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Inertial parameters identification and
joint torques estimation with proximal force/torque sensing

Silvio Traversaro!, Andrea Del Prete?, Serena Ivaldi® and Francesco Nori!

Abstract— Classically robot force control passes through joint
torques measurement or estimation. Within this context, classi-
cal torque sensing technologies rely on current sensing on motor
windings and on torsion sensing on motor shaft. An alternative
approach was recently proposed in [1] and combines whole-
body distributed 6-axis force/torque (F/T) sensors, gyroscopes,
accelerometers and tactile sensors (i.e. artificial skin). A further
advantage of this method is that it simultaneously estimates
(internal) joint torques and (external) contact forces with no
need of joint redesign. As a drawback, the method relies on
a model of the robot dynamics, as it consists on reordering
the classical recursive Newton-Euler algorithm (RNEA). In this
paper we consider the problem of the parametric identification
of the robot dynamic model from embedded F/T sensors.
We extend recent results on parametric identification [2] by
considering an arbitrary reordering of the classical RNEA.
The theoretical framework is validated on the iCub humanoid,
which is equipped with both 6-axis F/T sensors and joint torque
sensors. We estimated the system inertial parameters using only
one F/T sensor. We used the obtained parameters to estimate
the joint torques (as proposed in [1]) and compared the results
with direct joint torque measurements, used in this context only
as a ground truth.

I. INTRODUCTION

A fundamental problem in controlling torque-actuated
robots is the accurate modeling of their dynamics. Depending
on the performed task (e.g. control, simulation, contact
detection) we can distinguish two possible approaches [3]:
in structural modeling the interest is on identifying the real
inertial parameters of the robot, while in predictive modeling
the interest is only on replicating the input-output behavior
of the system, the input and output being some measured
quantities. In structural modeling the usual approach is to
excite the robot with trajectories chosen so as to be the
optimal for identifying the identifiable (i.e. base) parameters
[4]. In predictive modeling, the only concern is to accurately
model the input-output response of the dynamical system.
This has a significant implication: the interest is not in
estimating the “real” parameters, but in getting parameters
capable of generalizing predictions across the whole work
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space. Interestingly, within this context different regression
techniques can be adopted, ranging from parametric [3],
semi-parametric [5] and machine learning approaches [6].
A common task that falls within the predictive modeling
category is learning inverse dynamics: inputs are positions,
velocities and accelerations while outputs are joint torques.

In this paper we tackle a problem that lies in between
structural and predictive modeling. We aim to relax the
modeling assumptions in the procedure proposed in [1] to es-
timate joint torques from embedded 6-axis force/torque (F/T)
sensors. This estimation procedure allows us to implement
torque control on robots without joint torque sensing. Since
most (humanoid) robots are not equipped with joint torque
sensors, but have 6-axis F/T sensors, this approach opens the
possibility to implement inverse-dynamics control on these
“old-generation” robots. Moreover, this is interesting also
for new-generation robots, which could be easily equipped
with 6-axis F/T sensors, without going through the hassle of
redesigning the joints to include torque sensing.

The main drawback of this method is that it relies on the
inertial parameters to estimate the joint torques. The goal
of this paper is to understand if and to what extent this
knowledge is necessary and if we can partially retrieve it
through identification procedures similar to the one proposed
in [3]. The major technical obstacle lies in the following con-
sideration. We can use F/T measurements to estimate certain
inertial parameters (known in literature as base parameters):
what is the relationship between these parameters and the
ones used in [1] to estimate (internal) joint torques and
(external) contact forces? In this framework non-parametric
techniques have limited appeal and therefore we pursue a
parametric approach.

The structure of the paper is as follows. Section II intro-
duces the notation. Section III presents the relationship be-
tween the base parameters and the torque estimation scheme
presented in [1]; we show that the base parameters are
sufficient for estimating internal joint torques and external
wrenches from F/T measurements. Section IV proposes an
on-line identification scheme to learn the base parameters
and uses them to properly estimate joint torques. Section
V presents a validation of the proposed methodology on
the iCub platform, equipped with both F/T and joint torque
sensing, the latter being used only as a ground truth for
comparison.



II. NOTATION

In this paper we use the spatial vector algebra! as defined
in [8]. However, we extend the notation used in [8] to define
the concepts of topology, serialization and base link. While
the topology is an intrinsic property of the structure, the
serialization and the base link are arbitrary choices that affect
computations. The serialization defines an order for links and
joints. The base link instead induces a spanning tree that
defines the directions in which forces and accelerations are
propagated for computations. In the following, to simplify
the notation we consider only properly connected trees with
one-degree-of-freedom joints.

