
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018 1

Approximate Value Iteration Based on Numerical
Quadrature

Julia Vinogradska1,2, Bastian Bischoff1, Jan Peters2,3

Abstract—Learning control policies has become an appealing
alternative to the derivation of control laws based on classic
control theory. Value iteration approaches have proven an
outstanding flexibility, while maintaining high data efficiency
when combined with probabilistic models to eliminate model
bias. However, a major difficulty for these methods is that
the state and action spaces must typically be discretized and
often the value function update is analytically intractable. In
this paper, we propose a projection based approximate value
iteration approach, that employs numerical quadrature for the
value function update step. It can handle continuous state and
action spaces and noisy measurements of the system dynamics
while learning globally optimal control from scratch. In addition,
the proposed approximation technique allows for upper bounds
on the approximation error, which can be used to guarantee
convergence of the proposed approach to an optimal policy
under some assumptions. Empirical evaluations on the mountain
benchmark problem show the efficiency of the proposed approach
and support our theoretical results.

Index Terms—Optimization and Optimal Control, Probability
and Statistical Methods

I. INTRODUCTION

LEARNING control has become a viable approach in both
the machine learning and control community. Many suc-

cessful applications impressively demonstrate the advantages
of learning control [1], [2], [3], [4], [5], [6], [7]. In contrast to
classical control methods, learning control does not presuppose
a detailed understanding of the underlying dynamics but tries to
infer the required information from data. Thus, relatively little
expert knowledge about the system dynamics is required and
fewer assumptions, such as a parametric form and parameter
estimates, must be made.

In real-world applications of learning control, the system is
typically subject to wear and tear, measurements are often costly
and time consuming as learning proceeds in real time time
on a real system. Thus, it is highly desirable to minimize the
system interaction time required for learning. As a consequence,
approaches that explicitly learn a dynamics model are often

Manuscript received: September, 10, 2017; Revised December, 01, 2017;
Accepted January, 15, 2018.

This paper was recommended for publication by Editor Dezhen Song upon
evaluation of the Associate Editor and the Reviewer’s comments.

1Julia Vinogradska and Bastian Bischoff are with Bosch
Center for Artificial Intelligence (BCAI), Robert Bosch GmbH,
Renningen, Germany julia.vinogradska@de.bosch.com,
bastian.bischoff@de.bosch.com

2Julia Vinogradska and Jan Peters are with Intelligent Autonomous
Systems Lab (IAS), Technische Universität Darmstadt, Darmstadt, Germany
mail@jan-peters.net

3Jan Peters is with Max Planck Institute for Intelligent Systems, Tübingen,
Germany

Digital Object Identifier (DOI): see top of this page.

preferred, as model-free methods can require a prohibitive
amount of system interactions [8], [9], [10], [11]. However,
one drawback of model-based methods is that modeling errors
can derail learning, as the inherently approximate and frequently
highly erroneous model is implicitly assumed to approximate
the real dynamics sufficiently well [12]. Thus, solutions to the
approximate control problem might result in policies that do not
solve the control task for the true system dynamics. This model
bias can have severe consequences especially when little data is
available and, thus, the model predictions are highly uncertain.
Hence, employing Gaussian processes (GPs) as forward models
for learning control is particularly appealing as they incorporate
uncertainty about the system dynamics estimate. GPs infer a
distribution over all plausible models given the observed data
instead of compromising on an approximate model and, thus,
avoid severe modeling errors. Another major advantage of GP
forward models is that stability analyses for such closed-loop
control systems are available [13], [14], including automatic
tools [14] which do not require any expert knowledge.

A well-studied class of approaches to policy learning are
value function based methods. These methods compute the
value function, that maps each state to the expected long-term
reward when starting in this state and following an optimal
policy. The optimal policy can then be inferred by greedily
optimizing the value function. Variations of this approach
include iterative computation of the value function (value
iteration) and alternating between computation of the value
function for a fixed policy and improving this policy based
on the value function (policy iteration), see e.g., [15], [16].
For finite state and action spaces, these approaches solve the
optimal control task exactly and yield globally optimal policies.
However, for continuous state and action spaces analytical
solutions are only known for linear dynamics with quadratic
cost and Gaussian noise [17].

