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Learning to Serve: an Experimental Study for a new
Learning from Demonstrations Framework

Okan Kog!, Jan Peters!-?

Abstract—Learning from demonstrations is an easy and intu-
itive way to show examples of successful behavior to a robot.
However, the fact that humans optimize or take advantage of
their body and not of the robot, usually called the embodiment
problem in robotics, often prevents industrial robots from exe-
cuting the task in a straightforward way. The shown movements
often do not or cannot utilize the degrees of freedom of the robot
efficiently, and moreover can suffer from excessive execution
errors. In this paper, we explore a variety of solutions that address
these shortcomings. In particular, we learn sparse movement
primitive parameters from several demonstrations of a successful
table tennis serve. The number of parameters learned using our
procedure is independent of the degrees of freedom of the robot.
Moreover, they can be ranked according to their importance in
the regression task. Learning few parameters that are ranked
is a desirable feature to combat the curse of dimensionality in
Reinforcement Learning. Real robot experiments on the Barrett
WAM for a table tennis serve using the learned movement
primitives show that the representation can capture successfully
the style of the movement with few parameters.

Index Terms—Learning from Demonstration, Learning and
Adaptive Systems, Optimization, Learning a Sparse Represen-
tation.

I. INTRODUCTION

UMANS are good at using their bodies to great effect,

taking advantage of their muscular structure and soft
but flexible actuation. Much of dexterous manipulation, or
dynamic movement generation reflects this awareness of the
human body. When teaching the robots to achieve similar tasks
autonomously, however, we inevitably impose and transfer
our biases to the robot. This problem of embodiment can
cripple the execution, possibly also preventing the robots from
taking advantage of their kinematics structure and actuation
mechanisms.

In dynamic games like table tennis, we can easily observe
humans taking utmost advantage of their bodies and pushing
it to its maximum, i.e., optimizing their output bearing in
mind their kinematic and dynamic limits. Table tennis serves,
for instance, incorporate flicks (very fast accelerations of the
wrist) that are designed to give an unsuspected spin and
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motion profile to the ball. Teaching such movements to the
robots in a learning from demonstrations framework using
kinesthetic teach-in, where the robot joint movements are
recorded, suffers in particular from two drawbacks. Firstly,
during the shown movement, as discussed above, the human
is unable to move the shoulder joints of the robot adequately,
which could potentially be used by the robot to great effect.
Secondly, the fast movements of the wrists may not be tracked
accurately by the robot, which is the case for the cable-
driven seven degree of freedom (DoF) Barrett WAM arm, see
Figure 1.

In this paper, we explore different learning from demonstra-
tions (LfD) approaches to compensate for the execution and
transfer deficiencies resulting from the demonstrated serves.
The demonstrations are acquired and the movement primitives
are trained in the joint-space of the robot, using kinesthetic
teach-in, where the movements of the robot are recorded using
the joint-level sensors. The initial policy or the movement
template, extracted as a set of movement primitives, can
be thought of as a good initialization for a reinforcement
learning (RL) agent. By capturing the essence of the shown
demonstrations in as few parameters as possible, we simplify
and increase the effectiveness of the skill transfer to the robot.

Sparsity is achieved in our framework in joint-space! by
using a new iterative optimization approach, where a multi-
task Elastic Net regression is alternated with a nonlinear
optimization. The Elastic Net projects the solutions to a sparse
set of features, and during the nonlinear optimization these
features (the basis functions) are adapted to the data in a
secondary optimization. Moreover these features are shared
across multiple demonstrations, increasing the effectiveness of
the feature learning strategy.

The fewer number of learned parameters using our iter-
ative optimization procedure, compared to more traditional
approaches, is independent of the robot DoF. This is a
desirable property for Reinforcement Learning to adapt the
learned parameters online. Moreover, by using the Elastic Net
path, we can rank the parameters in terms of importance,
or effectiveness in explaining the demonstration data. We
perform preliminary experiments on the Barrett WAM on a
table tennis serve to validate the effectiveness of our new
movement primitives.

