could reuse the data collected in the past. A situation !N this section, we review how Markov decision problems
where the sampling policy (a policy used for gathering dats@" be solved using policy iteration based on value funstion
samples) and the current policy are different is caléfd .

policy reinforcement learning [17]. A. Markov Decision Problems

In the off-policy setup, simply employing a standard policy Let us consider a Markov decision problem (MDP) speci-
iteration method such aeast-squaregolicy iteration [6] fied by (S, A, Pr, R,~), whereS is a set of states4 is a set
does not lead to the optimal policy as the sampling policgf actions,Pr(s'|s,a) (€ [0,1]) is the transition probability-
can introduce bias into value function approximation. Thiglensity from states to next states’ when actiona is taken,
distribution mismatch problem can be eased by the usg(s,a,s’) (€ R) is a reward for transition froms to s’ by
of importance samplingechniques [4], which cancel the taking actiona, v € (0,1] is the discount factor for future
bias asymptotically. However, the approximation erroras n rewards. Letr(a|s) € [0, 1] be a stochastic policy which is
necessarily small when the bias is reduced by importandee conditional probability density of taking actiengiven
sampling; the variance of estimators also needs to be taketate s. The state-action value functio™(s,a) € R for
into account since the approximation error is the sum qfolicy  is the expected discounted sum of rewards the agent
squared bias and variance. Due to large variance, existimgll receive when taking actiom in states and following
importance sampling techniques tend to be unstable [1folicy = thereafter, i.e.,

[112].
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policy can be expresséas C. Value Function Approximation

7 (als) = 6(a — argmax Q"(s, a’)), Although policy iteration is guaranteed to produce the
a’ optimal policy, it is often computationally intractablense
where §(-) is the Dirac delta function an@*(s,a) is the the number of state-action paikS| x |.A| is very large;|S|

optimal state-action value function defined by or |A| becomes infinite when the state space or action space
. . is continuous. To overcome this problem, the authors of the
Q(s,a) = max Q" (s, a). references [17], [10], [6] proposed to approximate theestat

. action value function@™ using the following linear
Q7 (s,a) can be expressed as the following recurrent form Q7 (s,a) 9 g

called theBellman equatiorf17]: model:

B
Q™(s,a) =R(s,a)+7 E  E [Q7(s,d)], (1) Q"(5,a;0) = > (s, a) = 07 p(s, ),
b=1

Pr(s'|s,a) w(a’|s’)

whereR(s, a) is the expected reward function when the agennere
takes actioru in states:

R(s,a) = B (IF;| : [R(s,a,s")].
T (s']s,a

¢(57 a) - (¢1(57 a)a ¢2(57 a)a S ¢B(57 a)>T

are the fixed basis functions, denotes the transposs, is
Epy(s|s,) denotes the conditional expectation gf over the number of basis functions, and

Pr(s'|s,a) given s and a. E,(.|s) denotes the conditional 0 — (0,0 9T

expectation ofs’ over(a’|s’) givens'. = (61,02,...,05)

B. Policy Iteration are model parameters. Note that is usually chosen to
be much smaller thadS| x |A|. For N-step transitions,
4 ~ we ideally want to learn the parameteés so that the
, we can find a better policy approximation error is minimized:

The computation of the value functiadp™(s, a) is called
policy evaluationUsingQ™ (s, a)
7' (als) by
1A 2
= 2 (Q7(50: 405 0) = Q7(50, ) ) ] :