In this paper, we introduce AVINQ (Approximate Value
Iteration based on Numerical Quadrature), a probabilistic value
iteration approach that approximates the value function iterates
by projection onto a linear space of learned features. The
dynamics is modeled as a GP and learned in an episodic
setting. To enable projection of the (analytically intractable)
value function iterates, numerical quadrature is employed. The
proposed approach can learn globally optimal control from
scratch, i.e., a policy that is optimal given all observations of
the system dynamics. Employing GPs as forward dynamics
models, AVINQ accurately handles the model uncertainty and
is highly data efficient. It requires no manual effort or problem
specific knowledge. Furthermore, as the quadrature error can
be upper bounded, under some assumptions it can be shown

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

that AVINQ converges to a globally optimal policy.
The paper will be organized as follows: first, we briefly

review related work. In Sections II-B and II-D, we specify the
considered problem and give an overview of value iteration
approaches. Section III introduces the proposed algorithm,
which is evaluated on multiple benchmark tasks in Section IV.
A conclusion summarizes and discusses the provided results
(Section V).

II. PRELIMINARIES

We begin with a brief review of related work. Subsequently,
we give a formal description of the problem we consider in
this paper. Finally, we recap some fundamental concepts of
reinforcement learning, especially the class of value function
based approaches.

A. Related Work

The problem of deriving control laws when uncertainty
is present has been considered in classic control theory for
many years. In controller design, uncertainty may arise from
modeling inaccuracies, the presence of (external) disturbances
and the lack of data, as some system parameters are not
known in advance but only during operation. Thus, a controller
must be designed for a family of systems that is specified,
e.g., by bounds for model parameters or for nonparametric
uncertainties as bounds for the operator norm of the unknown
dynamics. Robust control [18], [19] designs a single controller
that is provably stable for all systems in the specified family
– often at cost of overall controller performance. Adaptive
control [20], [21] instead adjusts control parameters online
in order to achieve prespecified performance, which can be
computationally demanding. These methods rely on parametric
dynamics models, which must be specified by an expert for each
problem. In addition, both schemes require stability analysis
of the dynamics system, e.g., via manually designed Lyapunov
functions, which can be extremely challenging for complex,
nonlinear systems.

Nonparametric system dynamics models are very appealing
due to their high flexibility. They learn a dynamics model
from data instead of relying on expert knowledge to pick a
sufficiently accurate parametric form suitable for the dynamics.
Nonparametric regression methods that learn the system
dynamics from data have been considered, e.g., in [1], [7], [22],
[2], [12]. In [12], locally weighted Bayesian regression has
been employed to model the system dynamics and uncertainty
was treated as noise. To learn a policy, stochastic dynamic
programming was applied on the discretized state space. The
approaches [1], [7], [22], [2] model the forward dynamics as
a Gaussian process.

Gaussian processes as forward models allow to incorporate
uncertainty about the system dynamics without the need to
discretize the state space. GPs have also been employed to
model the system dynamics in [1], [23], [24], [25], [26], [22].
The approaches PILCO [1] and GPREPS [22] are policy search
approaches that rely on GPs as forward dynamics models.
The PILCO algorithm [1] employs GPs as forward dynamics
models and conducts a search in the policy space, performing

gradient ascent on the expected reward in an episodic setting.
However, policy search approaches assume a parametric form
of the policy to be given and typically optimize locally around
a trajectory. Obtaining globally optimal policies with policy
search is challenging and involves manual effort, e.g., choosing
representative trajectories to be optimized simultaneously.