IDiscarding the joint-level information and using only the Cartesian
coordinates of the resulting movements, in a similar attempt to reduce the
dimensionality of the robot learning problem, necessitates the use of inverse
kinematics, running into feasibility and additional execution problems that
might be artificially introduced.
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Fig. 1: Our robot table tennis setup with a seven DoF Barrett WAM, where we demonstrate, using kinesthetic teach-in, multiple
good table tennis serve movements while recording the resulting joint-space robot trajectories. A metal piece is attached to the
end effector of the Barrett WAM, which connects to a standard sized table tennis racket. An egg-holder on the metal piece
holds the ball initially before the serve. The demonstrator, after finding a good starting posture, starts by swinging the arm,
giving the ball enough acceleration to propel it away from the robot. The ball is then hit in midair by a careful adjustment of
the robot wrist. The initial posture, the swinging movement of the robot shoulder joints and the elbow, and finally the turning
of the wrist all contribute to the style of the shown movement. Multiple demonstrations starting from different initial postures
are recorded in one session. We compare and evaluate throughout the paper different learning from demonstrations approaches
using these demonstrations. We propose a new iterative optimization approach that can learn sparse parameters while adapting
the features of the movement primitives to the demonstration data.

Robot table tennis has, since the nineties, captivated the
attention of the robot control and learning communities as a
challenging and dynamic task, and research in it has been
ongoing ever since. After the pioneering work of Anderson’s
analytical player [1], there have been various approaches fo-
cusing on certain parts of the game, such as simplifications in
trajectory generation using a virtual hitting plane [20], [15] or
learning striking trajectories from demonstrations [10]. Learn-
ing approaches to generate better strikes with Reinforcement
Learning (RL) include [14], [4]. Recently, [11] has introduced
a new trajectory generation framework in table tennis, where
they solve a free final-time optimal control problem, generat-
ing minimum acceleration striking trajectories. This kinematic
optimization approach was extended and evaluated in the real
robot table tennis setup in [12].

The success of this and other similar model-based opti-
mization approaches in dynamic tasks like table tennis heavily
depends on the accuracy of the models. In the case of table
tennis, an accurate ball model [17], [12] is especially difficult
to acquire. The high spin rates make the ball flight difficult
to model from first (physical) principles, while the various
types of impacts make it also difficult to train machine learning
approaches from raw ball position data. For the serve, an addi-
tional complication results from the ball take-off phenomena,
which is similarly difficult to model or to learn.

Learning from demonstrations (LfD) is a promising frame-
work for learning various robotic tasks efficiently without
using hard-coded approaches or physical insights to model the
specific aspects of each task. It has been used in many different
robot scenarios to great effect, including robot manipulation
and human-robot collaboration [13]. It was also useful in
initializing the parameters of policy-search RL approaches
for robot learning [9]. There are, by now, many different
frameworks for LfD, including dynamical system representa-
tions such as the Dynamical Movement Primitives (DMP) [5],
learning control Lyapunov-functions [7], and various other

probabilistic approaches, such as the probabilistic movement
primitives [19] or Gaussian mixture models [6]. These last two
methods can, unlike DMPs, capture multiple demonstrations
in a parametric form, and can moreover be used to condition
on way-points or different targets in joint or in task space.
One particular disadvantage of all of the LfD approaches
introduced above is that the features chosen to regress on
the demonstration data are often manually tuned and the
number of parameters to learn are explicitly specified. We
think that fixing the features and tuning their hyperparameters
for particular tasks harm the generalization and applicability
of the movement primitives to novel scenarios.

The [ -regularized [o-norm regression (from hereon referred
to as Lasso) is often used in the statistics and machine learning
communities as a regression method that can simultaneously
also perform automatic feature selection. A detailed introduc-
tion and analysis of Lasso can be found in [3]. Lasso was
extended to the multi-task case (i.e., multi-output regression
with shared features) in [18]. Our interest in Lasso lies in
the fact that (multi-task) Lasso can perform systematic fea-
ture selection while training (multiple) movement primitives,
augmenting the applicability of LfD to novel tasks. Moreover,
selection and early pruning of features can be used to great
effect in RL, possibly reducing the amount of interaction time
with the real robot.

A new incremental procedure to solve ordinary least squares
regression as well as Lasso problems was proposed in [2].
This algorithm, called Least Angle Regression or LARS for
short, yields piecewise linear homotopy paths of the regression
problem as a function of the [;-regularization term. These
paths can be used to rank the features in terms of importance,
as will be detailed later. Ranking the features of the trained
movement primitives can reduce the curse of dimensionality
in RL, decreasing as before the robot interaction time and pos-
sibly making the adapted movements also more interpretable
to the humans.
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The Elastic Net imposing additional [o-regularization to
Lasso was introduced in [21], where it was noted that a
basic transformation converts the problem to a standard Lasso
regression, and this is also valid in the multi-task setting. For
the training of movement primitives, especially for dynamic
trajectories like the table tennis serves, the Elastic Net with its
lo-regularization can help to reduce the excessive accelerations
throughout the learned movements, making them safer to
implement on the robot.