1) Topology: a robot is composed by Np links, which
constitute the link set L, and Ny = Np—1 joints, represented
as unordered pairs of links contained in the joint set J.

2) Serialization: a serialization is a sequence of links and
a sequence of joints, which we define as two bijections 2:

£:0,1,....Ng—1—>1L
J:1,2,... Ny J

3) Spanning tree: a spanning tree is uniquely defined by
its root b € L, which we call “base link” of the spanning
tree. Given a spanning tree, any link [ € L has a unique
parent A (1), and by abuse of notation, any joint j € J has a
unique parent link A\, () and child link g (5). We also define
vp(4) as the set of the links belonging to the subtree starting
at joint j.

4) Spatial vectors: as in [8] we denote by MO the spatial
motion vector space, i.e. the space of linear and angular
velocities. Sometimes it will be useful to distinguish between
the linear and the angular components of a vector v € M°
by denoting v = [w; ¥;]. Similarly, an acceleration a is
decomposed in its linear and angular components as follows
[a':l ﬁl]. As in [8] we denote by FS the spatial force vector
space, i.e. the space of force and torques.

5) Vector transformations: the front superscript indicates
the frame of reference in which a spatial vector is expressed,
e.g. °f is the spatial force vector f € F® expressed in the
frame of reference a. To simplify the notation, superscripts
are omitted when referred to the reference frame associated
to link on which the force is acting (i.e. the spatial force
vector f; € FS acting on link [ is indicated f; instead of
'f, when expressed in the link [ reference frame. With X}
we denote the matrix that transforms a spatial force vector
from the reference frame a to the reference frame b, i.e.
bf = bXraf,

6) Symmetric matrix serialization: in the paper we will
make use of the vech operator [9], which turns a symmetrical
matrix into a vector:

Izm Ixy I:vz T
vech | [ Ly Iy Iys| | = [Lee Loy Loz Iy Iys 1.2 ]
Iacz Iyz Izz
ey

LA brief tutorial is available in [7].
2We chose to use two different numbering styles for links and joints to
follow [8].

The operator we is defined such that w e vech(I) = Iw:

Wy wy w, 0 0 0
we=10 w, 0 wy, w, O 2)
0 0 wy, 0 wy w,

A. Floating base dynamics

We here consider the formulation of floating base dynam-
ics as presented in [8]. We slightly modify the notation by
including in the front subscripts a J and/or a b whenever a
certain quantity depends on the choice of the joint serializa-
tion and/or on the choice of the base link. The subscript, as
usual, is used to represent the fact that a certain quantity is
associated with a link [ € L (including the base b) or with a
joint j € J.

pI¢ b,7Fs | [ap vP | _ Sy ’Xi ] ea
[bJFbT b,JH] [‘JJF[MC] - L’]Jr; [b,JJlT] g
3)
where:
ap spatial acceleration of the floating base
f, spatial force at floating base
q joint positions, depends on J but front subscript is
omitted
pI¢  composite rigid body inertia of the tree
»P¢  spatial bias force of the composite tree
T joint torques, depends on J but front subscript is
omitted
f the external wrench acting on link [

.7 F3 joint Jacobian of the tree spatial momentum

»,7H joint inertia matrix

b,7C the bias torques considering Coriolis, centrifugal
and gravitational effects

b,7J1 the Jacobian for link !

In classical floating base representations the spatial force at
the base is assumed to be equal to zero, f;, = 0, but we drop
this assumption in the computations that will follow in the
next sections.

III. EXTERNAL CONTACT WRENCH AND INTERNAL
TORQUE ESTIMATION

In this section we review the approach proposed in [1]
to simultaneously estimate (internal) torques and (external)
contact wrenches by exploiting embedded whole-body dis-
tributed F/T sensors, accelerometers, gyroscopes and tactile
sensors. As represented in Fig. 1, the procedure consists in
cutting the floating-base tree at the level of the (embedded)
F/T sensors obtaining multiple subtrees. Each subtree can
be considered as an independent articulated rigid body chain
subject to the differential equation (3). Among the multi-
ple forces acting on the subtree, we can distinguish those
measured by the F/T sensors (green arrows in Fig. 1) and
other unknown forces (red arrows) typically due to external
contacts. By assuming one unknown force per subtree we can
estimate it together with the joint torques. The procedure
originally described in [1] consists in sensing the contact



Fig. 1. The left picture shows the position of F/T sensors on the iCub
humanoid. The right picture shows the induced iCub partitioning. Each
obtained subpart can be considered an independent floating-base structure
subject to an external wrench which coincides with the one measured by
the F/T sensor (green arrow). Red arrows represent possible location for the
unknown external wrenches.

with the artificial skin and using this information to define
the base S on the contact link. With this assumption (3) can
be rearranged as follows:

DD RS S
{T 7; gadiT] g,aFs"

) 125
poH| 4 8.7C

and computations efficiently performed with a classical re-
cursive Newton-Euler algorithm rearranged according to the
new base, therefore the name reordered recursive Newton-
Euler algorithm (rRNEA) . Position, velocities and accelera-

tions can be either measured or estimated from the available
accelerometers, gyroscopes and joint encoders.

