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Abstract - The number of advanced robot systems has been increasing in recent years yielding a
large variety of versatile designs with many degrees of freedom. These robots have the potential of
being applicable in uncertain tasks outside well-structured industrial settings. However, the complexity
of both systems and tasks is often beyond the reach of classical robot programming methods. As a
result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust
their behaviour to the encountered situations and required tasks.
Learning approaches pose one of the most appealing ways to achieve this goal. However, while
learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods
from the machine learning community as these usually do not scale into the domains of robotics due
to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches
are needed. We focus here on several core domains of robot learning. For accurate task execution,
we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the
most promising approach. Self improvement requires reinforcement learning approaches that scale into
the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will
need a form of interaction learning. This contribution provides a general introduction to these issues
and briefly presents the contributions of the related book chapters to the corresponding research topics.
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I. INTRODUCTION

Robot learning has reached an unprecedented amount of interest in recent years. However, as the
robotics domain is of particular complexity for learning approaches, it has become quite demanding for
students and young researchers to get started in this area. Furthermore, due to the current high speed of
development it is often hard for scientists from other areas to follow the developments. For this reason,
the need for an easy entrance into this field has become strong while it is not yet time for a robot learning
textbook. This contribution serves two purposes: firstly, it allows us to quickly familiarize the reader with
the background. In Section I-A, we give an overview on the importance of robot learning approaches at
this moment. In Section I-B, we discuss essential background on motor, imitation and interaction learning.
Secondly, we give in Section II a brief overview of recent papers on the topic, before concluding in Section
III on the necessity of a more integrated effort.



A. The Need for Robot Learning Approaches
At the beginning of the 21st century, robotics research is experiencing large changes in its aims and

objectives. In most of the previous century, the majority of all operational robot were performing the same
manufacturing task again and again in extremely structured environments such as automobile factories.
Often it was easier and cheaper to build a new factory with new robots to accommodate a new car
model than to reprogram an existing one. By contrast, robots are now “leaving” factory floors and start
becoming part of the everyday life of average citizens. Vacuum cleaning robots have become the most sold
robots to date with 4-5 million units shipped up to 2008, and programmable entertainment robots such
as the RoboSapiens have become many children’s favorite toy. This evolution raises the major challenge
of “personalizing” the programming of our robots and making them compatible with human-inhabited
environments. As a result, a variety of new issues arise that we will discuss below.

First, robots will often be in physical contact with people that are not specially trained to interact with
them, thus they must be less dangerous. This concern first implies some mechanical requirements: robots
must become lighter and their actuators must have inherent compliance properties as human muscles have.
But in turn, these changes result in the necessity to think differently about their control loops. Either we
stay with the same kind of actuator technology and we must use extremely low gains while yielding
sufficient accuracy, or we come to completely new actuators like artificial muscles where the classical
control knowledge is missing and learning techniques will play an important role. Finally, in any case
they must never become unsafe in unforeseen situations. All these considerations result in the necessity
to move from the previous standard way of thinking about robot control to new approaches that rely more
on on-line, adaptive model identification and autonomous action selection properties.

Second, future robots need to be more versatile and more flexible when encountering some of the
infinitely many potential situations that are part of our daily life. Despite the impressive results of human
manual plan design and robot programming, these hand-crafted solutions are not likely to transfer to that
large variety of different tasks and environmental states. Hence, it is becoming increasingly clear that
a new approach is essential. To interact better with their environment, robots will need more and more
sensing capabilities but also algorithms that can make use of this richer sensory information. Due to this
increase of complexity both on the perception and action side, robots will need to learn the appropriate
behavior in many situations. This challenge is becoming recognized in the general robotics community. It
has resulted in supportive statements by well-known roboticists such as “I have always said there would
come a time for robot learning — and that time is now” by O. Khatib (at Stanford, October 2006) and
“robot learning has become the most important challenge for robotics” by J. Hollerbach (at the NIPS
Workshop on Robotics Challenges for Machine Learning, December 2007).