In the next sections, we will detail how the sparse
representation-learning of movement primitives can be formu-
lated using the multi-task Elastic Net, coupled with nonlinear
optimization on the feature parameters. To the best of our
knowledge, the multi-task Elastic Net was not combined
before with Radial Basis Functions in a (iterative) nonlinear
feature selection and optimization framework. We also think
that ranking the learned parameters in terms of importance is
a new idea that can benefit the RL community.

II. NOTATION

The notation that we use throughout the paper is standard:
for a robot arm with n degrees of freedom (DoF), the joint
configurations are g € Q = {q € R" |Qpin < 4 < Apax}-
The recorded joint positions over a movement is represented as

a matrix q(t) € RV*" of N rows, with column i = 1,...,n
storing the positions throughout the movement corresponding
to joint <.

Whenever multiple demonstrations are used for learning,
ie., q;;(t) is recorded for i = 1,...,n DoF and j = 1,...,d
demonstrations, these recordings are stacked to form the Q
matrix. The degrees of freedom are concatenated vertically in
this case for a single demonstration, while the columns store
the different demonstration data, i.e., q;;(t) = Qn(i—1)1t/at.
for a recording of IV time points with d¢ time intervals.

The Frobenius norm of a matrix is the square-root of the
sum of its squared elements, |M|% = >3 jmfj, whereas
the || - |21 norm used in the multi-task Elastic Net is defined

instead as [[Mllo1 = >2;4/>>;m3;, ie., l2-norm along the
columns (degrees of freedom in our setting) and /;-norm along
the rows (time steps). This norm is used to induce sparsity
on the features, whose centers are initially located uniformly
along the time axis.

III. METHOD

In this section, we discuss how one can acquire a sparse
movement pattern from human demonstrations. We present
first an algorithm that requires only a single human demonstra-
tion, and then present a suitable variant that can be employed
for multiple demonstrations. This variant of the algorithm
decouples the number of learned parameters from the degrees
of freedom of the robot.

A. Learning a sparse representation from a single demonstra-
tion

Given a single demonstration q(t) at the (observed) time
points t, we’d like to extract a movement primitive that is

sparse. That is, throughout the parametric optimization, we’d
like to impose a good fit with as few basis functions as pos-
sible, while keeping the accelerations low during the trained
movement pattern. Having low accelerations is beneficial both
for robot safety as well as improving the tracking (execution)
accuracy of the trajectories [12]. Mathematically, the criterion
that we optimize can be written as

min flq(t) - W(t, B)0]5 + Ail|0ll21 + o[ ¥ (8, B)6]7, (1)

)

where ¥(t,3) € RN*P are the evaluations of the basis
functions at t, @ € RP*™ are the (sparse) regression param-
eters, and q(t) are the joint observations during the shown
movement. The nonlinear radial basis functions (RBF) are
parameterized by 8 € RP. An Ils-penalty is put on the
accelerations l.I.l(t,ﬂ)@ of the extracted movement pattern
P (t,3)60, while a penalty with the [;-norm on the (rows of
the) regression parameters 6 encourages sparsity of the found
solutions.

This regression problem, for fixed 3, is known as the
multi-task Elastic Net in the literature, where the features
are shared among the sparse parameters along each degree
of freedom. As opposed to the standard (multi-task) Lasso,
the lo-norm penalty in the optimization (1) penalizing the
accelerations throughout the motion, also adds stability to the
Lasso solutions [21].

The solution to the weighted Elastic Net problem (1) for
fixed B can be obtained by transforming the problem to an
equivalent (unweighted) Lasso problem, solving it via a convex
optimizer (e.g., coordinate descent is very effective for Lasso
problems), and then transforming the solutions back to the
Elastic Net parameters.

