
Real-time Local GP Model Learning

Duy Nguyen-Tuong, Matthias Seeger and Jan Peters

Abstract
For many applications in robotics, accurate dynamics models are essential. How-
ever, in some applications, e.g., in model-based tracking control, precise dynamics
models cannot be obtained analytically for sufficiently complex robot systems. In
such cases, machine learning offers a promising alternative for approximating the
robot dynamics using measured data. However, standard regression methods such
as Gaussian process regression (GPR) suffer from high computational complexity
which prevents their usage for large numbers of samples or online learning to date.
In this paper, we propose an approximation to the standard GPR using local Gaus-
sian processes models inspired by [1, 2]. Due to reduced computational cost, local
Gaussian processes (LGP) can be applied for larger sample-sizes and online learn-
ing. Comparisons with other nonparametric regressions, e.g., standard GPR, support
vector regression (SVR) and locally weighted projection regression (LWPR), show
that LGP has high approximation accuracy while being sufficiently fast for real-time
online learning.

1 Introduction

Precise models of technical systems can be crucial in technical applications [3, 4].
In robot tracking control, only well-estimated inverse dynamics models allow both
high accuracy and compliant, low-gain control. For complex robots such as hu-
manoids or light-weight arms, it is often hard to analytically model the system
sufficiently well and, thus, modern regression methods can offer a viable alterna-

Duy Nguyen-Tuong, Jan Peters
Max Planck Institute for Biological Cybernetics, 72076 Tübingen, e-mail: {duy.nguyen-tuong,
jan.peters}@tuebingen.mpg.de,

Matthias Seeger
Saarland University, 66123 Saarbrücken, e-mail: mseeger@mmci.uni-saarland.de

1



2 Duy Nguyen-Tuong, Matthias Seeger and Jan Peters

tive [1, 5]. However, highly accurate regression methods such as Gaussian process
regression (GPR) suffer from high computational cost, while fast real-time learning
algorithms such as locally weighted projection regression (LWPR) are not straight-
forward to use, as they require manual adjustment of many data dependent parame-
ters.

In this paper, we attempt to combine the strengths of both approaches, i.e., the
high accuracy and comfortable use of GPR with the fast learning speed of LWPR.
We will proceed as follows: firstly, we briefly review both model-based control as
well as standard Gaussian process regression. We will discuss the necessity of esti-
mating the inverse dynamics model for compliant, low-gain control. Subsequently,
we describe our local Gaussian process models (LGP) approach.

In Section 3, the learning accuracy and performance of the presented LGP ap-
proach will be compared with several relevant regression methods, e.g., standard
GPR [6], ν-support vector regression (ν-SVR) [7], sparse online GP (OGP) [8]
and LWPR [1, 5]. The applicability of the LGP for low-gain model-based tracking
control and real-time learning is demonstrated on a Barrett whole arm manipulator
(WAM). We can show that its tracking performance exceeds analytical models [9]
while remaining fully compliant.

1.1 Model-based Control

Model-based control, e.g., computed torque control [10], enables high speed and
compliant robot control while achieving accurate control with small tracking errors
for sufficiently precise robot models. The controller is supposed to move the robot
that is governed by the system dynamics [10]

M(q) q̈+C(q, q̇)+G(q)+ ε (q, q̇, q̈) = u , (1)

where q, q̇, q̈ are joint angles, velocities and accelerations of the robot, respectively,
u denotes the applied torques, M(q) the inertia matrix of the robot and C(q, q̇)
Coriolis and centripetal forces, G(q) gravity forces and ε (q, q̇, q̈) represents non-
linearities of the robot which are not part of the rigid-body dynamics.

The model-based tracking control law determines the joint torques u necessary
for following a desired trajectory qd , q̇d , q̈d using a dynamics model while em-
ploying feedback in order to stabilize the system. For example, the inverse dy-
namics model of the robot can be used as a feed-forward model that predicts the
joint torques uFF required to perform the desired trajectory [9, 10], while a feed-
back term uFB ensures the stability of the tracking control with a resulting con-
trol law of u = uFF + uFB. The feedback term can be a linear control law such as
uFB =Kpe + Kvė, where e=qd−q denotes the tracking error and Kp,Kv position-
gain and velocity-gain, respectively. If an accurate model in the form of Equation
(1) can be obtained for the feed-forward model, e.g., for negligible unknown non-



Real-time Local GP Model Learning 3

linearities ε , the resulting feed-forward term uFF will largely cancel the robots non-
linearities [10].