In contrast to policy search methods, value function based
approaches do not impose limitations on the policy and learn
globally optimal policies. Model-free approaches based on a
value function [27], [28], [29] are a viable choice for small,
finite state spaces or when the system is easily accessible and
system interactions are not costly. For small, finite state and
action spaces, tabular methods that store a complete list of
values for all states and actions are very well suited. However,
even for finite, but large state spaces the memory requirements
of tabular methods are often infeasible. Furthermore, for
continuous state and/or action spaces no list of values can
possibly be made. Thus, for most problems approximation of
the value function is inevitable. For example, Neural Fitted
Q Iteration [27] trains a neural network to fit the Q function.
This approach can handle large state and action spaces, but it
requires many system interactions to train the neural network.
Another class of commonly employed approximations are
linear representations of the value function. These approaches
approximate the value function by a linear combination of
basis functions (or features) and offer easily interpretable
representations while maintaining a high flexibility.

Many methods to automatically select good basis functions
have been proposed [30], [31]. For example, [30] clusters states
of similar behavior/similar Bellman residual and is applicable
to finite state and action spaces. The methods proposed in [31],
[32] greedily select optimal basis functions to add from a
prespecified feature dictionary. However, these methods involve
manual effort for choosing a suitable feature dictionary and
typically require many basis functions as the features are not
adjusted to the particular function.

In real-world scenarios, e.g., control of robotic systems, the
required number of samples renders model-free value function
based methods impractical. Value function based approaches
that learn a GP dynamics model were presented in [25], [26],
[23]. The GPRL approach [23] assumes the dynamics to be
given as a GP and computes the value function at a fixed set
of support points, that are used to train a noise-free GP to
represent the value function. This approach is extended to learn
the system dynamics and automatically select support points for
the value function by the PVI algorithm [26]. GPDP [25] also
employs GPs to represent the value function for either a given
dynamics model or a learned GP forward dynamics. However,
the approximation error of these approaches cannot be estimated
straightforwardly as they rely on moment matching [33] as
approximate inference which does not provide upper bounds for
the error. Furthermore, the learning success is highly dependent
on many hyperparameters as, e.g., the support points or the
hyperparameters of the employed selection criteria, that must
be hand-tuned. To the best of our knowledge, no approach to
learn a globally optimal policy from scratch with high data
efficiency, that does not require manual effort and allows for
convergence analysis has been considered to date.

VINOGRADSKA et al.: APPROXIMATE VALUE ITERATION BASED ON NUMERICAL QUADRATURE 3

fπ
x

−

xd u

Fig. 1: A closed-loop control structure with controller π, system
dynamics f and target state xd. We model the system dynamics
f as a Gaussian process and compute the optimal policy π from
the systems optimal value function V ∗. The proposed algorithm
learns f and an approximation of V ∗ from interactions with
the real system.

B. Problem Statement

In this paper, we aim to learn to control a previously unknown
dynamics system. We consider discrete-time dynamics

xt+1 = f(xt,ut) + ε (1)

with xt,xt+1 ∈ RD, ut ∈ RF , unknown transition dynamics
f and i.i.d. Gaussian measurement noise ε ∈ N (0,Σε) with
diagonal noise variance Σε. Figure 1 shows such a closed-loop
control setting. Given a reward function r : xt 7→ r(xt) ∈ R,
the goal is to find a policy π : x 7→ π(x) that maximizes the
expected reward up to time horizon T , when choosing ut :=
π(xt) for t = 1, . . . , T . We make no further assumptions (such
as, e.g., a parametric form) about π. The system dynamics f
will be learned from observed data and modeled as a Gaussian
process (GP). We aim to minimize the system interactions
necessary to learn the optimal policy π.