We can solve the original problem (1) iteratively (as in
Expectation-Maximization type of algorithms) by first starting
the iteration with a Lasso solution of an overly-parameterized
radial basis function regression. At each iteration, the RBF pa-
rameters 3, corresponding to the basis functions with nonzero
Lasso regression parameters 8;; > 0, j=1,...,n are updated
for each ¢=1,...,p via nonlinear optimization. The Elastic
Net regression is then performed, and the features correspond-
ing to parameters with zero coefficients are removed. These
two alternating steps can be continued till convergence, or
rather terminated in a fixed number of steps. The iterations
converge when the change in function value of the total cost
in (1) is below a certain tolerance e. Depending on the initial
solution parameters 3, and 6y, the iteration converges to a
local minimum.

The full procedure is shown in Algorithm 1 in detail. We
call the resulting algorithm Learning Sparse Demonstration
Parameters or LSDP for short. The algorithm alternates be-
tween the multi-task Elastic Net (lines 4 and 10) and the
nonlinear optimizer (BFGS, in line 8). In between, the zero
entries of the regression parameters 6 and the corresponding
columns of ¥, ¥ are removed in the Prune step (lines 5 and
13). The pruning operation simplifies the optimization in the
upcoming iterations, as the removed RBF parameters cannot
then be re-elected later. We use the squared exponential kernel
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to construct our basis functions, i.e., for every ¢,; we use
Wi;(t:) = exp(—(ti — p;)?/(207)),

to form the (4,7)’th element of the matrix W. The data is
initially centered (line 2), i.e., the mean of each joint recording
is subtracted from the signal, and the means q, are stored as
the intercepts for the particular demonstration.

For a good performance of the algorithm, i.e., obtaining low
residuals with a sparse set and low accelerations, choosing
the regularizer weights A; and A, suitably is crucial. These
parameters can be set using cross-validation either before
Algorithm 1 or together with the initial regression (line 4).
The regularizers should be scaled down accordingly with
the decreasing residual norms (see line 12), otherwise the
algorithm can converge to the empty set for the parameters
0.

The optimization problem, depending on the parameteriza-
tion and the features used, can be highly nonconvex, possibly
with many local minima. The number of local minima, fortu-
nately, does not seem to pose a problem in terms of residual
norm. As long as the initial representation is sufficiently (over)
parameterized, most solutions fit well to the demonstration
data. For more sparse representations, however, one may
choose to restart the training procedure a few times from
perturbed initial conditions, especially for the RBF parameters
B. See the Experiments section for more discussion on the
implementation details.

The computational complexity of the algorithm overall is
dominated by the complexity of the multi-task Elastic Net step
(line 10), where the coordinate descent algorithm is used to
solve a Lasso problem (after a transformation in constant time
O(1)). The time-complexity of the LARS algorithm to solve
Lasso problems is known to be O(Np?) [2], but coordinate-
descent converges often faster, in our experience. One step
of Quasi-Newton methods has time-complexity O(p?) (plus
the cost for function and gradient evaluations [16]), coming
from the matrix multiplication operations. Quasi-Newton op-
timization may, depending on the initialization, require many
of these steps, in our case we limit it to 100p steps for each
iteration of LSDP.

B. Coupling the parameters across dimensions

The algorithm LSDP discussed in the previous subsection
uses the multi-task Elastic Net to enforce the same basis
functions for each degree of freedom (along the columns
of q(t) and the parameter matrix ), while the parameter
vectors corresponding to each joint movement are different
and optimized independently: the regression parameters are
decoupled across the degrees of freedom (DoF) of the robot. In
particular, the number of regression parameters grow linearly
with the robot DoF, which may be undesirable for applying
policy search RL approaches to high dimensional robotic
systems especially.

Furthermore, the algorithm has to be applied for each
demonstration separately, i.e., there is no coupling or informa-
tion shared between the demonstrations. In order to enforce
rather the features to be shared across demonstrations rather

Algorithm 1 Learning sparse parameters with regression
(LSDP) for a single demonstration

Require: q, t, i, 02, A1, Ao, € >0

1: Initialize 3, = [u, 2]
Center the data, q,,q < Center(q)
Form ¥, ¥ using 3, and t
0y + MultiTaskElasticNet (¥, U, qd, A, A2)
0o, B, < Prune(By,3)
Form ¥, ¥ using B and t
repeat k =1,...,

By  BEGS(®, W, B;_1, 01, 4, A1, \2)

9: Form ¥, ¥ using 3, and t
10: 0, < MultiTaskElasticNet (¥, U, q, A, A2)
11: Calculate residual norm 7y, total cost fi using (1)
12: Scale penalties \; < \;r/ri_ |, i=1,2
13: 0k, 3; <+ Prune(fy, ;)
14: Form ¥, ¥ using 8 and t
15: until || fr — fr_1] <e

R ol

than the robot DoFs, we discuss here a variant of the algorithm
LSDP, which we call coupled LSDP, or cLSDP for short.