For complex robots such as humanoids or light-weight arms, it is often hard to
model the system sufficiently well using the rigid body dynamics. Unknown non-
linearities ε (q, q̇, q̈) such as flexible hydraulic tubes, complex friction, gear boxes,
etc, couple several degrees of freedom together and result in highly altered dynam-
ics. Such unknown nonlinearities can dominate the system dynamics and deteriorate
the analytical model [11]. The resulting tracking error needs to be compensated us-
ing large gains [10]. However, high feedback gains prohibit compliant control and,
thus, make the robot less safe for the environment while causing many practical
problems such as actuator saturation, excitation of unmodeled dynamics, may result
in large tracking errors in presence of noise, increase energy consumption, etc. To
avoid high-gain feedback, it is essential to improve the accuracy of the dynamics
model for predicting uFF. Since uFF is a function of qd , q̇d , q̈d , it can be obtained
with supervised learning using measured data. The resulting problem is a regres-
sion problem that can be solved by learning the mapping q, q̇, q̈→u on sampled
data [12, 13] and, subsequently, using the resulting mapping for determining the
feed-forward motor commands. As trajectories and corresponding joint torques are
sampled directly from the real robot, learning the mapping will include all nonlin-
earities and not only the ones described in the rigid-body model.

1.2 Regression with Standard GPR

As any realistic inverse dynamics is a well-defined functional mapping of contin-
uous, high-dimensional inputs to outputs of the same kind, we can view it as a
regression problem. Given the input x ∈ Rn and the target y ∈ Rn, the task of re-
gression algorithms is to learn the mapping describing the relationship from input
to target using samples. A powerful method for accurate function approximation in
high-dimensional space is Gaussian process regression (GPR) [6]. Given a set of n
training data points {xi,yi}n

i=1, we would like to learn a function f (xi) transform-
ing the input vector xi into the target value yi given a model yi = f (xi)+εi , where
εi is Gaussian noise with zero mean and variance σ2

n [6]. As a result, the observed
targets can also be described by a Gaussian distribution y∼N

(
0,K(X,X)+σ2

n I
)
,

where X denotes the set containing all input points xi and K(X,X) the covariance
matrix computed using a given covariance function. Gaussian kernels are probably
the most frequently used covariance functions [6] and are given by

k (xp,xq)=σ
2
s exp

(
−1

2
(xp−xq)T W(xp−xq)

)
, (2)

where σ2
s denotes the signal variance and W represents the widths of the Gaussian

kernel. Other choices for possible kernels can be found in [6, 7]. The joint distribu-
tion of the observed target values and predicted value f (x∗) for a query point x∗ is



4 Duy Nguyen-Tuong, Matthias Seeger and Jan Peters

given by [
y

f (x∗)

]
∼N

(
0,

[
K(X,X)+σ2

n I k(X,x∗)
k(x∗,X) k(x∗,x∗)

])
. (3)

Conditioning the joint distribution yields the predicted mean value f (x∗) with the
corresponding variance V (x∗)

f (x∗) = kT
∗
(
K+σ2

n I
)−1 y = kT

∗α ,

V (x∗) = k(x∗,x∗)− kT
∗
(
K+σ2

n I
)−1 k∗ ,

(4)

with k∗ = k(X,x∗), K = K(X,X) and α denotes the so-called prediction vector.
The hyperparameters of a Gaussian process with Gaussian kernel are given by
θ = [σ2

n ,σ2
f ,W] and remain the only open parameters. Their optimal value for a

particular data set can be automatically estimated by maximizing the log marginal
likelihood using standard optimization methods such as Quasi-Newton methods [6].