7’ (als) = §(a — argmax Q™ (s, a’)). min E
a’ 0 P, Pr

This is called (greedypolicy improvementlt is known that
repeating policy evaluation and policy improvement resul
in the optimal policyn*(a|s) [17]. This entire process is

pwhere Ep, » p, denotes the expectation ovés,,, a,},_,
following the initial-state probability density?(s;), the

called policy iteration policy m(a,|s,), and the transition probability density
E I E I E I Pr(snialsn; an).
= Q™ S5 m 5 Q™ 5wy = T, A fundamental problem of the above formulation is that

the target functiorQ™ (s, a) cannot be observed directly. To
cope with this problem, we use the square of the Bellman
residual [13], [6] as

where 7; is an initial policy, £ and I indicate policy
evaluationandimprovemensteps respectively. For technical
reasons, we assume that all policies are strictly positiee (

all actions have non-zero probability densities). In ortber 60" = argmin G,
guarantee this, we use policy improvement which generates o
explorative policies such as tla&bbs policyand thec-greedy _ 1 & _
policy. In the case of the Gibbs policy, G= nE N > 9(snani0)| )
T n=1
F) = e ST @ A
4 xp(Q7(s,0)/7) da 9(s.a;0) =(Q"(5,;0) - R(s,0)
where T is a positive parameter which determines the ran- R 2
domness of the new policy’. In the case of the-greedy -7 E E [Q”(S',a';e)} ) )
i Pr(s'|s,a) m(a’|s")

policy,

als) 1—ete/|A ifa=a", - \évhgreg(fs,a;e)his 'gle”approximat.ion elrrorfor one stép a)

' (als) = ¢/|A| otherwise erived from the Bellman equation (1).

where D. On-policy vs. Off-policy

a* = argmax Q" (s, a), We suppose that a dataset consisting Mdf episodes
¢ of N steps is available. The agent initially starts from a
randomly selected state following the initial-state prob-
ability density Pi(s) and chooses an action based on a

1We assume that given statethere is only one action maximizing the samplllng policyr(a,|s,). Then the agent makes a transition
optimal value functionQ* (s, a). following Pr(sp+1|sn,an) and receives a reward, (=

ande € (0,1] determines how stochastic the new policy
is.



R(sn,an,sn+1)). This is repeated forV steps—thus the A. Importance Sampling

training dataD™ is expressed as Importance samplings a general technique for dealing

with the off-policy situation. Suppose we have i i.éhde-
= {d}.} =1, pendent and identically distribut¢damples|z,, , from

o _ ) a strictly positive probability density functioR(z ) Usmg
where each episodic samplg, consists of a set of-tuple  these samples, we would like to compute the expectation

elements as of a functiong(x) over another probability density function
_ _ _ _ _ P(z). A consistent approximation of the expectation is given
drr = { (85 Oas T S 1) et - by theimportance-weightedverage as follows:
We use two types of policies which have different pur- Z Tm) M=o g(x)P(x)
poses: thesampling policy7(a|s) for collecting data sam- M T P(z) ]S(x)
ples and thecurrent policy(a|s) for computing the value P(
function Q™. When7(a|s) is equal tor(als) (the situation = / () o) P(x)dzx / (z)P(x)dr = PI?:) l9()] .

calledon-policy), just replacing the expectation contained in
the errorG by sample averages givescansistentestimator However, applying the importance sampling technique in
(i.e., the estimated parameter converges to the optimaévaloff-policy reinforcement learning is not that straightf@rd

as the numben/ of episodes goes to infinity): since our training samples of stateand actiona are not
N R i.i.d. due to the sequential nature of MDPs. Below, we review
Onrw = arg min Gy, existing importance-weighting techniques in MDPs.
0
. 1 M X B. Episodic Importance-weights
Griw = MN Z ngm The reference [17] proposed thepisodic importance-

weight (EIW) method which utilizes the independence be-
tween episodes:

P(d,d) = P(d)P(d)

~ 1
‘/g\(s7a;0,D)E(Qﬂ-(s7a;0)— |'D( )| Z r :P(Slvalv"'7SN7aN75N+1)P(S/17a/17"'75/Naa/N75/N+1)'
s,a rEDu.m)