The algorithm c¢LSDP, shown in Algorithm 2, requires
only a few changes compared to Algorithm 1. The data
is centered for each demonstration to obtain the intercepts
Q- The algorithm then stacks (lines 1 — 3) the dependent
regression variables g, and the RBF parameters 3, vertically
for each degree of freedom ¢ = 1,...,n to form the matrices
Q € RY"xd and ¥ € RNY™*P. The second time derivative of
the data matrix, \'I'l, is stacked as well to form the regression
model as in (1).

As opposed to LSDP, in this procedure there are n times
the number of RBF parameters 3 to be optimized (line 8),
as the features are adapted independently for each DoF. The
regression parameters @, on the other hand, are coupled across
the DoFs, and their cardinality is reduced by n times. The
nonlinear optimization computational complexity in this case
dominates that of the multi-task Elastic Net and the net result
is roughly a n times increase in the computation time between
each iteration of cLSDP.

Note that the parameters for each demonstration are esti-
mated together, i.e., the columns of the 6 matrix correspond
to the regression parameters for different demonstrations. One
way to generalize the learned movement primitives to different
task conditions (such as varying initial joint states) would be
to interpolate between these regression parameters. A policy
could then be effectively created, whose generalization would
be limited by the number and the quality (e.g. variety, success
rate) of the demonstrations.

C. Ranking the demonstration parameters

The regression parameters estimated with ¢cLSDP can also
be ranked in terms of statistical significance, i.e., correlation.
The Elastic Net regularization path of the LARS algorithm [2]
traces the evolution of the parameters as the /;-penalty weight
A1 of equation (1) increases. An example regularization path
for twenty selected regression parameters 6 € R?? are plotted
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Algorithm 2 Learning coupled sparse parameters with regres-
sion (cLSDP) across multiple demonstrations

Require: q;;, t, p;, 02, A\, Mg, € >0
1: Stack q;; to form Q, i € [1,n],j € [1,d]

2: Center the data, Q,, Q < CenterStacked(Q)

3: Stack By = [Hy,-- -, My, 0%, ..., 02]

4: Stack ¥, N using 3, and t across DoFs

5: 0g < MultiTaskElasticNet(W, \'I'l, Q, M\, \2)
6: Op, 3, <+ PruneStacked(fy, 3)

7: Stack W, N using B and t across DoFs

8: repeat k=1,...,

9: ﬂk — BFQS(‘I’, v, ,@k_l, 0.1, Q, A\, \2)

10: Stack W, W using 3, and t across DoFs

11: 0, < MultiTaskElasticNet(W¥, \'I'l, Q, A\, \2)
12: Calculate residual norm 7y, total cost fi using (1)
13: Scale penalties \; < )\iri/ri_l, 1=1,2

14: Ok, B), < PruneStacked(0y, B;)
15: Stack ¥, W using 3 and t across DoFs
16: until || fr, — fr—1]l <e

in Figure 2. Initially when the regularization is low (A\; ~
0) on the right side of the Figure, the coefficients are close
to their (nonzero) values in ordinary Least Squares. As the
regularization term increases, some of these terms drop out,
i.e., the coefficients become zero as the path is traced towards
the left-hand side of the Figure. The corresponding features
can then be eliminated from the regression model, leading not
only to a sparse, but also a ranked set of features.

In the proposed method cLSDP, the LARS algorithm instead
of coordinate descent can be used in the final Elastic Net
computation step (line 11 of Algorithm 2) to generate the full
regularization path. The addition of the selected movement
primitive parameters can then be traced. An example path
for twenty parameters selected by the Algorithm is plotted in
Figure 2 against their normalized [;-norm. These parameters
can be ranked according to their evolution, i.e., the coefficients
that early on during the path become nonzero are likely to
signal more causally effective components of the motion. For
example, in the shown plot, the parameters corresponding to
the red lines would be ranked after some of the parameters
appearing before (black lines). More prominent components
of the motion can be identified this way. These movement
components could be adapted earlier with RL strategies,
reducing the curse of dimensionality in high dimensional robot
learning problems.