2 Local Gaussian Process Regression

Due to high computational complexity of nonlinear regression techniques, inverse
dynamics models are frequently only learned offline for pre-sampled desired trajec-
tories [13]. In order to take full advantage of a learning approach, online learning
is an absolute necessity as it allows the adaption to changes in the robot dynamics,
load or the actuators. Furthermore, a training data set will never suffice for most
robots with a large number of degrees of freedom and, thus, fast online learning is
necessary if the trajectory leads to new parts of the state-space. However, for most
real-time applications online model learning poses a difficult regression problem
due to three constraints, i.e., firstly, the learning and prediction process should be
very fast (e.g., learning needs to take place at a speed of 20-200Hz and prediction
may take place at 200Hz up to 5kHz). Secondly, the learning system needs to be
capable of dealing with large amounts of data (i.e., with data arriving at 200Hz,
less than ten minutes of runtime will result in more than a million sampled data
points). And, thirdly, the data arrives as a continuous stream, thus, the model has to
be continuously adapted to new training examples over time.

Model learning with GPR suffers from the expensive computation of the inverse
matrix (K + σ2

n I)−1 which yields a cost of O(n3), see Equation (4). Inspired by
locally weighted regression [1,5], we propose a method for speed-up the training and
prediction process by partitioning the training data in local regions and learning an
independent Gaussian process model (as given in Section 1.2) for each region. The
number of data points in the local models is limited, where insertion and removal of
data points can be treated in a principled manner. The prediction for a query point is
performed by weighted average similar to LWPR [1]. For partitioning and weighted
prediction we use a kernel as similarity measure. Thus, our algorithm consists out
of three stages: (i) clustering of data, i.e., insertion of new data points into the local



Real-time Local GP Model Learning 5

models, (ii) learning of corresponding local models and (iii) prediction for a query
point.

2.1 Partitioning of Training Data

Clustering input data can be performed efficiently using a similarity measure be-
tween the input point x and the centers of the respective local models. From a
machine learning point of view, the similarity or proximity of data points can be
defined in terms of a kernel. Kernel functions represent the dot product between two
vectors in the feature space and, hence, naturally incorporate the similarity measure
between data points. The clustering step described in this section results from the
basic assumption that nearby input points are likely to have similar target values.
Thus, training points that belong to the same local region (represented by a center)
are informative about the prediction for query points next to this local region.

A specific characteristic in this framework is that we take the kernel for learning
the Gaussian process model as similarity measure wk for the clustering process. If
a Gaussian kernel is employed for learning the model, the corresponding measure
will be

wk (x,ck) = exp
(
−1

2
(x− ck)

T W(x− ck)
)

, (5)

where ck denotes the center of the k-th local model and W a diagonal matrix rep-
resented the kernel width. It should be emphasized that for learning the Gaussian
process model any admissible kernel can be used. Thus, the similarity measure for
the clustering process can be varied in many ways, and, for example, the commonly
used Matern kernel [14] could be used instead of the Gaussian one. For the hyper-
parameters of the measure, such as W for Gaussian kernel, we use the same training
approach as introduced in Section 1.2. Since the hyperparameters of a Gaussian
process model can be achieved by likelihood optimization, it is straightforward to
adjust the open parameters for the similarity measure. For example, we can subsam-
ple the available training data and, subsequently, perform the standard optimization
procedure.

After computing the proximity between the new data point xnew and all available
centers, the data point will be included to the nearest local model, i.e., the one with
the maximal value of wk. As the data arrives incrementally over time, a new model
with center ck+1 is created if all similarity measures wk fall below a threshold wgen.
The new data point is then used as new center ck+1 and, thus, the number of local
models will increase if previously unknown parts of the state space are visited. When
a new data point is assigned to a particular k-th model, i.e., maxk wk(x) > wgen the
center ck will be updated to the mean of corresponding local data points.



6 Duy Nguyen-Tuong, Matthias Seeger and Jan Peters

Algorithm 1: Partitioning the training data with incremental model learning.
Input: new data point {xnew, ynew}.
for k=1 to number of local models do

Compute proximity to the k-th local model:
wk = k (xnew,ck)

end for
Take the nearest local model:

v = maxk wk
if v > wgen then

Insert {xnew, ynew} into the nearest local model:
Xnew =[X,xnew], ynew =[y,ynew]

Update the corresponding center:
cnew = mean(Xnew)

Update the Cholesky matrix and the
prediction vector of local model:

Compute l and l∗
Compute Lnew
If the maximum number of data points is reached
delete another point by permutation.
Compute αnew by back-substitution

else
Create new model:

ck+1 =xnew, Xk+1 =[xnew], yk+1 =[ynew]
Initialize of new Cholesky matrix L and
new prediction vector α .

end if

Algorithm 2: Prediction for a query point.
Input: query data point x, M .
Determine M local models closest to x.
for k = 1 to M do

Compute proximity to the k-th local model:
wk = k (x,ck)

Compute local prediction using the k-th local model:
ȳk = kT

k αk
end for
Compute weighted prediction using M local models:

ŷ=∑
M
k=1 wk ȳk/∑

M
k=1 wk .