C. Gaussian Processes as Forward Dynamics Models

In the following, we will briefly recap Gaussian process
regression. Given noisy observations D = {(zi, yi = f(zi) +
εi) | 1 ≤ i ≤ N}, where εi ∼ N (0, σ2

n), the prior on the values
of f is N (0,K(Z,Z) + σ2

nI) with the observed inputs Z =
(z1, · · · , zN)

ᵀ. The covariance matrix K(Z,Z) is defined by
the choice of covariance function k as [K(Z,Z)]ij = k(zi, zj).
In this paper, we employ the squared exponential covariance
function

k(z,w) = σ2
f exp

(
−1

2
(z −w)

ᵀ
Λ−1(z −w)

)
,

with signal variance σ2
f and squared lengthscales Λ =

diag(l21, . . . , l
2
D+F) for all input dimensions. This choice is not

a requirement of the proposed approach, but has been chosen
as squared exponential kernels are generally well suited for
smooth dynamics. The proposed approach and all presented
analysis can be straightforwardly employed with other kernels.

Given a query point z∗, the conditional probability of f̂(z∗)
is

f̂(z∗) | D ∼ N
(
k(z∗, Z)β,

k(z∗, z∗)− k(z∗, Z)(K(Z,Z) + σ2
nI)−1k(Z, z∗)

)
(2)

with β = (K(Z,Z) + σ2
nI)−1y. The hyperparameters, e.g.,

σ2
n, σ

2
f ,Λ for the squared exponential kernel, are estimated by

maximizing the log marginal likelihood of the data [34].
In this paper, we employ a Gaussian process g to model

system dynamics. It takes state-action pairs z=(x,u)
ᵀ and out-

puts differences to successor states, i.e., xt+1 = xt +g(xt,ut).

As these outputs are multivariate, we train conditionally
independent GPs for each output dimension. We write σ2

n,m,
σ2
f,m,Λm for the GP hyperparameters in output dimension m

and km for the corresponding covariance function.
We will employ the GP dynamics model learned from

observed data to infer an optimal policy π. In the following,
we will briefly recap value function based approaches.

D. MDPs and Value Iteration

In reinforcement learning, an agent chooses actions in an
environment and recieves immediate rewards for the visited
states, aiming to maximize the cumulated long-term reward. A
common assumption is that the next system state depends only
on the current state and the chosen action. This setting can be
described as a Markov Decision Process (MDP). Formally, an
MDP consists of a set of states S, a set of actions A, a state
transition p that maps state-action pairs (s,a) to the probability
p(s′ | s,a) of the successor state s′, the immediate reward
function r : S → R and a discount factor 0 ≤ γ < 1.

The goal in an MDP is to find a policy π : s 7→ a, that
maximizes the expected long-term reward. For any policy π,
the Value Function Vπ : S → R rates how desirable a state s
is in the long run when following the policy π. More precisely,
it is defined as

Vπ(s0) =

T∑
t=0

γtEst [r(st)] (3)

= r(s0) + γ

∫
S

p(s1 | s0,π(s0))Vπ(s1)ds1 (4)

for T ≤ ∞, i.e., the expected long-term reward for choosing
the actions a = π(s) in the considered MDP. The optimal
value function V ∗ is defined as

V ∗(s) = max
π

Vπ(s) (5)

= max
a∈A

∫
S

p(s′ | s,a)
(
r(s) + γV ∗(s′)

)
ds′ (6)

and given the optimal value function V ∗, the optimal policy
can be obtained as

π∗(s) = arg maxa∈A

∫
S

p(s′ | s,a)V ∗(s′)ds′. (7)

The optimal value function can be computed for each s ∈ S
as given in Equation (6), which is commonly known as the
Bellman Equation. Instead of trying to solve this equation
directly, an iterative approach can be taken. Setting V 0(s) = 0
the equation

V t+1(s) = max
a∈A

∫
S

p(s′ | s,a)
(
r(s) + γV t(s′)

)
ds′ (8)

can be iterated and is guaranteed to converge to V ∗. This
approach is known as Value Iteration. Variations of the value
iteration approach include Policy Iteration, where Equation (8)
is modified to solve for Vπ iteratively and alternated with a
policy improvement step that greedily optimizes the policy.