A. Estimation of floating base dynamics

It is well known [10] that the right-hand side of (3) can
be rearranged linearly with respect to a vector of dynamic
parameters ¢. In the following, we use the front subscripts
L and/or b to denote quantities that depend on the choice of
the link serialization and/or on the choice of the base link.
Replacing the right-hand side of equation (3) with its linear
parametrization we have:

b,cYn | PX5r| co
LcYJ ch= M +Z{JT £, )
; ler L1
with
L T T T T 10N
¢ :[¢£<0> bra) ¢£<NB*1>} R

¢ =[m muc] VeCh(iOl)WT S
and:

my mass of link [

m;cy first moment of mass of link {

1o, 3D rotational inertia matrix of link [

Remark: in literature, the inertia matrix is often expressed
w.rt. the center of mass of the link (written as I [8]).
However, we express it w.r.t. a different reference frame -
fixed to link [ but not located at the center of mass - because
otherwise the dynamic equations would not be linear in the
inertial parameters.

1) Identifiable subspaces: The parametric representation
of the robot dynamics (4) has been widely used to get an
estimation of the dynamic parameters ¢ from available mea-
surements, denoted hereafter y. Typical approaches assume
null external forces (ff = 0) and exploit either torque [3]
(y = 1) or base force [2] (y = f},) measurements. With these
assumptions, rows in (4) can be rearranged as Y ¢ =y and
an estimation of ¢ can be obtained by considering repeated
measurements yl, R yN and the associated values of the

regression matrix YL, ..., YY, related as follows:
Y, Y,
Y
o=1" 1. 5)
YN yN

In practice, it is well known that the matrix that multiplies
¢ is rank deficient regardless of the number of measured
samples N. More specifically, the following null space can
be defined:

NY = {d) € RlONB : Y(bRwab,amq? q7 q)¢ = 07
V "Ry, € SO(3),vy,a, € MO, q, ¢, q € RN/}, (6)

In general the space Ny is non-empty as a consequence of
fact that the columns of Y are linearly dependent for any
choice of the robot position, velocity and acceleration. Only
certain linear combinations of the elements of ¢ influence
the measurements and these combinations can be obtained
as ¢ = Bm, being B a matrix whose columns are an
orthonormal base of the so called identifiable subspace Iy =
N%. It is then possible to reformulate (5) as:

Y'B y!

2 2
Y'B =Y - Gy =gpn, 7

YNB yv

with obvious definition for the matrix G and the vector gy .
Classically, equation (7) has been used for the estimation
of the base parameters associated with a certain measure-
ment y. More recently, it has been questioned whether
the estimated base parameters can be used to predict other
dynamic quantities different from the measurement y itself.
Within this context, in [2] it was shown that base parameters
associated with forces at base (y = fj) can be used to
predict joint torques 7. The result is obtained by showing
that the identifiable subspace associated to £ Y. is a subset
of the one associated with Y. In the present paper we
consider the problem of understanding if the base parameters
associated with forces at base (y = fj) can be used to
implement the TRNEA described in Section III. Since the
procedure consists in redefining the base b at the contact



link, all we have to understand is the relationship between
b,cYrn and g Y, for arbitrary choices of the base 3.

B. Base parameterization of the regressor structure

In this section we discuss the structure of the matrices
b,c Yy and , Y in detail. With respect to previous literature
we explicitly take into account how the choice of b, £ and
J influences the matrix structure. The reason for this new
formulation lies in the fact that in the following sections
we will try to understand how the identifiable subspaces
associated to 5 £ Y,, and ; /Y. change with the choice of
the base b. First, we consider the dynamic equation of the
generic link [ € L:

lle =La+v; x" v, = lAlB(ﬁl» ®)
having defined:
lAlB — [ 0

a; +w; XV

—(ay +w; X ¥)x
w; X + (wyx)(w;x)

w; e +w; X wie

and:
i net spatial force acting on body [
I spatial inertia of body I
a; spatial acceleration of body [
vy spatial velocity of body [

