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Abstract— Off-policy reinforcement learning is aimed at
efficiently using data samples gathered from a policy that
is different from the currently optimized policy. A common
approach is to use importance sampling techniques for com-
pensating for the bias of value function estimators caused by
the difference between the data-sampling policy and the target
policy. However, existing off-policy methods often do not take
the variance of the value function estimators explicitly into
account and therefore their performance tends to be unstable.
To cope with this problem, we propose using an adaptive
importance sampling technique which allows us to actively
control the trade-off between bias and variance. We further
provide a method for optimally determining the trade-off
parameter based on a variant of cross-validation. The usefulness
of the proposed approach is demonstrated through simulated
swing-up inverted-pendulum problem.

I. I NTRODUCTION

Policy iterationis a reinforcement learning setup where the
optimal policy is obtained by iteratively performing policy
evaluation and improvement steps [17], [2]. When policies
are updated, many popular policy iteration methods require
the user to gather new samples following the updated policy,
and the new samples are used forvalue function approxima-
tion. However, this approach is inefficient particularly when
the sampling cost is high and it would be more cost-efficient
if we could reuse the data collected in the past. A situation
where the sampling policy (a policy used for gathering data
samples) and the current policy are different is calledoff-
policy reinforcement learning [17].

In the off-policy setup, simply employing a standard policy
iteration method such asleast-squarespolicy iteration [6]
does not lead to the optimal policy as the sampling policy
can introduce bias into value function approximation. This
distribution mismatch problem can be eased by the use
of importance samplingtechniques [4], which cancel the
bias asymptotically. However, the approximation error is not
necessarily small when the bias is reduced by importance
sampling; the variance of estimators also needs to be taken
into account since the approximation error is the sum of
squared bias and variance. Due to large variance, existing
importance sampling techniques tend to be unstable [17],
[11].
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To overcome the instability problem, we propose using
an adaptive importance samplingtechnique used in statis-
tics [15]. The proposed adaptive method, which smoothly
bridges the ordinary estimator and importance-weighted es-
timator, allows us to control the trade-off between bias and
variance. Thus, given that the trade-off parameter is deter-
mined carefully, the optimal performance can be achieved
in terms of both bias and variance. However, the optimal
value of the trade-off parameter is heavily dependent on data
samples and policies, and therefore using a pre-determined
parameter value may not be always effective in practice.

For optimally choosing the value of the trade-off parame-
ter, we propose using an automatic model selection method
based on a variant of cross-validation [16]. The method called
importance-weighted cross-validationenables us to estimate
the approximation error of value functions in an almost
unbiased manner even under off-policy situations. Thus we
can adaptively choose the trade-off parameter based on data
samples at hand. The usefulness of the proposed approach is
demonstrated through simulated swing-up inverted-pendulum
problem.

II. BACKGROUND AND NOTATION

In this section, we review how Markov decision problems
can be solved using policy iteration based on value functions.

A. Markov Decision Problems

Let us consider a Markov decision problem (MDP) speci-
fied by(S,A, PT, R, γ), whereS is a set of states,A is a set
of actions,PT(s′|s, a) (∈ [0, 1]) is the transition probability-
density from states to next states′ when actiona is taken,
R(s, a, s′) (∈ R) is a reward for transition froms to s′ by
taking actiona, γ ∈ (0, 1] is the discount factor for future
rewards. Letπ(a|s) ∈ [0, 1] be a stochastic policy which is
the conditional probability density of taking actiona given
state s. The state-action value functionQπ(s, a) ∈ R for
policy π is the expected discounted sum of rewards the agent
will receive when taking actiona in states and following
policy π thereafter, i.e.,

Qπ(s, a) ≡ E
π,PT

[
∞∑

n=1

γn−1R(sn, an, sn+1)
∣∣∣ s1 = s, a1 = a

]
,

whereEπ,PT denotes the expectation over{sn, an}
∞
n=1 fol-

lowing π(an|sn) andPT(sn+1|sn, an).
The goal of reinforcement learning is to obtain the policy

which maximizes the sum of future rewards; the optimal



policy can be expressed1 as

π∗(a|s) ≡ δ(a − argmax
a′

Q∗(s, a′)),

where δ(·) is the Dirac delta function andQ∗(s, a) is the
optimal state-action value function defined by

Q∗(s, a) ≡ max
π

Qπ(s, a).