2.2 Incremental Update of Local Models

During online learning, we have to deal with an endless stream of data (e.g., at a 500
Hz sampling rate we get a new data point every 2 ms and have to treat 30 000 data
points per minute). In order to cope with the real-time requirements, the maximal
number of training examples needs to be limited so that the local models do not
end up with the same complexity as a standard GPR regression. Since the number
of acquired data points increases continuously over time, we can enforce this limit
by incrementally deleting old data points when newer and better ones are included.
Insertion and deletion of data points can be achieved using first order principles, for



Real-time Local GP Model Learning 7

example, maximizing the information gain while staying within a budget (e.g., the
budget can be a limit on the number of data points). Nevertheless, while the update
of the target vector y and input matrix X can be done straightforwardly, the update
of the covariance matrix (and implicitly the update of the prediction vector α , see
Equation (4)) is more complicated to derive and requires thorough analysis given
here.

The prediction vector α can be updated incrementally by directly adjusting the
Cholesky decomposition of the Gram matrix (K + σ2

n I) as suggested in [15]. For
doing so, the prediction vector can be rewritten as y=LLT α , where the lower tri-
angular matrix L is a Cholesky decomposition of the Gram matrix. Incremental
insertion of a new point is achieved by adding an additional row to the matrix L.

Proposition 1. If L is the Cholesky decomposition of the Gram matrix K while Lnew
and Knew are obtained by adding additional row and column, such that

Lnew =
[

L 0
lT l∗

]
, Knew =

[
K kT

new
knew knew

]
, (6)

with knew = k(X,xnew) and knew = k(xnew,xnew), then l and l∗ can be computed by
solving

Ll = knew (7)

l∗ =
√

knew−‖l‖2 (8)

Proof. Multiply out the equation LnewLT
new = Knew and solve for l and l∗. ut

Since L is a triangular matrix, l can be determined from Equation (7) by sub-
stituting it back in after computing the kernel vector knew. Subsequently, l∗ and
the new prediction vector αnew can be determined from Equation (8), where αnew
can be achieved by twice back-substituting while solving ynew =LnewLT

newαnew. If
the maximal number of training examples is reached, an old data point has to be
deleted every time when a new point is being included. The deletion of the m-th
data point can be performed efficiently using a permutation matrix R and solving
ynew = R LnewLT

newR αnew, where R = I− (δ m− δ n)(δ m− δ n)T and δ i is a zero
vector whose i-th element is one [15]. In practice, the new data point is inserted as a
first step to the last row (n-th row) according to Equation (6) and, subsequently, the
m-th data point is removed by adjusting R. The partitioning and learning process is
summarized in Algorithm 1. The incremental Cholesky update is very efficient and
can be performed in a numerically stable manner as discussed in detail in [15].

Due to the Cholesky update formulation, the amount of computation for training
can be limited due to the incremental insertion and deletion of data points. The main
computational cost for learning the local models is dominated by the incremental
update of the Cholesky matrix which yields O(N2

l ), where Nl presents the number
of data points in a local model. Importantly, Nl can be set in accordance with the
computational power of the available real-time computer system.