For finite state and action spaces, Equations (6) and (8) can
be solved analytically. However, for continuous state and action
spaces, these equations are only tractable if the dynamics are

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

linear. For nonlinear dynamics, Equation (8) can be solved
approximately by choosing a suitable function approximator
for V t. Under some conditions, approximate value iteration is
guaranteed to converge to the true value function [15]. A
well studied class of approximate value iteration schemes
represents the functions V t as linear combination of basis
functions φt1, . . . , φ

t
N , i.e., V t(s) ≈

∑N
i=1 α

t
iφ

t
i(s). These

approximations have some desirable properties, e.g., the
representation is easy to interpret and to handle. The choice
of suitable basis functions φt1, . . . , φ

t
N significantly affects the

approximation quality. Thus, finding suitable basis functions
is crucial for approximate value iteration schemes. Typically,
the basis functions are problem specific and must be hand-
engineered for each task.

III. AVINQ

The AVINQ algorithm learns globally optimal control from
interactions with the system. At the same time, we aim
to minimize the amount of system interactions required for
learning, while still assuming no prior knowledge about the
dynamics. In the following, we introduce AVINQ and analyze
convergence properties of the proposed algorithm.

A. Algorithm Sketch

The proposed algorithm proceeds in an episodic set-
ting. In the beginning, a starting point is sampled
from the initial state distribution p(s0) and a rollout
(s0,a0, s1), · · · , (sT−1,aT−1, sT) with randomly chosen ac-
tions a0, · · · ,aT−1 is computed. An initial dynamics model
g0 is trained on these observations. Based on this dynamics
model, an approximation Ṽ ∗ of the optimal value function
V ∗ is computed employing an approximate value iteration
scheme. With this approximate optimal value function, the
optimal policy given the dynamics model can be computed
for any s. A new rollout is computed with the currently
optimal policy. This completes the episode. New episodes
are computed until the optimal value function (and, thus, the
optimal policy) converges. Algorithm 1 shows a high level
overview of the proposed approach. Please note that the high
level steps of looping model learning, policy optimization
and rollout are also followed by [1], however with parametric
assumptions on the policy. The approximate value iteration
scheme and our approach to learn basis functions for value
function approximation are detailed in the following sections.

1) Approximate Value Iteration for GP Dynamics: To infer
an optimal value function from the learned GP dynamics model,
we propose an approximate value iteration approach. In value
iteration, the Bellman Equation (6) is not solved directly, but
iterated as

V t+1(s) = max
a∈A

∫
S

p(s′ | s,a)
(
r(s) + γV t(s′)

)
ds′, (9)

while setting V 0(s) = 0. We write A for the Bellman integral
operator, that maps V t to the right hand side of Equation (9),
i.e., AV t := V t+1. This iteration continues until t = T , if
T <∞ or until the value function converges, if T =∞. In our
case, p(s′ | s,a) is given as the prediction of the dynamics GP

Algorithm 1 High level overview of AVINQ
Input: time horizon T ≤ ∞, discount factor γ, reward

function r
Output: approximation Ṽ ∗ of optimal value function V ∗

Sample s0 ∼ p(s0) and random actions a0, · · · ,aT−1
Observe D = {(s0,a0, s1), · · · , (sT−1,aT−1, sT)}
Ṽ 0 ← 0, e← 1
while not converged do

Train GP dynamics model ge on D
Compute Ṽ 1

e , Ṽ
2
e , · · · Ṽ ∗e as in Alg. 2

πe(s)←arg maxa∈A
∫
p(s′|s,a)Ṽ ∗e (s′)ds′

Sample s0 ∼ p(s0)
Rollout (s0,πe(s0), s1), · · · , (sT−1,πe(sT−1), sT)
D ← D∪{(s0,πe(s0), s1), · · · , (sT−1,πe(sT−1), sT)}
e← e+ 1

end while

and is, thus, normally distributed. However, Equation (9) cannot
be solved in closed form for all but the linear kernel. Thus,
we will solve this equation approximately, choosing a linear
representation Ṽ t(s) =