Qπ(s, a) can be expressed as the following recurrent form
called theBellman equation[17]:

Qπ(s, a) = R(s, a) + γ E
PT(s′|s,a)

E
π(a′|s′)

[Qπ(s′, a′)] , (1)

whereR(s, a) is the expected reward function when the agent
takes actiona in states:

R(s, a) ≡ E
PT(s′|s,a)

[R(s, a, s′)] .

EPT(s′|s,a) denotes the conditional expectation ofs′ over
PT(s′|s, a) given s and a. Eπ(a′|s′) denotes the conditional
expectation ofa′ over π(a′|s′) given s′.

B. Policy Iteration

The computation of the value functionQπ(s, a) is called
policy evaluation. UsingQπ(s, a), we can find a better policy
π′(a|s) by

π′(a|s) = δ(a − argmax
a′

Qπ(s, a′)).

This is called (greedy)policy improvement. It is known that
repeating policy evaluation and policy improvement results
in the optimal policyπ∗(a|s) [17]. This entire process is
calledpolicy iteration:

π1
E
→ Qπ1

I
→ π2

E
→ Qπ2

I
→ π3

E
→ · · ·

I
→ π∗,

where π1 is an initial policy, E and I indicate policy
evaluationand improvementsteps respectively. For technical
reasons, we assume that all policies are strictly positive (i.e.,
all actions have non-zero probability densities). In orderto
guarantee this, we use policy improvement which generates
explorative policies such as theGibbs policyand theǫ-greedy
policy. In the case of the Gibbs policy,

π′(a|s) =
exp(Qπ(s, a)/τ)∫

A
exp(Qπ(s, a′)/τ) da′

, (2)

whereτ is a positive parameter which determines the ran-
domness of the new policyπ′. In the case of theǫ-greedy
policy,

π′(a|s) =

{
1 − ǫ + ǫ/|A| if a = a∗,

ǫ/|A| otherwise,
(3)

where
a∗ = arg max

a
Qπ(s, a),

and ǫ ∈ (0, 1] determines how stochastic the new policyπ′

is.

1We assume that given states there is only one action maximizing the
optimal value functionQ∗(s, a).

C. Value Function Approximation

Although policy iteration is guaranteed to produce the
optimal policy, it is often computationally intractable since
the number of state-action pairs|S| × |A| is very large;|S|
or |A| becomes infinite when the state space or action space
is continuous. To overcome this problem, the authors of the
references [17], [10], [6] proposed to approximate the state-
action value functionQπ(s, a) using the following linear
model:

Q̂π(s, a; θ) ≡

B∑

b=1

θbφb(s, a) = θ⊤φ(s, a),

where

φ(s, a) = (φ1(s, a), φ2(s, a), . . . , φB(s, a))⊤

are the fixed basis functions,⊤ denotes the transpose,B is
the number of basis functions, and

θ = (θ1, θ2, . . . , θB)⊤

are model parameters. Note thatB is usually chosen to
be much smaller than|S| × |A|. For N -step transitions,
we ideally want to learn the parametersθ so that the
approximation error is minimized:

min
θ

E
PI,π,PT

[
1

N

N∑

n=1

(
Q̂π(sn, an; θ) − Qπ(sn, an)

)2
]

,

where EPI,π,PT denotes the expectation over{sn, an}
N
n=1

following the initial-state probability densityPI(s1), the
policy π(an|sn), and the transition probability density
PT(sn+1|sn, an).