Based on the independence between episodes, the @rror

~ 2 . .
_ DV E [QW(Slva/;e)]) : defined by Eq.(4) can be rewritten as
Dl o5 el N
G= E NZg(sn,an;G)wN ,

where D, ,) is a set of 4-tuple elements containing state P, Pr n=1
s and actiona in the training dgtaD, and ZTGD(W) and \here
Do /€Do ) denote the summation over and s’ in the _ Pr(d)
set D(,,q), respectively. Note that ‘NIW’ stands for ‘No N Pz(d)

Importance Weight' (explained later).
However,w(a|s) is usually different fromr(a|s) in reality
since the current policy is updated in policy iteration. The

P.(d) and P;(d) are the probability densities of observing
episodic datal under policyr and7:

situation wherer(als) is different fromn(als) is calledoff- N
policy. In the off-policy setupfnrw is no longer consistent. Pr(d) = Fi(s1) H (an|sn) Pr(sn1lsn, an),
This inconsistency problem could be avoided by gathering n=1

new samples, i.e., when the current policy is updated, new
samples are gathered following the updated policy and the
new samples are used for policy evaluation. However, when
the data sampling cost is high, this is not cost-efficient-Ve note that the importance weights can be computed
it would be more efficient if we could reuse the previouslyvithout explicitly knowingF and Pr since they are canceled

=

P;(d) = Pi(s1) | | 7(an|sn)Pr(Snt1lsn, an).

n=1

gathered samples. out: Ny
In the following sections, we address the issue of sample wy = H%ﬂ 7T(an|5").
reuse in the off-policy setup. [T 7(an]sn)

Using the training datéD™, we can construct a consistent
Il. | MPORTANCEWEIGHTING TECHNIQUES estimator ofG as

M N
In this section, we review existing off-policy reinforcente Criw = 1 Z Z G (5)
learning techniques. MN =



where N ~ _
Hn’:l ﬂ-(a’;,n/ |S:rn,n’)

N = = — .
Hn’:l Tr(a;rn,n/ |S7rm,n’)

Based on this, the paramet@ris estimated by

wmyN =

Oprw = arg min Ggwy.
]

Fig. 1. 10-state chain walk MDP.

C. Per-decision Importance-weights

0.083; 0.084 0.1114
In the reference [11], a more efficient importance sampling
technique called thper-decision importance-weigfPDIW)
method was proposed. A crucial observation in PDIW is that
the error at thex-th step does not depend on the samples aftec.oss; 0073 55 S 0095 — 1

0.5 1 . .
Flattening parameter v Flattening parameter v Flattening parameter v

the n-th step, i.e., the errafz can be rewritten as

(a) 50 episodes (b) 30 episodes (c) 10 episodes
N
1 ) . . .
G= E — E 9(Sn, n; O)wy, | Fig. 2. Average true errofy over 50 trials, as a function of the flattening
p7pr | N 1 parameterv in the 10-state chain walk problem. The trend @f differs

dependent on the number of episodes.

Using the training dat&>™, we can construct a consistent % oom 14
estimator as follows (cf. Eq.(5))
1 M N
Gppiw = MN Z Z ImnWm n. (6) 0.061; 0.068; == - o111f =5 -

0.5 1 . .
m=1n=1 Flattening parameter v Flattening parameter v Flattening parameter v

Wpm.n in EQ.(6) only contains the relevant terms up to the (&) 50 episodes (b) 30 episodes () 10 episodes

n-th step, Whllewm’N in Eq.(5) includes all the terms until Fig. 3. Average error estimated Byfold IWCV (G apprw), as a function

the end of the episode. of the flattening parameter in the 10-state chain walk problem. IWCV
Based on this, the paramet@rs estimated by nicely captures the trend of the true en@rin the Fig.2

epDIW = arg min Glew.
o

IV. ADAPTIVE PER-DECISION IMPORTANCEWEIGHTS ~ Whenv =0, @spprw is reduced to the ordinary estimator
On1w. Therefore, it has large bias but has relatively small

variance. On the other hand, whenr= 1, @ xpp1w is reduced
to the importance-weighted estimat®pprw. Therefore, it
has small bias but has relatively large variance. In practic
ﬁ{‘ intermediates will yield the best performance.