8 Duy Nguyen-Tuong, Matthias Seeger and Jan Peters

2.3 Prediction using Local Models

The prediction for a mean value ŷ is performed using weighted averaging over M
local GP predictions ȳk for a query point x similar to LWPR [1]. The weighted
prediction ŷ is then given by ŷ=E{ȳk|x}=∑

M
k=1 ȳk p(k|x). According to the Bayesian

theorem, the probability of the model k given query point x can be expressed as

p(k|x)=
p(k,x)
p(x)

=
p(k,x)

∑
M
k=1 p(k,x)

=
wk

∑
M
k=1 wk

. (9)

Hence, we have
ŷ = ∑

M
k=1 wkȳk

∑
M
k=1 wk

, (10)

Thus, each local GP prediction ȳk = k(Xk,x)T αk is additionally weighted by the
similarity wk (x,ck) between the corresponding center ck and the query point x. The
search for M local models can be quickly done by evaluating the proximity between
the query point x and all model centers ck. The prediction procedure is summarized
in Algorithm 2.

3 Learning Inverse Dynamics for Model-based Control

(a) SARCOS arm (b) Barrett WAM

Fig. 1: Robot arms used for data genera-
tion and experiments.

Learning models for control of high-
dimensional systems in real-time is
a difficult endeavor and requires ex-
tensive evaluation. For this reason,
we evaluate our algorithm (LGP) us-
ing high-dimensional data taken from
two real robots, e.g., the 7 degree-of-
freedom (DoF) anthropomorphic SAR-
COS master arm and 7-DoF Barrett
WAM both shown in Figure 1. Sub-
sequently, we apply LGP for online
learning of inverse dynamics models
for robot tracking control. The tracking
control task with model online learn-
ing is performed on the Barrett WAM
in real-time. Finally, we highlight the

advantages of online-learned models versus offline approximation and analytical
model in a more complex experiment for learning of character writing.



Real-time Local GP Model Learning 9

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

Degree of Freedom

nM
S

E

 

 

LWPR
OGP
ν−SVR
GPR
LGP

(a) Approximation Error
on SL data (SARCOS
model)

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Degree of Freedom

nM
S

E

 

 

LWPR
OGP
ν−SVR
GPR
LGP

(b) Approximation Error
on SARCOS data

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Degree of Freedom

n
M

S
E

 

 

LWPR
OGP
ν−SVR
GPR
LGP

(c) Approximation Error
on Barrett WAM data

Fig. 2: The approximation error is represented by the normalized mean squared error (nMSE)
for each DoF (1–7) and shown for (a) simulated data from physically realistic SL simulation,
(b) real robot data from an anthropomorphic SARCOS master arm and (c) measurements from a
Barrett WAM. In all cases, LGP outperforms LWPR and OGP in learning accuracy while being
competitive to ν-SVR and standard GPR. The small variances of the output targets in the Barrett
data results in a nMSE that is a larger scale compared to SARCOS; however, this increase has no
practical meaning and only depends on the training data.

3.1 Learning Accuracy Comparison

In this section, we compare the learning performance of LGP with the state-of-the-
art in nonparametric regression, e.g., LWPR, ν-SVR [7], standard GPR and online
Gaussian Process Regression (OGP) [7] in the context of approximating inverse
robot dynamics. For evaluating ν-SVR and GPR, we have employed the libraries
[16] and [17], respectively. The code for LGP contained also parts of the library [17].

For comparing the prediction accuracy of our proposed method in the setting of
learning inverse dynamics, we use three data sets, (i) SL simulation data (SARCOS
model) as described in [13] (14094 training points and 5560 test points), (ii) data
from the SARCOS master arm (13622 training points and 5500 test points) [1] as
well as (iii) a data set generated from our Barrett arm (13572 training points, 5000
test points). Given samples x=[q, q̇, q̈] as input, where q, q̇, q̈ denote the joint angles,
velocity and acceleration, respectively, and using the corresponding joint torques
y=[u] as targets, we have a well-defined, proper regression problem. The considered
seven degrees of freedom (DoF) robot arms result in 21 input dimensions (i.e., for
each joint, we have an angle, a velocity and an acceleration) and seven target or
output dimensions (i.e., a single torque for each joint). The robot inverse dynamics
model can be estimated separately for each DoF employing LWPR, ν-SVR, GPR,
OGP and LGP, respectively.

The training examples for LGP can be partitioned either in the same input space
where the local models are learned or in a subspace that has to be physically consis-
tent with the approximated function. In the following, we localize the data depend-
ing on the position of the robot. Thus, the partitioning of training data is performed
in a seven dimensional space (i.e., consisting of the seven joint angles). After deter-



10 Duy Nguyen-Tuong, Matthias Seeger and Jan Peters

mining the similarity metric wk for all k local models in the partitioning space, the
input point will be assigned to the nearest local model, i.e., the local model with the
maximal value of distance measure wk. For computing the localization, we will use
the Gaussian kernel as given in Equation (2) and the corresponding hyperparameters
are optimized using a subset of the training set.