A fundamental problem of the above formulation is that
the target functionQπ(s, a) cannot be observed directly. To
cope with this problem, we use the square of the Bellman
residual [13], [6] as

θ∗ ≡ argmin
θ

G,

G ≡ E
PI,π,PT

[
1

N

N∑

n=1

g(sn, an; θ)

]
, (4)

g(s, a; θ) ≡
(
Q̂π(s, a; θ) − R(s, a)

− γ E
PT(s′|s,a)

E
π(a′|s′)

[
Q̂π(s′, a′; θ)

] )2

,

whereg(s, a; θ) is the approximation error for one step(s, a)
derived from the Bellman equation (1).

D. On-policy vs. Off-policy

We suppose that a dataset consisting ofM episodes
of N steps is available. The agent initially starts from a
randomly selected states1 following the initial-state prob-
ability density PI(s) and chooses an action based on a
sampling policỹπ(an|sn). Then the agent makes a transition
following PT(sn+1|sn, an) and receives a rewardrn (=



R(sn, an, sn+1)). This is repeated forN steps—thus the
training dataDeπ is expressed as

Deπ ≡ {deπ
m}M

m=1,

where each episodic sampledeπ
m consists of a set of4-tuple

elements as

deπ
m ≡ {(seπ

m,n, aeπ
m,n, reπ

m,n, seπ
m,n+1)}

N
n=1.

We use two types of policies which have different pur-
poses: thesampling policyπ̃(a|s) for collecting data sam-
ples and thecurrent policyπ(a|s) for computing the value
function Q̂π. When π̃(a|s) is equal toπ(a|s) (the situation
calledon-policy), just replacing the expectation contained in
the errorG by sample averages gives aconsistentestimator
(i.e., the estimated parameter converges to the optimal value
as the numberM of episodes goes to infinity):

θ̂NIW ≡ argmin
θ

ĜNIW,

ĜNIW ≡
1

MN

M∑

m=1

N∑

n=1

ĝm,n,

ĝm,n ≡ ĝ(seπ
m,n, aeπ

m,n; θ,Dπ),

ĝ(s, a; θ,D) ≡
(
Q̂π(s, a; θ) −

1

|D(s,a)|

∑

r∈D(s,a)

r

−
γ

|D(s,a)|

∑

s′∈D(s,a)

E
π(a′|s′)

[Q̂π(s′, a′; θ)]
)2

,

whereD(s,a) is a set of 4-tuple elements containing state
s and actiona in the training dataD, and

∑
r∈D(s,a)

and∑
s′∈D(s,a)

denote the summation overr and s′ in the
set D(s,a), respectively. Note that ‘NIW’ stands for ‘No
Importance Weight’ (explained later).

However,π̃(a|s) is usually different fromπ(a|s) in reality
since the current policy is updated in policy iteration. The
situation wherẽπ(a|s) is different fromπ(a|s) is calledoff-
policy. In the off-policy setup,̂θNIW is no longer consistent.
This inconsistency problem could be avoided by gathering
new samples, i.e., when the current policy is updated, new
samples are gathered following the updated policy and the
new samples are used for policy evaluation. However, when
the data sampling cost is high, this is not cost-efficient—
it would be more efficient if we could reuse the previously
gathered samples.

In the following sections, we address the issue of sample
reuse in the off-policy setup.

III. I MPORTANCE-WEIGHTING TECHNIQUES

In this section, we review existing off-policy reinforcement
learning techniques.

A. Importance Sampling

Importance samplingis a general technique for dealing
with the off-policy situation. Suppose we have i.i.d. (inde-
pendent and identically distributed) samples{xm}M

m=1 from
a strictly positive probability density functioñP (x). Using
these samples, we would like to compute the expectation
of a functiong(x) over another probability density function
P (x). A consistent approximation of the expectation is given
by the importance-weightedaverage as follows:

1

M

M∑

m=1

g(xm)
P (xm)

P̃ (xm)

M→∞
−→ E

eP (x)

[
g(x)

P (x)

P̃ (x)

]

=

∫
g(x)

P (x)

P̃ (x)
P̃ (x)dx =

∫
g(x)P (x)dx = E

P (x)
[g(x)] .

However, applying the importance sampling technique in
off-policy reinforcement learning is not that straightforward
since our training samples of states and actiona are not
i.i.d. due to the sequential nature of MDPs. Below, we review
existing importance-weighting techniques in MDPs.