Third, apart from the security aspects of human robot interaction that we have already outlined, the fact
that robots will be in interaction with people must also be taken into account in their control and learning
architecture. Thinking of a robot as interacting with people has a lot of consequences in the design of
their control architecture. Robots can be instructed from their human user how to perform a new task by
imitation, or by physical or language-based interaction during task execution, etc.

All these changes on the way to consider robots and their control comes along with another major
evolution about the hardware platforms available. In the last twenty years, a huge technological effort has
resulted in the design of more complex, more efficient and more flexible platforms with the challenges
above in mind. In particular, these last years have seen the emergence of humanoid robots of diverse size,
capabilities and price as well as a variety of bimanual mobile robotics platforms. In these platforms, all
the challenges listed above are essential problems that always need to be addressed.

This large shift in robotics objectives has resulted in an increasing visibility of the corresponding lines
of research. In the last few years, we have seen an increasing amount of robot learning publications
both at top machine learning (such as NIPS, ICML and ECML) conferences and mainstream robotics



conferences (particularly at R:SS, ICRA and IROS). The number of learning tracks has been increasing
the IEEE multi-track conferences ICRA and IROS and there have been at least 12 workshops on robot
learning in 2007–2009. This development has resulted in numerous special issues in excellent robotics
international journals such as the International Journal of Robotics Research, Autonomous Robots, the
International Journal of Humanoid Robots and the IEEE Robotics & Automation Magazine. Recently, it
even gave rise to the creation of an IEEE Technical Committee on Robot Learning.

In the next section, we will highlight the relationships between Motor learning, Imitation and Interaction
Learning in Robots before giving an overview of the contributions of a forthcoming book in that field
edited by the authors (”From Motor to Interaction Learning in Robots” (O. Sigaud and J. Peters, editors),
Springer, to appear in 2010).

B. Motor learning, Imitation learning and Interaction Learning
Making humanoid robots perform movements of the same agility as human movements is an aim

difficult to achieve even for the simplest tasks. Although a lot of impressive results have been obtained
based on pure hand-coding of the behaviour, this approach seems too costly and, probably, even too
difficult if we ever want humanoid robots and mobile manipulators to leave research labs or factories and
enter human homes.

The most immediate alternative to this manual programming is imitation learning, also known as
learning from demonstration or programming by showing. This approach is relatively well-developed
and has resulted in a variety of excellent results in previous work. It includes several different teaching
approaches. Some researchers record human motion in the context of a task with motion capture tools
and transfer the motion on the robot, which implies solving the correspondence problem resulting from
the differences between the mechanics of a human being and a robot system (e.g., already mapping the
human arm kinematics on a non-anthropomorphic robot arm is a difficult problem). Hence, it is often
easier to employ teleoperating interfaces for teaching, or even use the robot by itself as a haptic device.
Furthermore, different approaches are employed in order to recover a policy; while some approaches
directly mimic the observed behaviors, there is an alternative stream of research that employs an inverse
reinforcement learning approach which rather attempts to recover the intent of the teacher by modeling
his cost function and, subsequently, derives the policy that is optimal with respect to the cost-to-go [1],
[2], [3]. Among important papers in imitation learning, the reader should study [4], [5], [6], [1], [7], [2],
[3].

Nevertheless, learning from demonstration does not suffice as the behavior of the robot will be restricted
to the behaviors that have been demonstrated, even if some generalization mechanisms can slightly
remediate that situation, allowing for instance adaptation to slightly changing contexts. To go beyond
an initial imitation, we need the robots to adapt online so that they can react to new situations. There
exist a few situations where such an adaptation can be achieved purely by supervised learning, e.g., when
the functional relationship can be directly observed as in inverse dynamics model learning and a relearning
after a change of the dynamics due to an external load or a failure is straightforward. However, the majority
of all problems require some kind of self-improvement, e.g., we need to adapt elementary movements to
an unforeseen situation, improve a policy learned from a demonstration for better performance, learn new
combinations of movements or even simply learn an inverse model of a redundant system. Addressing these
problems is often formalized in the reinforcement learning framework, which mimics the way animals and
humans improve their behaviour by trial-and-error in unforeseen situations. A key issue in reinforcement
learning is exploration: since we do not know in advance which behaviour will give rise to high outcome
and which will not, we have to try various different actions in order to come up with an efficient strategy.