Note that the choice of the limit value wgen during the partitioning step is cru-
cial for the performance of LGP and, unfortunately, is an open parameter requiring
manual tuning. If wgen is too small, a large number of local models will be generated
with small number of training points. As these small models receive too little data
for a stable GPR, they do not generalize well to unknown neighboring regions of
the state space. If wgen is large, the local models will include too many data points
which either results in over-generalization or, if the number of admitted data points
is enlarged as well, it will increase the computational complexity. Here, the training
data is clustered in about 30 local regions ensuring that each local model has a suf-
ficient amount of data points for high accuracy (in practice, roughly a hundred data
points for each local model suffice) while having sufficiently few that the solution
remains feasible in real-time (e.g., on the test hardware, an Intel Core Duo at 2GHz,
that implies the usage of up to a 1000 data points per local model). On average,
each local model includes approximately 500 training examples, i.e., some models
will not fill up while others actively discard data. This small number of training data
points enables a fast training for each local model using the previously described
fast Cholesky matrix updates.

Figure 2 shows the normalized mean squared error (nMSE) of the evaluation
on the test set for each of the three evaluated scenarios, i.e., a physically realistic
simulation of the SARCOS arm in Figure 2 (a), the real anthropomorphic SARCOS
master arm in Figure 2 (b) and the Barrett WAM arm in Figure 2 (c). Here, the
normalized mean squared error is defined by nMSE = Mean squared error/Variance
of target. During the prediction on the test set using LGP, we take the most activated
local models, i.e., the ones which are next to the query point.

When observing the approximation error on the test set shown in Figure 2(a-c),
it can be seen that LGP generalizes well to the test data during prediction. In all
cases, LGP outperforms LWPR and OGP while being close in learning accuracy to
the offline-methods GPR and ν-SVR. The mean prediction for GPR is determined
according to Equation (4) where we pre-computed the prediction vector α from
training data. When a query point appears, the kernel vector kT

∗ is evaluated for this
particular point.

3.2 Online Learning for Model-based Control

In this section, we apply the inverse dynamics models for a model-based tracking
control task [9]. Here, the model is used for predicting the feedforward torques uFF
necessary to execute a given the desired trajectory [qd , q̇d , q̈d ]. First, we compare
standard rigid-body dynamics (RBD) models with several models learned offline on



Real-time Local GP Model Learning 11

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

Degree of Freedom

R
M

S
E

 

 

RBD
LWPR
ν−SVR
GPR
LGP offline

(a) Tracking errors on Barrett: com-
parison of offline-learned models

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Degree of Freedom

R
M

S
E

 

 

LGP offline
GPR
LGP online

(b) Tracking errors on Barrett: full
GPR vs. offline and online-learned
models with LGP

Fig. 3: (a) and (b) show the tracking errors (RMSE) on the Barrett WAM. For offline-learned mod-
els, LGP is competitive with full GPR and ν-SVR while being better than LWPR and rigid-body
model. When employing online-updates, LGP can largely improve the tracking results outper-
forming the offline-learned models using full GPR. The reported results are computed for a test
trajectory executed on the robot.

training data sets. The RBD-parameters are estimated from the corresponding CAD
model. During the control task, the offline-learned models are used for an online
torque prediction. For this comparison, we use LWPR, ν-SVR, standard GPR as
well as our LGP as compared learning methods. We show that our LGP is com-
petitive when compared with its alternatives. Second, we demonstrate that LGP is
capable of online adaptation while being used for predicting the required torques.
During online learning, the local GP models are updated in real-time, and the online
improvement during a tracking task outperforms the fixed offline model in compari-
son. Our goal is to achieve compliant tracking in robots without exception handling
or force sensing but purely based on using low control gains. Our control gains are
three orders of magnitude smaller than the manufacturers in the experiments and
we can show that using good, learned inverse dynamics models we can still achieve
compliant control. Due to the low feedback gains, the accuracy of the model has a
stronger effect on the tracking performance in this setting and, hence, a more pre-
cisely learned model will also results in a significantly lower tracking error.