The importance-weighted estima®spiw (also@EIW) is
guaranteed to be consistent. However, both areeffatient
in the statistical sense [15], i.e., they do not have the lestal
admissible varianée For this reasonpprw can have large
variance in finite sample cases and therefore learning wi
PDIW could be unstable in practice. In this section, wé&. Numerical Examples

propose a new importance-weighting method that is more | order to illustrate how the flattening parameteinflu-

stable than the existing methods. ences the estimaté pprw, we perform policy evaluation in
A. Definition the chain-walk MDPillustrated in Fig.1. The MDP consists

. . . o f 10 states
In order to improve the estimation accuracy, it is |mportan?

to control the trade-off between consistency and efficiency

(or similarly bias and variance) based on the training datand two actions
Here, we introduce dlattening parameter (€ [0,1]) to

control the trade-off by slightly ‘flattening’ the importem

§= {S(i) 1121

A={a"}, = {L,R}.

weights [15], [16]: The reward+1 is given when visitings(") and s(19. The
1 M N transition probabilityPr is indicated by the numbers attached

GAPDIW = —— G (@mn)”, (7) to the arrows in the figure; for exampl&y(s[sM), R) =
MN;; 0.9 and Pr(sW|s), R) = 0.1, meaning that the agent
where APDIW means Adaptive PDIW. Based on this, th€&n successfully move to the right node with probability
paramete® is estimated as follows: 0.9 (mdmated by_ _solld arrows in the figure) and the_actlon
. R fails with probability0.1 (indicated by dashed arrows in the
Oappiw = argemin GappIw. figure). We uses Gaussian kernels with standard deviation

o 10 as basis functions and locate kernel centers at
. 1 5 10 i ; ;
2More precisely, an estimatdd is said to be efficient if it is unbiased s, 5®) and s(19). More specifically, t.he basis functions
and achieves the Cramér-Rao lower-bound [12]. @(s,a) = (P1(s,0a),...,06(s,a)) are defined by



the training part and its approximation error is estimated

(s — ¢;)? using the validation part. Below we explain in more detail
952 ), ()  how we apply IWCV to the selection of the flattening

parameter in the current context.
fori=1,2andj = 1,2,3, where Let us divide a training datas&t™ containing)/ episodes
into K subsets{D7}X | of approximately the same size
(typically K = 5). For simplicity, we assume thal/ is
divisible by K. Let §ipmw be the parameter learned from
{DF, } 12k With APDIW (cf. Eq.(7)). Then, the approxima-
tion error is estimated by

P3(i—1)+5(5,0) = I(a = a(i))exp (—

C1 :1762:5763:10,

and Ui
B if = is trug
I(x) = { 0 if z is not true

We ran the experiments0 times; the sampling policy X
7(a|s) and the current policy:(a|s) were chosen randomly & _ 1 Zék
at every trial such thak # 7. The discount factor was set Wev =T, £ TIWer
at~y = 0.9. The model paramet&apprw Was learned from B
the training sample; and its approximation error was Where
computed from the test samplés,. Ak

e _ i Grwev

ig.2 depicts the true approximation errof averaged N

over 50 trials as a function of the flattening parameter — _ K Z Z?\(S% aF T _ak DH@
for M = 10, 30, 50. Fig.2(a) shows that when the number of M N m,n Tm,ny tmn FAPDIW: Tk STm,n

i i . . 7 7 n=1
episodes is largeM = 50), the approximation error tends e

to decrease as the flattening parameter increases. ThislwoulWe estimate the approximation error by the abdve
be a natural result due to the consistency@bprw when  fold IWCV method for all candidate models (in the current
v = 1. On the other hand, Fig.2(b) shows that when theetting, a candidate model corresponds to a different \@flue
number of episodes is not largé/(= 30), v = 1 performs the flattening parameted and choose the one that minimizes
rather poorly. This implies that the consistent estimatdods the estimated error:

to be unstable when the number of episodes is not large
enough— = 0.7 works the best in this case. Fig.2(c) shows
the results when the number of episodes is further reduced i o~
(M = 10). This illustrates that the consistent estimator with One may think that, for model selectiospprw could

v = 1 is even worse than the ordinary estimator£ 0) be directly used, instead dfwcy. However, it can be
because the bias is dominated by large variance. In tH§oven thatGapprw is heavily biased (or in other words,
case, the best is even smaller and is achieved:at= 0.4. Over-fitted since the same training samples are used twice
The above results show that APDIW can outperform PDIV{er leaming parameters and estimating the approximation
particularly when only a small number of training sample§or [16]. On the other hand, we can prove ti&tvcy

are available, provided that the flattening parameteis IS an almost unbiased estimator @f where ‘almost’ comes

Viweoy = arg min GIWCV-
v

chosen appropriately. from the fact that the number of training samples is reduced
due to data splitting in the cross-validation procedurd.[16
V. AUTOMATIC SELECTION OF THEFLATTENING Note that ordinary CV (without importance weight) is hegvil
PARAMETER biased due to the off-policy setup.

Generally, the best tends to be large (small) when the .

. . .B. Numerical Examples
number of training samples is large (small). However, thiS _
general trend is not sufficient to fine-tune the flattening In order to illustrate how IWCV works, we use the
parameter since the best value ofdepends on training Same numerical examples as Section IV-B. Fig.3 depicts
samples, policies, the model of value functions etc. In thihe approximation error estimated byfold IWCV averaged
section, we discuss how we perfomodel selectioin order over50 trials as a function of the flattening parameteiThe
to choose the best flattening parametexrutomatically from graphs show that IWCV nicely captures the trend of the true

the training data and policies. approximation error for all three cases (cf. Fig.2).
) o Fig.4 describes, as a function of the numh&f of
A. Importance-weighted Cross-validation episodes, the average true approximation error obtained by

As shown in Section IV, the performance of APDIWNIW (APDIW with v = 0), PDIW (APDIW with v = 1),
depends on the choice of the flattening parametédeally, APDIW+IWCV (v € {0.0,0.1,...,0.9,1.0} is selected in
we setr so that the approximation err6t is minimized, but each trial usings-fold IWCV). This result shows that the
true G is inaccessible in practice. To cope with this problemimprovement of the performance by NIW saturates when
we estimate the approximation err6f using importance- M > 30, implying that the bias caused by NIW is not
weighted cross-validatioflWCV) [16]. The basic idea of negligible. The performance of PDIW is worse than NIW
IWCV is to divide the training dat@®~ into a ‘training part when M < 20, which is caused by the large variance of
and a ‘validation part’. Then the parameéeris learned from PDIW. On the other hand, APDIW+IWCYV consistently gives
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Fig. 4. Average true approximation erréf over 50 trials obtained by
NIW (v = 0), PDIW (v = 1), APDIW+IWCYV (v is chosen by IWCV) in Fig. 5. The performance of policies learned in three scesati = 0,

the 10-state chain-walk MDP. v = 1, and SRPIy is chosen by IWCV) in the 10-state chain-walk problem.
good performance for all/, illustrating the strong adaptation r
ability of the proposed method. 0.9f

VI. SAMPLE-REUSEPOLICY ITERATION (SRPI) 0.8f

So far, we have only used our proposed APDIW+IWCV g o.7}

method in the context of policy evaluation. In this section, £
. . . o 0.6f

we extend the method to the full policy-iteration setup. =
. 2050

A. Algorithm 2
Let us denote the policy at théth iteration by m & %4
and the maximum number of iterations k. In gen-  $oasf

eral policy-iteration methods, new data sampi% are

collected following the new policyr; during the policy

evaluation step. Thus, previously-collected data sample 0-1f

{D™,D™, ..., D™~} are not used: 0 . . . . . . . ,

5 10 15 20 25 30 35 40 45
Total number of episodes

EAD™} ~p T EA{D™2} ~q0 T 1
m P G Loy B G L Ly
Fig. 6. Average flattening parameter used by SRPI @fertrials as a
where E : {D} indicates policy evaluation using the datafunction of total number of episodes in the 10-state chaativproblem.