∑Nt

i=1 α
tφti(s) of the value function

iterate. In particular, we choose Gaussian basis functions as
weighted sums of Gaussians (also called radial basis function
networks) have the universal approximation property. With this
choice of approximator, the integral in Equation (9) becomes

R(s,a) :=

∫
S

p(s′ | s,a)
(
r(s) + γV t(s′)

)
ds′ =

r(s) + γ

N∑
i=1

αt
i

∫
S

p(s′ | s,a)φti(s
′)ds′. (10)

The integral of the product of Gaussians can be computed as∫
N (s | x, X)N (s | y, Y)ds =

(2π)−
D
2 det(Z)−

1
2 exp(−1

2
zᵀZ−1z) (11)

with z = x−y and Z = X+Y . As p(s′ | s,a) and φti(s
′) are

both Gaussian, we can apply this formula and as a result obtain
an analytical solution to Equation (10). However, the maximum
of R(s,a) with respect to a remains analytically intractable.
For any fixed s, we can maximize R(s,a) with respect to a
via gradient ascent. Thus, we can solve the right hand side of
the Bellman Equation (9) for a finite number of s, if we replace
V t by Ṽ t. To continue our approximate value iteration scheme,
we need to find an approximation Ṽ t+1 of V t+1 of the form
Ṽ t+1 =

∑Nt+1

i=1 αt+1φt+1
i . We will introduce an algorithm to

find the basis functions φt+1
i in the following section. For now,

lets assume that φt+1
1 , · · ·φt+1

Nt
are given. It remains to find

the weights αt+1
1 , · · · , αt+1

Nt+1
that minimize the distance of our

approximation Ṽ t+1 to the true result of the Bellman equation
V t+1 ≈ AṼ t. We measure the distance of two scalar functions
in L2-norm, i.e., ‖f1 − f2‖2L2

=
∫

(f1(s)− f2(s))2ds. In this
case, the weights αt+1

1 , · · · , αt+1
Nt+1

of the best approximation
of V t+1 in the linear subspace of L2 spanned by the basis
functions φt+1

1 , · · · , φt+1
Nt+1

can be obtained straightforwardly

VINOGRADSKA et al.: APPROXIMATE VALUE ITERATION BASED ON NUMERICAL QUADRATURE 5

by projection. More precisely, the weight vector αt+1 is the
solution to the linear equation system

Mαt+1 = bt+1 (12)

with the mass matrix Mi,j = 〈φt+1
i , φt+1

j 〉L2
=∫

φt+1
i (s)φt+1

j (s)ds and the projections bt+1
i =

〈φt+1
i , V t+1〉L2

=
∫
φt+1
i (s)V t+1(s)ds. The entries of

M can be computed employing Equation (11). Unfortunately,
the entries of bt+1 are intractable, as they would require a
closed form expression for V t+1, which we try to approximate.
However, as noted above we can compute the value of V t+1 at
any point s. We propose to approximate the integrals in bt+1

with numerical quadrature. Numerical quadrature estimates
the value of an integral by a weighted, finite sum of function
evaluations at quadrature nodes. The nodes and weights are
given by the quadrature rule. With this approximation, we can
estimate bt+1 with a finite number of values of V t+1. Solving
Equation (12), we obtain the weights for our approximation
Ṽ t+1 of V t+1. We write ΠB for the projection operator onto
the linear subspace of L2 spanned by the set of basis functions
B, i.e., Ṽ t = ΠB [V t]. Algorithm 2 summarizes the proposed
projection approach.

If suitable basis functions for the considered problem are
known a priori, e.g., given by an expert, they can be directly
employed with the algorithm described above. If no suitable
basis functions are given, which we believe is the most frequent
case, a set of suitable basis functions can be learned iteratively
as we will describe in the following section.