Taken as a whole, learning of general motor capabilities, at the control level or at the behavioral strategy
level, is a very hard problem. This involves the exploration of a huge space of possibilities where a lot
of standard algorithmic steps boil down to hard optimization problems in a continuous domain. Given



the difficulty of the exploration problem in that domain, the combination of reinforcement learning with
imitation learning has been shown to be fruitful. Here, imitation provides an efficient way to initialize
policies so that the explorative policy can focus on the behaviors or strategies that have a high probability
of being efficient.

Finally, the third robot learning topic covered here is interaction learning. Interaction learning allows
the robot to discover strategies for actively using the contact with human in its proximity. It often shares
tools and methods with imitation learning, since both approaches have to take the presence of the human
around the robot into account. In fact, imitation learning is a particular case of interaction learning in
the sense that imitation is a particular type of interaction. However, interaction learning is not restricted
to reproduce the observed behavior of a human. Instead, interacting means getting jointly involved in a
common activity both taking the behavior of the respective other into account. Thus, interaction can be
physical, when the human user actually exerts some force onto the robot or, conversely, when the robot
does so to the human user. It can also be communicative, either through diverse modalities of language
or through communicative gestures. It can finally be purely implicit, when the robot and the user try to
adapt their behaviour to the other without any direct communication, just through observing. Interaction
learning provides a challenging context for motor learning in general. Human motor behavior is often
difficult to predict and, thus, interaction may require learning non-stationary models of the dynamics of
the coupling between humans and robots.

Last, but not least, the study of human motor behavior requires a deep understanding of the connections
between motor, imitation and interaction learning. For example, neurophysiological studies of human
subjects suggest that motor learning processes and more cognitive learning and developmental processes
have much in common, particularly when it comes to interaction with other beings. After the much
celebrated discovery of the so called ”mirror neurons” relating motor learning to imitation and language
acquisition, several neurophysiological studies have revealed that brain areas generally considered as motor,
such as the cerebellum, or dedicated to action selection, like the basal ganglia, are in fact employed in more
general cognitive functions such as learning tool use, imitation, language and so forth [8]. Taken together,
these facts advocate for a hierarchical understanding of the brain architecture where motor learning and
interaction learning are tightly coupled processes at the root of cognition [9], [10]. These topics are highly
relevant for robot learning as the human motor system is still the best prototype for us to study in order
to obtain new and better algorithms.

II. OVERVIEW OF THE SPRINGER BOOK

From the previous section, it has become apparent that Motor, Imitation and Interaction Learning are
highly dependent on each other and complementary. The purpose of the book (”From Motor to Interaction
Learning in Robots” (O. Sigaud and J. Peters, editors), Springer, to appear in 2010) is to provide a state-
of-the-art view of these different subfields within the same volume so as to cast the basis for an improved
dialog between them. We have divided that book into three parts, but there is a strong overlap between
the topics covered by these parts.

A. Biologically inspired Models for Learning in Robots
A common view in most learning approaches to robotics is that humans exhibit all the properties we

want from a robot system in terms of adaptivity, learning capabilities, compliance, versatility, imitation
and interaction capabilities etc. Hence, it might be a good idea to be inspired by their functionality and,
as a result, a lot of robot learning approaches are bio-inspired in some sense. More precisely, in this book
we can distinguish three different sources of inspiration in this line of thinking.

The first one has to do with trying to implement robot controllers on a representation that is as similar
as possible to the neural substrate that one can find in the human motor system. The complexity of the
computational models resulting from this line of thinking raises the problem of their validation. Here,



robotics plays a prominent role as a tool to evaluate the capability of these wide scope models to account
for the phenomena they address. In this book, two chapters, [11] and [12], are following this line of
thinking. The first one proposes a biologically based cognitive architecture called Distributed Adaptive
Control to explain the neuronal organization of adaptive goal oriented behavior. The second one, based on
neural field models, is interested in low level, basic imitation mechanisms present early in the newborn
babies, showing how the different proprioceptive signals used in the examples can be seen as bootstrap
mechanisms for more complex interactions.