IV. EXPERIMENTS

In this section, we conduct experiments to learn a sparse
set of movement primitive parameters using the proposed
approaches (see Algorithms 1 and 2). The two algorithms
are also compared against two competing movement primi-
tive learning methods (DMPs and [,-regularized regression).
Finally we present real robot experiments on our table tennis
platform where we show that the learned sparse movements
nevertheless look similar to the shown demonstrations in style.
They can also be implemented safely on the robot.

Elastic Net Path

0.3
a2 024
8 0.1
& 0.0 H
g -0.1 [
S 02 | I
0.3 | ! T ! T T .

T T
0.00 0.02 0.04 006 0.08 0.10 0.12

|coef| / max |coef]|

Fig. 2: An example Elastic Net path with twenty selected
parameters is shown after training Algorithm 2, cLSDP, with
five demonstrations. This regularization path can be generated
in the final step of the algorithm. As the [;-penalty term
A1 of the regression problem (1) is reduced, the coefficients
converge to their (maximal) ordinary least squares values at
the right hand side of the plot (not shown). Each dashed
line signals an entry of a parameter, and the slope of the
coefficients are updated accordingly. The algorithm LARS [2]
can be used to generate these piece-wise linear regularization
paths. One possible way to use this path is to rank the sparse
parameters of the learned movement primitives in terms of
statistical importance. For example, in the shown plot, the
parameters corresponding to the red lines would be ranked
after the other parameters appearing before (black lines). The
parameter paths, whose coefficients become nonzero close to
each other, are drawn with the same color.

A. Learning from Demonstrations

The algorithms LSDP and its coupled variant cLSDP, dis-
cussed in Section III, are applied here on the demonstrated
Barrett WAM serve movements, see Figure 1. From a con-
tinuous stream of joint values, recorded at 500 Hz during
a kinesthetic teach-in session, a predetermined number of d
movements are selected by detecting the maximum d velocities
in joint space and windowing around these points for a fixed
duration of one second. We implement the preprocessing
as well as the Algorithms in Python, using the scikit-learn
toolbox for the multi-task Elastic Net and the scipy toolbox
for the nonlinear optimization (BFGS, see lines 8 and 9 in the
Algorithms, respectively).

The preprocessed examples using the above procedure result
in the joint matrix q(¢t) € R®%°*7 for each example demon-
stration. For the algorithm LSDP, the initial RBF centers
o € R are placed at every time point and the RBF widths
o are set uniformly to 0.1. The algorithm stretches, prunes
and expands the basis functions throughout the optimization
to produce a very sparse, nonuniform set of basis functions
shared across the seven degrees of freedom (DoF). The
columns of the regression parameter matrix 6, on the other
hand, are separate for each DoF.

The Algorithm cLSDP, on the other hand, optimizes n times
more RBF parameters, i.e., u € R3°% and o2 € R35% for the
Barrett WAM with n = 7. During the optimization, all of the
recorded data from d demonstrations are used together, and the
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same set of basis function parameters 3 = [u", (6%)T]T are
learned across multiple demonstrations. The learned param-
eters t, 02,0, along with the intercepts, are saved after the
optimizations to a json file, to be loaded later by the real-time
robot controller in C+ during the online experiments.

Table I summarizes the results of learning movement prim-
itives from five different demonstrations. The three columns
used to compare the different approaches show on average
the number of features selected (equivalently, the number of
regression parameters with nonzero coefficients), the norm of
the second derivatives of the trained movement primitives and
the norm of the residuals, respectively. The five demonstration
parameters are estimated together in ¢LSDP, whereas LSDP
is run separately for each demonstration to obtain the mean
and the standard deviations reported in the table. Note that the
number of parameters in total used by ¢LSDP (37) is much
lower than the on-average 16.8 parameters used by LSDP
for each robot DoF. The residual is slightly higher, this is
a result of the parameters being shared across the dimensions.
In particular, we have observed that cLSDP does not fit the
last three joints, corresponding to the Barrett WAM wrist, as
tightly as LSDP. This could be because the motion of the wrist
is highly varying across the movements and the coupling of
the features induced by the algorithm across demonstrations
brings these movements closer.