sample D. It would be more cost-efficient if we could

reuse all previously-collected data samples to perforricpol whereG'yppyy is the approximation error estimated at the
evaluation with a growing dataset as: th policy evaluation using APDIW. The flattening parameter

v; is chosen based on IWCV before performing policy

BB 5 o L. Ln evaluation. We call thisample-reuse policy iteratiofSRPI).

m Q™ =
Reusing prewously collected data samples turns this in{9 Numerical Examples
anoff-policyscenario as the previous policies and the current
policy are different unless the current policy has conveitge . . S . .
the optimal one. Here, we propose using APDIW+IWCYV in tSecl:Itlor: \t/BhaISOSQP;[he pli)llc\);vlteratlor& cotrr:text in_order
policy iteration. For this purpose, we extend the definitodn 0 lustrate how works. We consider three scenarios:

. : o is fixed at0, v is fixed at1, and SRPI wherev is
Gapprw SO that multiple sampling policiegry, 72, . .., 7} v ! '
are taken into account: chosen by IWCV. The agent collects sampe% at every

! . pol|cy iteration following the current policy;, and computes
0 A ppIW Eargemm GApPDIW: OAPDIW from all collected sample§D™, D™, ..., D"}
using EQ.(9). We use Gaussian kernels defmed by EQ.(8)

I E {D™1,D"2} ~
—

We will use the system from the numerical examples in

! M N except that kernel centefg;, c2, c3} are randomly selected
GAPDIW S Z Z Za(sgln’a:’?‘i,n; from the state spacé every trial. The initial policyr; is
IMN I'=1m=1n=1 ’ ’ chosen randomly and policy improvement is carried out by
a™ |s™ v the Gibbs policy (2) withr = 21.
1 7Tl m,n’ |Sm,n’)

6.{D™},_)) ”’*

7TL/ | ™ )
=1 7Tl m,n’ Sm,n’

, (9) Fig.5 depicts the average sum of discounted rewards over
30 trials whenM = 5 with a fixed number of stepsV =
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Fig. 7. lllustration of inverted pendulum. _1al ‘\‘
A
Y
| Parameter | Value | Mo 20 30 40 50 e 70 8 9
Mass of the carthV 8[kg] Total number of episodes
Mass of the rodw Q[kg] Fig. 9. The results of sample-reuse policy iteration in tektof swing-up
Length of the rodd 0.5[m] inverted-pendulum.
Simulation time stepAt | 0.1[s]

spaceA is discrete and described by

Fig. 8. Parameters used in the inverted-pendulum simulatio A= {5()7 —50, 0} [kg . m/SQ]

We note that the force itself is not strong enough to swing the

. rod up; so the cart needs to be moved back and forth several
10). '_I'he graphs_ show_ that SRPI prowdes_ stable and f fes to swing the rod up. The state spatés continuous
learning of policies while the performance improvement of ' . cicie of the angle [rad] (¢ [0,2x]) and the angular
policies learned withy = 0 saturates in early iterations. TheVelocity & [rad/s] (€ [, 7])—thus 7a state is described
gﬁghsogovxgghzg;ilngagérslprove policies well but its progress two-dimensional vectos = (¢,¢)". Fig.8 shows the