B. Episodic Importance-weights

The reference [17] proposed theepisodic importance-
weight (EIW) method which utilizes the independence be-
tween episodes:

P (d, d′) = P (d)P (d′)

=P (s1, a1, . . . , sN , aN , sN+1)P (s′1, a
′
1, . . . , s

′
N , a′

N , s′N+1).

Based on the independence between episodes, the errorG
defined by Eq.(4) can be rewritten as

G = E
PI,eπ,PT

[
1

N

N∑

n=1

g(sn, an; θ)wN

]
,

where

wN ≡
Pπ(d)

Peπ(d)
.

Pπ(d) and Peπ(d) are the probability densities of observing
episodic datad under policyπ and π̃:

Pπ(d) ≡ PI(s1)

N∏

n=1

π(an|sn)PT(sn+1|sn, an),

Peπ(d) ≡ PI(s1)

N∏

n=1

π̃(an|sn)PT(sn+1|sn, an).

We note that the importance weights can be computed
without explicitly knowingPI andPT since they are canceled
out:

wN =

∏N

n=1 π(an|sn)
∏N

n=1 π̃(an|sn)
.

Using the training dataDeπ, we can construct a consistent
estimator ofG as

ĜEIW ≡
1

MN

M∑

m=1

N∑

n=1

ĝm,nŵm,N , (5)



where

ŵm,N ≡

∏N
n′=1 π(aeπ

m,n′ |seπ
m,n′)

∏N
n′=1 π̃(aeπ

m,n′ |seπ
m,n′)

.

Based on this, the parameterθ is estimated by

θ̂EIW ≡ arg min
θ

ĜEIW.

C. Per-decision Importance-weights

In the reference [11], a more efficient importance sampling
technique called theper-decision importance-weight(PDIW)
method was proposed. A crucial observation in PDIW is that
the error at then-th step does not depend on the samples after
the n-th step, i.e., the errorG can be rewritten as

G = E
PI,eπ,PT

[
1

N

N∑

n=1

g(sn, an; θ)wn

]
.

Using the training dataDeπ , we can construct a consistent
estimator as follows (cf. Eq.(5))

ĜPDIW ≡
1

MN

M∑

m=1

N∑

n=1

ĝm,nŵm,n. (6)

ŵm,n in Eq.(6) only contains the relevant terms up to the
n-th step, whileŵm,N in Eq.(5) includes all the terms until
the end of the episode.

Based on this, the parameterθ is estimated by

θ̂PDIW ≡ arg min
θ

ĜPDIW.

IV. A DAPTIVE PER-DECISION IMPORTANCE-WEIGHTS

The importance-weighted estimatorθ̂PDIW (alsoθ̂EIW) is
guaranteed to be consistent. However, both are notefficient
in the statistical sense [15], i.e., they do not have the smallest
admissible variance2. For this reason,̂θPDIW can have large
variance in finite sample cases and therefore learning with
PDIW could be unstable in practice. In this section, we
propose a new importance-weighting method that is more
stable than the existing methods.

A. Definition

In order to improve the estimation accuracy, it is important
to control the trade-off between consistency and efficiency
(or similarly bias and variance) based on the training data.
Here, we introduce aflattening parameterν (∈ [0, 1]) to
control the trade-off by slightly ‘flattening’ the importance
weights [15], [16]:

ĜAPDIW ≡
1

MN

M∑

m=1

N∑

n=1

ĝm,n(ŵm,n)ν , (7)

where APDIW means Adaptive PDIW. Based on this, the
parameterθ is estimated as follows:

θ̂APDIW ≡ argmin
θ

ĜAPDIW.