In equation (8) we have not explicitly indicated the grav-
itational spatial force lflg associated with the gravitational
acceleration a4. Its contribution on the link [ € L can be
expressed as follows:

l l
flg =Ta, ="As¢;, 9)
where: .
1 _ 10 —‘fagx 0
Ag= la, 0 0] -

The net spatial force on link [ € L including gravity is
therefore obtained by summing (8) and (9):

=P+ =AP g, + Ay, = Ay, (10)

The explicit expression for 4, Y, can be derived as in [11]
and takes the following form:

b~ * *
beYn = [ X0 Aco) XEmAcq) ---

bxz(NB_l)Aﬁ(NB_l)] . an

Given the joint serialization J, the generic joint j € J is
associated with a certain number of rows of the matrix , Y.
The number of rows is determined by the number of degrees
of freedom. The rows associated to 7 € J are denoted by
b2 Y? and can be computed as follows:

b Y] = Hb(j)szb(j),ub(j) Ubﬁ(jv/3(0))“"(j)X2(0)AL(o)

.. op(j, L(Np — 1))Hb(j)X2(NB—1)A£(NB*1)] » (12)

where of (j,4) = 1 if L(i) € v4(j), O otherwise and S; , is
the joint’s motion subspace spatial vector defined such that

vi = S;,q1,, + v,. If position, velocity and acceleration of
each link of the rigid body tree are available (e.g., computed
by the forward step of the RNEA), then one can calculate
the dynamics regressor Y using (8), (11) and (12).

IV. INERTIAL PARAMETER IDENTIFICATION AND
TORQUE ESTIMATION

The rRNEA described in Section III for estimating simul-
taneously (internal) torques 7 and (external) force f 4 rede-
fines the base link according to the link on which the external
force is acting. It is therefore of interest to understand the
relationship between , ,Y,, 4 .Y. and g Yy, g2 Y. for
arbitrary choices of the base link f.

A. Estimation regressors identifiability

In order to simplify the notation we will indicate , /Y,
with Yy, and similarly ; Y. with Y} .. In this section
we prove the major theoretical result of the present paper.
In practice we demonstrate that the inertial parameters used
in the procedure in Section III are a subset of the base
parameters associated with the regressors associated to the
embedded F/T sensors. Let’s call this base b and denote
the associated identifiable subspace by Iy, .. The TRNEA
in Section III redefines a new base link on the link on which
the unknown external wrench is acting, denoted by S. The
associated base parameters are therefore identified by Iy, ,;
similarly, the inertial parameters to compute internal torques
are identified by Iy, .. What we will show in Proposition
lis that: Iy, , = Iy,, and Iy, C Iy, . To reach this
conclusion we first need another property:

Lemma 1: given two different choices b and 3 of the base
link in a kinematic tree we have:

IYb,n = IY/s,n' (13)

Proof: From (11) it can be easily concluded that:
Y5, = ?X;Y,, and the (13) easily follows from the
observation that the rigid transformation X} is always full
rank and invertible. [ ]

Proposition 1: given two different choices b and S of
the base link in a kinematic tree the induced identifiable
subspaces satisfy the following properties:

Iy,, =Iy,,, Iy, Cly,,- (14)

Proof: For any choice of the base, let us first observe

that Y = [Y,] Y]]  impliess Ny = Ny, N Ny,, and
therefore: N{; = N%n + V. J-C, which can be rewritten as
Iy = Iy, + Iy, using the definition (6) and the usual
definition of the operator ‘+* on vector spaces®. The equation
above implies that Iy, C Iy and Iy, C Iy. Recently
it has been shown [2] that [y = Iy, and therefore we
can also conclude Iy, C Iy,. Now using the Lemma 1
we can consider two different choices b and § of the base
link and conclude: Iy, . C Iy,, = Iv,, 2 Iy,.. The

3The proof is a simple linear algebra exercise. More in general, it can
be proven [12] that vector subspaces with the operators ‘+’, N and _L (the
orthogonal complementary space) form an orthocomplemented lattice on
which the above property corresponds to the De Morgan law.



last equations clearly include both inclusions in (14) and
therefore conclude our proof. [ ]

Proposition 1 mathematically proves that exactly the same
inertial parameters estimated from the F/T sensor measure-
ments can be used to estimate joint torques and external
wrenches with the procedure outlined in Section III. In
particular, with the F/T sensor measurements we can estimate
the inertial parameters in Iy, , being b the rigid link hosting
the F/T sensor. The rRNEA redefines the base at 3 (contact
location) and requires the inertial parameters in IY;;,C -
Iy, ,, to estimate the joint torques. Similarly it requires the
inertial parameters in Iy, , = Iy, , to estimate the external
wrench.