The two proposed algorithms are compared against two
baselines in Table I. The first baseline is the Dynamic
Movement Primitives (DMPs) with a fixed number of basis
functions. DMPs learn the parameters of an attractor dynamics,
i.e., a set of differential equations that converge to a suitably
chosen goal state [5]. A standard regression is performed on
the estimated attractor dynamics accelerations. The second
baseline is lso-penalized standard regression, with the penalty
on the accelerations. During the experiments we used a total
of ten basis functions both for the DMPs and for the [»-
penalized regression. The basis functions are spread uniformly,
as discussed before for the proposed algorithms, around the
one second long (preprocessed) demonstrations.

DMPs, as a result of the dynamic constraint of reaching a
desired goal position, can incur very high initial accelerations
in joint space. Even if the hyperparameters are optimized
accordingly to prevent such high accelerations, slight adjust-
ments of initial joint positions can again give rise to high
accelerations. The suggestion proposed in [8] to modify the
accelerations with the phase can reduce the initial acceler-
ations, but then we have found that the convergence to the
goal suggestion can suffer drastically. The fixed basis function
regression does not have this problem, but as in DMPs,
optimizes a fixed number of parameters. As shown in Table I,
the number of parameters to fit the demonstrations well is,
for both compared methods, on average double the number
optimized by cLSDP.

See Figure 3 for two example regression results. The
demonstrated movements are shown in blue and the regression
results are shown in orange. The first three rows, ¢; through
qs3, correspond to the shoulder movement in joint space. The
fourth row g4 shows the movement of the elbow. Finally, the
last three rows (g5 through g7) show the wrist movements in

joint space. Although the demonstrated movements are quite
different, the training with the sparse set of features can still
capture them well.

Three example demonstrations are plotted in task space in
Figure 4 along with the recorded ball positions, detected and
triangulated from two cameras opposite to the robot. The initial
positions of the racket center and the ball in the egg-holder are
marked as 0 in red and blue, respectively. The egg-holder is
at a distance of roughly 14 cm to the racket center. During the
movement the ball is hit by the human demonstrator moving
the robot arm, and as the demonstrator slows down the motion
to a halt, the ball is seen flying towards the table.

B. Robot Experiments

Finally, we conduct experiments in our real robot table
tennis platform, see Figure 1. Our table tennis playing robot is
a seven degree of freedom Barrett WAM arm that is capable
of reaching high accelerations and velocities. However it is
cable-driven and high accelerations can cause the cables to
break easily. A standard size racket is attached to the end-
effector via a metal bar. The racket has a radius of roughly
rr = 7.6 cm. The table and the table tennis balls are standard
sized, balls have a radius of 2 cm, and the table geometry is
roughly 276 x 152 x 76 cm. Throughout the experiments, the
Barrett WAM is placed at a distance of about one meter to the
end of the table and its base is located 95 cm above the table.
This makes it difficult (but not impossible) for the robot to hit
the table. An egg-holder holds the table tennis ball initially,
wrapped around the metal bar connecting the end-effector and
the racket, see Figure 1.

A successful serve in our robot platform is shown in
Figure 5. The ball is initially placed on top of the egg-holder
(approximately 14 cm away from the racket center along
the racket plane). The movements captured by the algorithm
cLSDP are then executed on the robot. During the movements,
as a result of the robot’s accelerating motion, the ball takes off
from the robot arm. The ball is then hit by the robot towards
the table. The arm then decelerates towards a resting posture as
the ball lands on the robot court, passes the net, and lands again
on the opposite side. We notice that the initial accelerating
motion and the final wrist movement are critical for a good
serve. Without the initial accelerations, the ball has no chance
to take-off, and without the final wrist movement (e.g., a quick
rotation towards the ball) the ball is not hit well towards the
table.

A video showing some demonstrated movements, as well
as several actual rollouts on the Barrett WAM is available on-
line: https://youtu.be/vj6jfX_MQmQ. Note that orchestrating

TABLE I: Comparison of different learning from demonstra-
tions approaches, averaged over five different serve demon-
strations