2More precisely, an estimatorbθ is said to be efficient if it is unbiased
and achieves the Cramér-Rao lower-bound [12].
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Fig. 1. 10-state chain walk MDP.
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Fig. 2. Average true errorG over 50 trials, as a function of the flattening
parameterν in the 10-state chain walk problem. The trend ofG differs
dependent on the number of episodes.
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Fig. 3. Average error estimated by5-fold IWCV ( bGAPDIW), as a function
of the flattening parameterν in the 10-state chain walk problem. IWCV
nicely captures the trend of the true errorG in the Fig.2

When ν = 0, θ̂APDIW is reduced to the ordinary estimator
θ̂NIW. Therefore, it has large bias but has relatively small
variance. On the other hand, whenν = 1, θ̂APDIW is reduced
to the importance-weighted estimatorθ̂PDIW. Therefore, it
has small bias but has relatively large variance. In practice,
an intermediateν will yield the best performance.

B. Numerical Examples

In order to illustrate how the flattening parameterν influ-
ences the estimator̂θAPDIW, we perform policy evaluation in
the chain-walk MDPillustrated in Fig.1. The MDP consists
of 10 states

S = {s(i)}10
i=1

and two actions

A = {a(i)}2
i=1 = {L, R}.

The reward+1 is given when visitings(1) and s(10). The
transition probabilityPT is indicated by the numbers attached
to the arrows in the figure; for example,PT(s(2)|s(1), R) =
0.9 and PT(s(1)|s(1), R) = 0.1, meaning that the agent
can successfully move to the right node with probability
0.9 (indicated by solid arrows in the figure) and the action
fails with probability0.1 (indicated by dashed arrows in the
figure). We use6 Gaussian kernels with standard deviation
σ = 10 as basis functions and locate kernel centers at
s(1), s(5) and s(10). More specifically, the basis functions
φ(s, a) = (φ1(s, a), . . . , φ6(s, a)) are defined by



φ3(i−1)+j(s, a) = I(a = a(i))exp

(
−

(s − cj)
2

2σ2

)
, (8)

for i = 1, 2 andj = 1, 2, 3, where

c1 = 1, c2 = 5, c3 = 10,

and

I(x) =

{
1 if x is true,
0 if x is not true,

We ran the experiments50 times; the sampling policy
π̃(a|s) and the current policyπ(a|s) were chosen randomly
at every trial such that̃π 6= π. The discount factor was set
at γ = 0.9. The model parameter̂θAPDIW was learned from
the training samplesDeπ and its approximation error was
computed from the test samplesDπ.

Fig.2 depicts the true approximation errorG averaged
over 50 trials as a function of the flattening parameterν
for M = 10, 30, 50. Fig.2(a) shows that when the number of
episodes is large (M = 50), the approximation error tends
to decrease as the flattening parameter increases. This would
be a natural result due to the consistency ofθ̂APDIW when
ν = 1. On the other hand, Fig.2(b) shows that when the
number of episodes is not large (M = 30), ν = 1 performs
rather poorly. This implies that the consistent estimator tends
to be unstable when the number of episodes is not large
enough—ν = 0.7 works the best in this case. Fig.2(c) shows
the results when the number of episodes is further reduced
(M = 10). This illustrates that the consistent estimator with
ν = 1 is even worse than the ordinary estimator (ν = 0)
because the bias is dominated by large variance. In this
case, the bestν is even smaller and is achieved atν = 0.4.
The above results show that APDIW can outperform PDIW
particularly when only a small number of training samples
are available, provided that the flattening parameterν is
chosen appropriately.

V. AUTOMATIC SELECTION OF THEFLATTENING

PARAMETER

Generally, the bestν tends to be large (small) when the
number of training samples is large (small). However, this
general trend is not sufficient to fine-tune the flattening
parameter since the best value ofν depends on training
samples, policies, the model of value functions etc. In this
section, we discuss how we performmodel selectionin order
to choose the best flattening parameterν automatically from
the training data and policies.

A. Importance-weighted Cross-validation

As shown in Section IV, the performance of APDIW
depends on the choice of the flattening parameterν. Ideally,
we setν so that the approximation errorG is minimized, but
trueG is inaccessible in practice. To cope with this problem,
we estimate the approximation errorG using importance-
weighted cross-validation(IWCV) [16]. The basic idea of
IWCV is to divide the training dataDeπ into a ‘training part’
and a ‘validation part’. Then the parameterθ is learned from

the training part and its approximation error is estimated
using the validation part. Below we explain in more detail
how we apply IWCV to the selection of the flattening
parameterν in the current context.