For comparison with offline-learned models, we also compute the feedforward
torque using rigid-body (RB) formulation which is a common approach in robot
control [9]. The control task is performed in real-time on the Barrett WAM, as shown
in Figure 1. As desired trajectory, we generate a test trajectory which is similar
to the one used for learning the inverse dynamics models. Figure 3 (a) shows the
tracking errors on test trajectory for 7 DoFs using offline-learned models. The error
is computed as root mean square error (RMSE) which is a frequently used measure
in time series prediction and tracking control. Here, LGP provides a competitive
control performance compared to GPR while being superior to LWPR and the state-
of-the art rigid-body model.



12 Duy Nguyen-Tuong, Matthias Seeger and Jan Peters

Figure 3 (b) shows the tracking error after online learning with LGP in com-
parison with offline learned models. It can be seen that the errors are significantly
reduced for LGP with online updates when compared to both standard GPR and
LGP with offline learned models. During online-learning, the local GP models are
adapted as new data points arrive. Since the number of training examples in each
local model is limited, the update procedure is sufficiently fast for real-time applica-
tion. For doing so, we employ the joint torques u and the resulting robot trajectories
[q, q̇, q̈] as samples which are added to the LGP models online as described in Sec-
tion 2.2. New data points are added to the local models until these fill up and, once
full, new points replace previously existing data points. The insertion of new data
point is performed with information gain [18] while for the deletion we randomly
take an old point from the corresponding local model. A new data point is inserted
to the local model, if its information gain is larger than a given threshold value. In
practice, this value is set such that the model update procedure can be maintained
in real-time (the larger the information gain threshold, the more updates will be
performed).

3.3 Performance on a Complex Test Setting

In this section, we create a more complex test case for tracking with inverse dy-
namics models where the trajectories are acquired by kinesthetic teach-in, i.e., we
take the Barrett WAM by the end-effector and guide it along several trajectories

Fig. 4: The figure illustrates the data gen-
eration for the learning task.

which are subsequently used both in
learning and control experiments. In or-
der to make these trajectories straight-
forward to understand for humans, we
draw all 26 characters of the alphabet
in an imaginary plane in task space.
An illustration for this data generation
process is shown in Figure 4. During
the imagined writing, the joint trajec-
tories are sampled from the robot. Af-
terwards, it will attempt to reproduce
that trajectory, and the reproductions
can be used to generate training data.
Subsequently, we used several charac-
ters as training examples (e.g., charac-
ters from D to O) and others, e.g., A,
as test examples. This setup results in a
data set with 10845 samples for train-
ing and 1599 for testing.

Similar as in Section 3.1, we learn the inverse dynamics models using joint tra-
jectories as input and joint torques as targets. The robot arm is then controlled



Real-time Local GP Model Learning 13

−0.5 −0.4 −0.3 −0.2

−0.6

−0.5

−0.4

−0.3

−0.2

X

Y

(a) Tracking test-characters
using rigid-body model

−0.5 −0.4 −0.3 −0.2

−0.6

−0.5

−0.4

−0.3

−0.2

X

Y

(b) Tracking test-characters
using offline-learned GP
model

−0.5 −0.4 −0.3 −0.2

−0.6

−0.5

−0.4

−0.3

−0.2

X

Y

(c) Tracking test-characters
after online-learning with
LGP

Fig. 5: Compliant tracking performance on Barrett WAM for the test character A, where the con-
trolled trajectory lies in joint-space while our visualization is in task space for improved compre-
hensibility. We compare the corresponding rigid body model, an offline trained GP model and an
online learning LGP. The thick, blue line denotes the desired trajectory, while the dashed, red line
represents the robot trajectory during the compliant tracking task. The results indicate that online
learning with LGP outperforms the offline-learned model using full GPR as well as the rigid-body
dynamics.

to perform the joint-space trajectories corresponding to the test characters using
the learned models. For LGP, we additionally show that the test characters can be
learned online by updating the local models, as described in Section 3.2. The Figure
5 shows the tracking results using online-learning with LGP in comparison to the
offline trained model with standard GPR and a traditional rigid body model.