; . ' , [parameter setting used in the simulation. The angland
Fig.6 depicts the average value of the flattening parame gﬁgular velocity are updated [18] as follows:

used in SRPI as a function of the total number of episodes.
The graphs show that the value of the flattening parametes; . =p:+ o1 At,
chosen by IWCV tends to rise in the beginning and go down . _ awd(g:)?sin(2¢;)
later. At first sight, this does not agree with the generalpt+1:(pt+9'8 sin(¢r) o 2 5 t+acos(piar
trend of preferring a low-variance estimator in early stage 7 —owd cos® ()

and preferring a low-bias estimator later—but his result ighereq = 1/(W + w) anda, is the action € A) chosen at
still_consistent with the general trend. When the sum qfme ¢. We define the reward functioR(s, a, s') as
discounted rewards increase rapidly (the total numbers of

episodes is up td5 in Fig.6), the value of the flattening R(s,a,s") = cos(ps),

parameter increases (see Fig.5). After that, the sum of d'vsvhere@s/ denotes the angle of states’.

counteq re.Ward.S does not increase anymore (see Fig.5) SN%ve useds Gaussian kernels with standard deviatior-
the policy iteration has already been converged. Then it is : :
: . .7 as basis functions, and arrange kernel centers over the
natural to prefer a smaller flattening parameter (Fig.63esin . . .
. ) . following grid points:
the sample selection bias becomes mild after convergence.
These results show that SRPI can effectively reuse {0,2/3m,4/3xm, 27} x {—3xm, —m, 7, 37}
previously-collected samples by appropriately tuningflae

tening parameter according to the condition of data sample-gIat is, the basis functions ¢(s,a) =
policies etc. {91(s,a),...,d16(s,a)} are set as

At,
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VII. EXPERIMENTS Pro(i—1)+4(s,a) = I(a = a@)exp (_|s27023|) ,
In this section, we evaluate the performance of our pro- ' 7

posed method SRPI in swing-up inverted pendulum problerfPf @ =1,2,3 andj = 1,2,...,16, where

We consider the task o$wing-up inverted pendulurfB] — (0.—30) T ¢y = (0. —m) T — (97307

illustrated in Fig.7, consisting of a rod hinged at the toof c1=(0,=3m) o = (0,=m) oy ez = (2, 3m)

cart. The goal of the task is to swing the rod up by moving The initial policy 71 (a|s) is chosen randomly, and the

the cart. We have three actions: applying positive for&® initial-state probability densityP(s) is set to be uniform.

[kg - m/s%) to the cart to move right, negative forees0 to  The agent collects data samp®& (M = 10 and N = 100)

move left, and zero force to just coast. That is, the actioat each policy iteration following the current poliey. The



discounted factor is set af = 0.95 and the policy is
improved by the Gibbs policy (2) with = 1.

Fig.9 describes the performance of learned policies. They,
graph shows that SRPI nicely improves the performance
throughout entire policy iteration. On the other hand, the p
formance when the flattening parameter is fixed at 0 or
v = 1 is not properly improved after the middle of iterations[13]
This result indicates that the flattening parameter is well-
adjusted to reuse the previously-collected samples efédgt |14
for policy evaluation, and thus SRPI can outperform the iothe
methods.

[10]

[12]

[15]

VIII. CONCLUSIONS ANDOUTLOOK

16
Instability has been one of the critical limitations of[ ]

importance-sampling techniques, which often makes off-
policy methods impractical. To overcome this weakness, we’
introduced anadaptiveimportance-sampling technique for[ig
controlling the trade-off between consistency and stbili

in value function approximation. We further provided an
automatic model selection method for actively choosing the
trade-off parameter. We also proposed using the adaptive
importance-sampling technique in policy iteration for effi
ciently reusing previously-collected data samples. Thpeex
imental results showed that the proposed method compares
favorably with existing approaches.

The method presented in this paper may be extended
to policy gradient methods where the need for the sam-
ple reuse is even more urgent as small gradient-descent
steps result into an under utilization of the data. While
importance-sampling has been applied in the settings of
policy gradient methods [14], [7], policy gradient methods
tend to be unstable when used with standard importance
sampling methods [5], [9]—the proposed methods would
offer an interesting alternative. Similarly, it can be aeglin
EM-based methods such as the reward-weighted regression
[8], and dynamical-programming based methods such as the
policy search by dynamic programming [1].
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