Let us divide a training datasetDeπ containingM episodes
into K subsets{Deπ

k}
K
k=1 of approximately the same size

(typically K = 5). For simplicity, we assume thatM is

divisible by K. Let θ̂
k

APDIW be the parameter learned from
{Deπ

k′}k′ 6=k with APDIW (cf. Eq.(7)). Then, the approxima-
tion error is estimated by

ĜIWCV =
1

K

K∑

k=1

Ĝk
IWCV,

where

Ĝk
IWCV

=
K

MN

∑

deπ
m∈Deπ

k

N∑

n=1

ĝ(seπ
m,n, aeπ

m,n, reπ
m,n; θ̂

k

APDIW,Deπ
k )ŵm,n.

We estimate the approximation error by the aboveK-
fold IWCV method for all candidate models (in the current
setting, a candidate model corresponds to a different valueof
the flattening parameterν) and choose the one that minimizes
the estimated error:

ν̂IWCV = arg min
ν

ĜIWCV.

One may think that, for model selection,̂GAPDIW could
be directly used, instead of̂GIWCV. However, it can be
proven thatĜAPDIW is heavily biased (or in other words,
over-fitted) since the same training samples are used twice
for learning parameters and estimating the approximation
error [16]. On the other hand, we can prove thatĜIWCV

is an almost unbiased estimator ofG, where ‘almost’ comes
from the fact that the number of training samples is reduced
due to data splitting in the cross-validation procedure [16].
Note that ordinary CV (without importance weight) is heavily
biased due to the off-policy setup.

B. Numerical Examples

In order to illustrate how IWCV works, we use the
same numerical examples as Section IV-B. Fig.3 depicts
the approximation error estimated by5-fold IWCV averaged
over50 trials as a function of the flattening parameterν. The
graphs show that IWCV nicely captures the trend of the true
approximation error for all three cases (cf. Fig.2).

Fig.4 describes, as a function of the numberM of
episodes, the average true approximation error obtained by
NIW (APDIW with ν = 0), PDIW (APDIW with ν = 1),
APDIW+IWCV (ν ∈ {0.0, 0.1, . . . , 0.9, 1.0} is selected in
each trial using5-fold IWCV). This result shows that the
improvement of the performance by NIW saturates when
M ≥ 30, implying that the bias caused by NIW is not
negligible. The performance of PDIW is worse than NIW
when M ≤ 20, which is caused by the large variance of
PDIW. On the other hand, APDIW+IWCV consistently gives
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Fig. 4. Average true approximation errorG over 50 trials obtained by
NIW (ν = 0), PDIW (ν = 1), APDIW+IWCV (ν is chosen by IWCV) in
the 10-state chain-walk MDP.

good performance for allM , illustrating the strong adaptation
ability of the proposed method.

VI. SAMPLE-REUSEPOLICY ITERATION (SRPI)

So far, we have only used our proposed APDIW+IWCV
method in the context of policy evaluation. In this section,
we extend the method to the full policy-iteration setup.

A. Algorithm

Let us denote the policy at thel-th iteration by πl

and the maximum number of iterations byL. In gen-
eral policy-iteration methods, new data samplesDπl are
collected following the new policyπl during the policy
evaluation step. Thus, previously-collected data samples
{Dπ1 ,Dπ2 , ...,Dπl−1} are not used:

π1
E:{Dπ1}

→ Q̂π1
I
→ π2

E:{Dπ2}
−→ Q̂π3

I
→ · · ·

I
−→ πL,

where E : {D} indicates policy evaluation using the data
sample D. It would be more cost-efficient if we could
reuse all previously-collected data samples to perform policy
evaluation with a growing dataset as:

π1
E:{Dπ1}
−→ Q̂π1

I
→ π2

E:{Dπ1 ,Dπ2}
−→ Q̂π3

I
→ · · ·

I
−→ πL.