It can be observed that the offline trained models (using standard GPR) can gen-
eralize well to unknown characters often having a better tracking performance than
the rigid-body model. However, the results can be improved even further if the dy-
namics model is updated online – as done by LGP. The LGP results are shown in
Figure 5 and are achieved after three trials on the test character.

4 Conclusion

The local Gaussian process regression LGP combines the strength of fast computa-
tion as in local regression with the potentially more accurate kernel regression meth-
ods. As a result, we obtain a real-time capable regression method which is relatively
easy to tune and works well in robot application. When compared to locally linear
methods such as LWPR, the LGP achieves higher learning accuracy while having
less computational cost compared to state of the art kernel regression methods such
as GPR and ν-SVR. The reduced complexity allows the application of the LGP for
online model learning which is necessary for realtime adaptation of model errors
or changes in the system. Model-based tracking control using online learned LGP
models achieves a superior control performance for low gain control in comparison
to rigid body models as well as to offline learned models.



14 Duy Nguyen-Tuong, Matthias Seeger and Jan Peters

Future research will focus on several important extensions such as finding ker-
nels which are most appropriate for clustering and prediction, and how the choice
of a similarity can affect the LGP performance. Partitioning in higher dimension
space is still a challenging problem, a possible solution is to perform dimensionality
reduction during the partitioning step. Furthermore, alternative criteria for insertion
and deletion of data points need to be examined more closely. This operation is cru-
cial for online learning as not every new data point is informative for the current
prediction task, and on the other hand deleting an old but informative data point
may degrade the performance. It also interesting to investigate further applications
of the LGP in humanoid robotics with 35 of more DoFs and learning other types of
the control such as operational space control.

References

1. S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online learning in high dimensions,”
Neural Computation, 2005.

2. E. Snelson and Z. Ghahramani, “Local and global sparse gaussian process approximations,”
Artificial Intelligence and Statistics, 2007.

3. J. W. Roberts, J. Zhang, and R. Tedrake, “Motor learning at intermediate reynolds number:
Experiments with policy gradient on a heaving plate,” From Motor to Interaction Learning in
Robots, 2009.

4. M. Fumagalli, A. Gijsberts, S. Ivaldi, L. Jamone, G. Metta, L. Natale, F. Nori, and G. Sandini,
“Learning how to exploit proximal force sensing: a comparison approach,” From Motor to
Interaction Learning in Robots, 2009.

5. S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques from nonparameteric
statistics for real-time robot learning,” Applied Intelligence, pp. 49–60, 2002.

6. C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning. Mas-
sachusetts Institute of Technology: MIT-Press, 2006.

7. B. Schölkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. Cambridge, MA: MIT-Press, 2002.

8. L. Csato and M. Opper, “Sparse online gaussian processes,” Neural Computation, 2002.
9. J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed. Prentice Hall, 2004.

10. M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics and Control. New York:
John Wiley and Sons, 2006.

11. J. Nakanishi, J. A. Farrell, and S. Schaal, “Composite adaptive control with locally weighted
statistical learning,” Neural Networks, 2005.

12. S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Real-time robot learning with locally weighted
statistical learning,” International Conference on Robotics and Automation, 2000.

13. D. Nguyen-Tuong, J. Peters, and M. Seeger, “Computed torque control with nonparametric
regression models,” Proceedings of the 2008 American Control Conference (ACC 2008), 2008.

14. M. Seeger, “Gaussian processes for machine learning,” International Journal of Neural Sys-
tems, 2004.

15. M.Seeger, “Low rank update for the cholesky decomposition,” Univer-
sity of California at Berkeley, Tech. Rep., 2007. [Online]. Available:
http://www.kyb.tuebingen.mpg.de/bs/people/seeger/

16. C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001,
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

17. M. Seeger, LHOTSE: Toolbox for Adaptive Statistical Model, 2007,
http://www.kyb.tuebingen.mpg.de/bs/people/seeger/lhotse/.



Real-time Local GP Model Learning 15

18. M.Seeger, “Bayesian gaussian process models: Pac-bayesian generalisation error bounds and
sparse approximations,” Ph.D. dissertation, University of Edinburgh, 2005.