V. EXPERIMENTAL SETUP AND TESTS

In this section we present the results obtained on the
iCub humanoid robot. Section V-A presents the software and
Section V-B presents the experiments.

A. Software

At the best of our knowledge, no free software library
is available for calculating dynamics regressors for floating-
base systems. The only two software of which we are aware
are Symoro+ [13], which is not freely available*, and SymPy-
Botics [14], which is limited to chain structures. Anyway,
none of them provide the torque estimation regressor used
in this work. For this reason we developed the necessary
algorithms and added them to the C++ iDynTree library?,
which is freely available under the GNU GPL license.

B. Validation

Link 2
FT sensor

Link 4

Fig. 2. CAD drawing of the seven degree-of-freedom iCub arm used in
the experiments. Three out of the four joints (two in the shoulder and one
in the elbow) are sensorized with joint level torque sensors. These joints
are the one considered in the proposed experiments.

Experiments were conducted on three joints (pitch and
yaw in the shoulder and elbow)® of the iCub left arm (see
Fig. 2). These joints are equipped with joint level torque
sensors. Additionally a single F/T sensor is positioned in

“There is however a recent
https://github.com/symoro/symoro

Shttp://wiki.icub.org/wiki/IDynTree
Ohttp://wiki.icub.org/wiki/ICub_joints

partial  porting on  python:
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Fig. 3. Joint level torques (left part) and errors (right part): measured

(black), estimated with CAD parameters (red) and estimated with the
procedure in [1] supplied with identified parameters (green). The vertical
solid gray line indicate the movement onset.

the middle of the upper arm as represented in Fig. 2.
In the experiment, data from the F/T sensor were used
to estimate the associated base parameters. Thanks to the
theoretical results presented in the previous sections, these
parameters coincides with the one used by the method in
the TRNEA to obtain an estimation of the joint torques.
These estimations have been compared with direct joint
torque measurements, used in this framework as a ground
truth. Results are presented in Fig. 3 where we reported
in blue direct joint torque measurements, in red predictions
using CAD parameters and in green predictions from the
estimation in [1] supplied with the on-line estimation of the
base parameters (presented in Fig. 4). At the beginning of the
simulation estimated parameters are clearly not sufficiently
well estimated to predict with sufficient accuracy the joint
torques. This condition holds true until the arm starts moving
(vertical solid black line in both Fig. 3 and Fig. 4).

During the testing trajectories, the end-effector randomly
moved in Cartesian space, without any interaction with the
environment. Literature on suitable choices of the exciting
trajectories is extensive, but such an implementation is out
of the scope of the present paper. This simpler choice is
also motivated by two factors: first, we need to avoid self-
collision of the robot in a simple way; second, we need
to generate trajectories similar to those produced during
standard operation of the humanoid robot and our goal is to
on-line estimate the parameters during standard operations.
Joint velocities and accelerations have been estimated using
an adaptive-window fitting algorithm [15].

VI. CONCLUSION

In this paper we presented some theoretical and numerical
advances with respect to the problem of estimating joint
torques from proximal force and torque (F/T) sensors. This
estimation problem was originally proposed in [1] and it is
based on the idea of exploiting the simple Newton-Euler
recursion step to propagate force and torque information
across a kinematic structure. The estimation relies on the
knowledge of the system inertial parameters. In this paper we
address the problem of estimating these parameters directly



=)

50 10% 150200 50 1()% 150200

50 10% 150200 50 1OOS 150200

50 10% 150200

Fig. 4. The picture shows the time behavior of the base parameters estimation. The estimation is executed on-line in an iterative fashion. The onset of
the movement (vertical solid black line) determines the instant at which the data from the F/T sensor become informative for the estimation problem.
Convergence is quite fast and mirrors the behavior of the torques estimation in Fig. 3.

from the F/T sensor. It is in particular shown that the
parameters identifiable from the F/T sensor (the so called
base parameters) coincide with those used by the joint
torque estimation procedure. This result has been obtained
by extending some previous findings [2].

Validation of the proposed theoretical framework has been
conducted on the iCub humanoid robot, which is equipped
with both F/T sensors and joint torque sensing. On-line
estimation of the base inertial parameters have been per-
formed by means of F/T sensor measurements only. The
estimated base parameters have been used to compute joint
torques from F/T measurements as in [1]. Comparison with
direct joint torque measurement (used in this context as
ground truth) shows the efficacy of the proposed estimation
procedure.
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