Reusing previously collected data samples turns this into
anoff-policyscenario as the previous policies and the current
policy are different unless the current policy has converged to
the optimal one. Here, we propose using APDIW+IWCV in
policy iteration. For this purpose, we extend the definitionof
ĜAPDIW so that multiple sampling policies{π1, π2, . . . , πl}
are taken into account:

θ̂
l

APDIW ≡ arg min
θ

Ĝl
APDIW,

Ĝl
APDIW ≡

1

lMN

l∑

l′=1

M∑

m=1

N∑

n=1

ĝ(sπl′

m,n, aπl′

m,n;

θ, {Dπl′ }l
l′=1)

(∏n

n′=1 πl(a
πl′

m,n′ |s
πl′

m,n′)∏n

n′=1 πl′(a
πl′

m,n′ |s
πl′

m,n′)

)νl

, (9)

5 10 15 20 25 30 35 40 45

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

Total number of episodes

S
u

m
 o

f 
d

is
co

u
n

te
d

 r
e

w
a

rd
s

ν=0

ν=1

ν= ν
IWCV

^ 

Fig. 5. The performance of policies learned in three scenarios: ν = 0,
ν = 1, and SRPI (ν is chosen by IWCV) in the 10-state chain-walk problem.
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Fig. 6. Average flattening parameter used by SRPI over30 trials as a
function of total number of episodes in the 10-state chain-walk problem.

whereĜl
APDIW is the approximation error estimated at thel-

th policy evaluation using APDIW. The flattening parameter
νl is chosen based on IWCV before performing policy
evaluation. We call thissample-reuse policy iteration(SRPI).

B. Numerical Examples

We will use the system from the numerical examples in
Section V-B also in the policy iteration context in order
to illustrate how SRPI works. We consider three scenarios:
ν is fixed at 0, ν is fixed at 1, and SRPI whereν is
chosen by IWCV. The agent collects samplesDπl at every
policy iteration following the current policyπl, and computes

θ̂
l

APDIW from all collected samples{Dπ1 ,Dπ2 , . . . ,Dπl}
using Eq.(9). We use Gaussian kernels defined by Eq.(8)
except that kernel centers{c1, c2, c3} are randomly selected
from the state spaceS every trial. The initial policyπ1 is
chosen randomly and policy improvement is carried out by
the Gibbs policy (2) withτ = 2l.

Fig.5 depicts the average sum of discounted rewards over
30 trials whenM = 5 with a fixed number of steps (N =



�
Fig. 7. Illustration of inverted pendulum.

Parameter Value

Mass of the cart,W 8[kg]
Mass of the rod,w 2[kg]
Length of the rod,d 0.5[m]

Simulation time step,∆t 0.1[s]

Fig. 8. Parameters used in the inverted-pendulum simulation.

10). The graphs show that SRPI provides stable and fast
learning of policies while the performance improvement of
policies learned withν = 0 saturates in early iterations. The
method withν = 1 can improve policies well but its progress
tends to be behind SRPI.

Fig.6 depicts the average value of the flattening parameter
used in SRPI as a function of the total number of episodes.
The graphs show that the value of the flattening parameter
chosen by IWCV tends to rise in the beginning and go down
later. At first sight, this does not agree with the general
trend of preferring a low-variance estimator in early stages
and preferring a low-bias estimator later—but his result is
still consistent with the general trend. When the sum of
discounted rewards increase rapidly (the total numbers of
episodes is up to15 in Fig.6), the value of the flattening
parameter increases (see Fig.5). After that, the sum of dis-
counted rewards does not increase anymore (see Fig.5) since
the policy iteration has already been converged. Then it is
natural to prefer a smaller flattening parameter (Fig.6) since
the sample selection bias becomes mild after convergence.

These results show that SRPI can effectively reuse
previously-collected samples by appropriately tuning theflat-
tening parameter according to the condition of data samples,
policies etc.