No. par. (]|0]|0) Acc. norm Res. norm
LSDP (16.84+£3.25) x 7 | 59.04 +7.0 0.59 £0.11
cLSDP 37 55.98 £11.78 0.73 £0.09
DMPs 11 x7 621.73 £57.45 | 0.92 +0.06
12-reg.regr. | 11 x7 215.45 4+ 35.25 | 2.124+0.47
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Fig. 3: Two movement primitives learned by the proposed algorithm c¢LSDP, are plotted in joint space against the recorded
demonstrations. The table tennis serve movements, shown in blue, after preprocessing and segmenting the recorded time series
are one second long each. The first three rows, g; through gs, correspond to the shoulder movement in joint space. The fourth
row g4 shows the movement of the elbow. Finally, the last three rows (g5 through ¢7) show the wrist movements in joint space.
The trained movement primitives, shown in orange, couple the sparse regression parameters across the degrees of freedom of

the robot.
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Fig. 4: Three example demonstrations in task space. The initial position of the racket center and the ball in the egg-holder are
marked as 0 in red and blue circles, respectively. The egg-holder is located approximately 14 cm away from the racket centre.
Before the racket stops moving, the ball is already hit, flying towards the table.

the right movement during the demonstrations can be quite
difficult, as moving the shoulder and the elbow joints can feel
very awkward depending on the posture. When a good initial
posture (both for the robot and the demonstrator) is found,
the resulting demonstrations have a higher quality in general.
These higher quality demonstrations also have a higher chance
of being executed successfully.

Comparing our approach to the DMPs, we notice that
the DMPs immediately start the movement with very large
accelerations, these can be dangerous for the robot and the
low-level Barrett WAM controllers do not support 80% of
the movements. DMPs are good at capturing movements
that converge to goal positions (with zero or low velocities),
however they are less accurate in capturing the style (e.g.,
initial movement, final wrist turns) of dynamics movements
such as table tennis serves, without manual tuning (the number
of basis functions, locations and widths of the basis functions,

etc.) for each task. We have seen that cLSDP? on the contrary,
can capture the style of the movement, as shown in Figure
3 for some of the movements, with a sparse set of basis
functions. The generalization capacity of these selected basis
functions hinges on the quality and the number of the shown
demonstrations.?

V. CONCLUSION

In this paper we presented a new learning from demon-
strations (LfD) approach to represent and learn table tennis
serve movements. The proposed algorithms LSDP and cLSDP
learn sparse parameters of the radial basis functions (RBF)
from single and multiple demonstrations, respectively. The

2Note that executing the Algorithm LSDP, trained on each demonstation
independently, shows a very similar performance, to that of Algorithm
cLSDP at the moment. However we expect improvements on the learning
performance, if Reinforcement Learning is applied on top of the more sparse
set of cLSDP parameters.

3If the number and the quality of the demonstrations is not enough, then
the selected features and their ranking (using the regularization path) may
be spurious, i.e., without any meaningful physical relevance. Increasing the
number and the quality (e.g., increased variety of movements, higher success
rates) of the movements could remedy such a limitation.
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Fig. 5: A successful rollout during real robot experiments. The ball is initially on top of the egg-holder and during the movement,
as a result of the acceleration of the arm, it takes-off from the robot, to be later hit by the racket towards the table. The arm

then decelerates towards a safe resting posture.

algorithms employ iterative optimization, alternating between
a weighted multi-task Elastic Net regression step that learns
sparse parameters given the features and a nonlinear optimiza-
tion step that adapts the features (more specifically, the widths
and centers of the RBFs corresponding to the nonzero regres-
sion parameters). The algorithm cLSDP, unlike LSDP, learns
(sparse) parameters that are independent of the robot DoF.
This desirable property is achieved by having different basis
functions that are adapted across each DoF separately. The
multi-task Elastic Net, in this case, forces the joint-dependent
features to be shared across multiple demonstrations.

The cost function chosen for the optimization includes the
residual of the fit, as well as [-regularization terms on the ac-
celerations and /;-regularization on the regression coefficients.
We compared the performance of the proposed algorithms with
Dynamic Movement Primitives (DMPs) and the standard [5-
regularized regression, and we evaluated the performance of
each on the different components of the chosen cost function
(see Table I). Finally, we discussed the performance of the
actual rollouts, using our framework, on the real robot table
tennis setup. One can see in the video available online that
the style of the movements are preserved while maintaining
low accelerations throughout the motion, which is important
for the safety of the robot.

The sparsity of the parameters, as well as their decoupling
from the robot DoF, is a desirable property for policy-search
RL approaches that could adapt the regression parameters
online based on a suitable reward function. We have presented
a way to rank these policy parameters, in the last subsection
of Section III, based on how well the parameters explain
the (multiple) demonstration recordings. We think that this
is a promising research direction to combat the curse of
dimensionality in high dimensional robot learning tasks, and
we will focus on it more in future experiments.
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