A second line of inspiration consists in trying to reproduce the learning properties of the human
motor system as observed from outside, building models that rely on computational principles that may
explain these observed properties. The work of [13] illustrates this approach. It proposes an efficient
implementation of a model of motor adaptation based on well accepted computational principles of human
motor learning, using optimal feedback control methods that require a model of the dynamics of the plant
in a context where this model is learned. The work of [14] shares similar goals, but the authors address
slightly different motor learning phenomena, with a particular focus on motor preparation. The authors
propose an implementation of their system based on artificial neural networks on a simulated complex
robot, perfectly illustrating the highly cross-disciplinary nature of this domain.

Finally, a third line of inspiration takes its sources in developmental psychology, giving rise to the so
called developmental robotics or epigenetic robotics [15]. In some sense, the work already discussed by
[12] can also fall into this category. Moreover, the work in [16] is a prominent example of this line of
thinking, investigating how a model of activity selection based on curiosity can give rise to the capability
to tackle more and more difficult tasks within a life-long learning paradigm.

B. Learning Models and Policies for Motor Control
The differences between papers about biologically inspired models for learning in robots and the one

that fall into this technical part is often small. A lot of work about learning models and policies for motor
control is also inspired by biological considerations but does not attempt to provide an explanation for
biological behavior. As there are important differences between the mechanics of the human musculo-
skeletal system and the mechanical design of robots, severe limitations are imposed on the degree of
similarity between natural and artificial controllers. Indeed, for instance, the human musculo-skeletal
system has the amazing ability to control both stiffness and position of each joint independently from
each other due to co-contraction. By contrast, nearly all humanoid robots to date are having a single motor
per joint and, thus, offer either position access (e.g., cheap RoboSapiens designs), setting desired velocities
(e.g., the Fujitsu Hoap, iCub and many others) or are torque controlled (e.g., the SARCOS humanoids).
This makes robots controllers unable to make profit of the nice properties of the muscles that human
people use in practice and this drives robotics control towards control principles that may differ a lot
from those observed in human movement. In such a context when the standard engineering knowledge is
not well developed, the contribution from [17] compares two learning techniques, namely Least Squares
Support Vector Machines and Neural Networks, on their capability to estimate the forces and torques
measured by a single six-axis force/torque sensor placed along the kinematic chain of a humanoid robot
arm.

Beyond these considerations, the chapters regrouped in this part fall in two categories. The first category
is about learning models of the plant, either direct or inverse, at the kinematics, velocity kinematics and
dynamics level. This kind of work, giving rise to motor adaptation capabilities, is one of the main
mechanisms to obtain compliance and versatility in robots. The contribution from [18] provides an
overview of how learned kinematics and velocity kinematics models can be used within a feedback control
loop in the Operational Space Control framework. Learning these models is a difficult self-supervised
learning problem in large continuous state and action spaces, thus having an efficient learning method is
crucial. A few learning techniques have emerged in the last years as particularly competitive to address



this task. In particular, the most recent Locally Weighted Regression methods give rise to very fast
implementations that scale well and are able to tackle large problems but suffer from the necessity to tune
a lot of parameters, whereas methods based on Gaussian Processes, are computationally more intensive
as the size of the problems grows but require less tuning. The chapter by [19] proposes a local method
based on Gaussian Processes that combines the good properties of both families of approaches. They are
able to show that the model works well in the context of learning inverse dynamics.

The second category of contributions in this part is about finding the good computational framework
to derive efficient controllers from learning principles. In that domain, an important approach is about the
automatic tuning of motor primitives, that already provided convincing results (e.g., as [6]). But whereas
in these previous approaches primitives were based on open-loop control, the chapter by [20] provides an
extension to the case where primitives incorporate perceptual coupling to external variables, giving rise
to closed-loop policies.