VII. E XPERIMENTS

In this section, we evaluate the performance of our pro-
posed method SRPI in swing-up inverted pendulum problem.
We consider the task ofswing-up inverted pendulum[3]
illustrated in Fig.7, consisting of a rod hinged at the top ofa
cart. The goal of the task is to swing the rod up by moving
the cart. We have three actions: applying positive force+50
[kg ·m/s2] to the cart to move right, negative force−50 to
move left, and zero force to just coast. That is, the action
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Fig. 9. The results of sample-reuse policy iteration in the task of swing-up
inverted-pendulum.

spaceA is discrete and described by

A = {50,−50, 0} [kg · m/s2].

We note that the force itself is not strong enough to swing the
rod up; so the cart needs to be moved back and forth several
times to swing the rod up. The state spaceS is continuous
and consists of the angleϕ [rad] (∈ [0, 2π]) and the angular
velocity ϕ̇ [rad/s] (∈ [−π, π])—thus, a states is described
by two-dimensional vectors = (ϕ, ϕ̇)⊤. Fig.8 shows the
parameter setting used in the simulation. The angleϕ and
angular velocityϕ̇ are updated [18] as follows:

ϕt+1 =ϕt+ϕ̇t+1∆t,

ϕ̇t+1 =ϕ̇t+
9.8 sin(ϕt)−

αwd(ϕ̇t)
2 sin(2ϕt)
2 +α cos(ϕt)at

4l
3 −αwd cos2(ϕt)

∆t,

whereα = 1/(W + w) andat is the action (∈ A) chosen at
time t. We define the reward functionR(s, a, s′) as

R(s, a, s′) = cos(ϕs′ ),

whereϕs′ denotes the angleϕ of states′.
We use48 Gaussian kernels with standard deviationσ =

π as basis functions, and arrange kernel centers over the
following grid points:

{0, 2/3π, 4/3π, 2π}× {−3π,−π, π, 3π}.

That is, the basis functions φ(s, a) =
{φ1(s, a), . . . , φ16(s, a)} are set as

φ16(i−1)+j(s, a) = I(a = a(i))exp

(
−
‖s− cj‖

2

2σ2

)
,

for i = 1, 2, 3 andj = 1, 2, . . . , 16, where

c1 = (0,−3π)⊤, c2 = (0,−π)⊤, . . . , c12 = (2π, 3π)⊤.

The initial policy π1(a|s) is chosen randomly, and the
initial-state probability densityPI(s) is set to be uniform.
The agent collects data samplesDπl (M = 10 andN = 100)
at each policy iteration following the current policyπl. The



discounted factor is set atγ = 0.95 and the policy is
improved by the Gibbs policy (2) withτ = l.

Fig.9 describes the performance of learned policies. The
graph shows that SRPI nicely improves the performance
throughout entire policy iteration. On the other hand, the per-
formance when the flattening parameter is fixed atν = 0 or
ν = 1 is not properly improved after the middle of iterations.
This result indicates that the flattening parameter is well-
adjusted to reuse the previously-collected samples effectively
for policy evaluation, and thus SRPI can outperform the other
methods.

VIII. C ONCLUSIONS ANDOUTLOOK

Instability has been one of the critical limitations of
importance-sampling techniques, which often makes off-
policy methods impractical. To overcome this weakness, we
introduced anadaptive importance-sampling technique for
controlling the trade-off between consistency and stability
in value function approximation. We further provided an
automatic model selection method for actively choosing the
trade-off parameter. We also proposed using the adaptive
importance-sampling technique in policy iteration for effi-
ciently reusing previously-collected data samples. The exper-
imental results showed that the proposed method compares
favorably with existing approaches.

The method presented in this paper may be extended
to policy gradient methods where the need for the sam-
ple reuse is even more urgent as small gradient-descent
steps result into an under utilization of the data. While
importance-sampling has been applied in the settings of
policy gradient methods [14], [7], policy gradient methods
tend to be unstable when used with standard importance
sampling methods [5], [9]—the proposed methods would
offer an interesting alternative. Similarly, it can be applied in
EM-based methods such as the reward-weighted regression
[8], and dynamical-programming based methods such as the
policy search by dynamic programming [1].
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