Taking a very different view, the chapter by [21] presents a bayesian formulation of classical control
techniques based on task space to joint space mapping, that results in the possibility to consider motor
execution and motor planning as a unified bayesian inference mechanism. The chapter highlights the
interesting robustness properties of the resulting framework and highlights deep relationships with the
optimal control framework that provides convincing computational principles for motor control [22],
[23], [24]. Still in the same category but based on different principles, [25] is focused on learning from
trajectories a controller able to realize a set of tasks subject to a set of unknown constraints. Finally, the
contribution from [26] describes a nice application of a model-free reinforcement learning-based control
methodology, based on an optimized policy gradient algorithm, to the control of an experimental system
dedicated to the study of flapping wing flight.

C. Imitation and interaction learning
This part starts with a chapter by [27] which provides an overview of imitation learning methods in

robots. It provides a presentation of some recent developments about imitation in biological systems, as
well as a focus on robotics work that consider self-modelling and self-exploration as a fundamental part
of the cognitive processes required for higher-level imitation.

The contribution [28] describes an approach based purely on human motion capture to achieve stable
gait acquisition in a humanoid robot despite its complex mechanical structure. The chapter gives a good
example of the theoretical difficulties and technical intricacies that must be faced in such kind of imitation
learning approaches given the “correspondence problem” that must be solved between the human musculo-
skeletal system with its many redundant degrees of freedom and robot systems with their different &
well-defined kinematic structures. The chapter insists on dimensionality reduction techniques that can be
used to simplify the resolution of the correspondence problem.

After a chapter focused on learning one particular motor primitive from imitation, the chapter by [29]
proposes a broader approach for autonomous and incremental organization of a set of such primitives
learned by observation of human motion, within a life-long learning framework. The hierarchical organi-
zation makes it easier to recognize known primitives and to determine when adding a new primitive in
the repertoire is necessary. The different motor primitives are represented by Hidden Markov Models or
by Factorial Hidden Markov Models.

The contribution of [30] is focused on the case where some task is decomposed into a set of subtasks.
With a more critical standpoint than previous chapters, it examines the limits of a regression-based
approach for learning a Finite State Machine controller from demonstration of a basic robot soccer goal-
scoring task, based on an Aibo robot.

We already discussed in the first section of this chapter that there is a lot of potential in the combination
of imitation learning (or learning from demonstration) and automatic improvement of control policies. The



chapter from [31] falls into this category. It presents an approach for the refinement of mobile robot control
policies, that incorporates human teacher feedback.

The chapter [32] describes a method that combines imitation learning with actual interaction with object
to learn grasp affordances. More precisely, the work is about learning to grasp objects described by learned
visual models from different sources of data. The focus is on the organization of the whole knowledge
that an agent has about the grasping of an object, in order to facilitate reasoning on grasping solutions
and their likelihood of success.

The last two chapters are more focused on interaction learning. First, the chapter from [33] is about
language acquisition in humanoid robots, based on interaction with a caregiver and using as few built in a
priori knowledge or primitives as possible. The importance of motor learning in the language acquisition
process is underlined. Second, the contribution from [34] presents an outstanding integration effort towards
language based interaction between a robot and a non-expert user in the context of a cooperation between
them. The focus is put on the use of the Spoken Language Programming approach to facilitate the
interaction.

III. CONCLUSION AND PERSPECTIVES

Robot learning is a young, fruitful and exciting field. It addresses problems that will become increasingly
important for robotics as the platforms get more and more complex and the environment get less and less
prepared or structured. The reader will find in the referenced book research works stemming from different
areas – statistical learning of models, reinforcement learning, imitation and interaction learning – that all
contribute to the global endeavour of having more adaptive robots able to deal with more challenging
settings, in particular those where interaction with humans is involved. In Section I-B, we highlighted
some ways in which diverse research efforts could be combined given the complementary subproblems
they address. However, when closing the book, the reader will probably have the feeling that the different
contributors are working within isolated frameworks and that a global coordination effort is still missing.
Our view as editors is that finding frameworks giving rise to the possibility of such coordination is the
next step in the field, and we hope the book will play its role towards this next step.
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