Algorithm 2 Value Function Approximation with NQ

Input: GP dynamics ge, Ṽ t =
∑Nt

i=1 α
t
iφ

t
i, optional: basis

function set B = {φt+1
1 , · · · , φt+1

Nt+1
} given by expert

Output: Ṽ t+1 =
∑Nt+1

i=1 αt+1
i φt+1

i

if B not given, then
Call Alg. 3 with function handle AṼ t

end if
Mi,j ← 〈φt+1

i , φt+1
j 〉L2 for i, j = 1, · · · , Nt+1

Get nodes ξ1, · · · , ξK and weights w1, · · · , wK from NQ
bt+1
i ←

∑K
k=1 wkφ

t+1
i (ξk)AṼ t(ξk) for i = 1, · · · , Nt+1

αt+1 ←M−1bt+1

2) Learning Features for Value Function Approximation: A
set of suitable basis functions for value function approximation
is crucial for the success of any approximate value iteration
scheme. In most cases, the choice of basis functions is nontrivial
and involves manual effort. Subsequently, we introduce an
algorithm to find suitable basis functions online during value
iteration.

The proposed approximate value iteration scheme minimizes
the L2-error of the approximate solution. However, convergence
guarantees for approximate value iteration can typically be
given, if upper bounds for the L∞-error are known. Thus, we
aim to find good basis functions to decrease the L2-error of
the approximation while being able to reach any defined L∞-
error bound. More precisely, the goal is for any value function
iterate V t(s) and ε > 0 to find a set B = {φt1, · · · , φtNt

} of

Gaussian features, such that its projection Ṽ t onto the linear
space spanned by B fulfills

‖Ṽ t − V t‖L∞ = max
s∈S
|Ṽ t(s)− V t(s)| < ε. (13)

We propose an iterative approach, that adds basis function after
basis function until the criterion (13) is met. We start with
B = {} and define the projection error ρB(s) = |ΠB [V t(s)]−
V t(s)|. Note that we can evaluate ρB at any point s ∈ S,
although we cannot express V t in closed form. We follow
a greedy approach with respect to L∞-error. Given the set
B = {φt1, · · · , φtl} of previously added basis functions, we
find a local maximum s∗ of ρB via gradient ascent. As this
optimization is non-convex, we cannot expect to find the global
maximum of ρB . However, we perform gradient ascent from
multiple starting points to make sure that we estimate the scale
of ρB properly. If ρB(s∗) > ε, we add another Gaussian basis
function φtl+1 with mean s∗ and covariance Σ∗. To estimate
the covariance matrix Σ∗, we compute the Hessian of ρB at
s∗. It is well-known that the Hessian of the log of a normal
density equals the negative inverse of its covariance matrix,
i.e.,

− log(φtl+1(s)) =
D

2
log(2π) +

1

2
log(det(Σ∗))

+
1

2
(s− s∗)ᵀΣ−1(s− s∗)

−
∂2 log(φtl+1(s))

∂si∂sj
=
(
Σ−1∗

)
i,j

(14)

and following the chain rule

−
∂2 log(φtl+1)

∂si∂sj
=
(
φtl+1(s∗)

)−2 ∂φtl+1

∂si

∂φtl+1

∂sj

− (φtl+1(s∗))
−1 ∂

2φtl+1(s)

∂si∂sj
. (15)

Thus, setting the Hessian of φtl+1 equal to the Hessian of
ρB at s∗, we can compute the covariance matrix Σ∗ with
Equation (14) and (15). Please note that this estimate is very
accurate, if ρB is locally close to a Gaussian shape.

We add this new basis function to B and update ρB .
Subsequently, the search for the maximum of ρB begins as
above. This procedure is repeated until no more states s∗ with
ρB(s∗) > ε are found. Please note that this algorithm decreases
the L2-error of the approximation in every step. As the solution
of an integral equation with a smooth kernel, the value function
is continuous. Thus, the L∞-error of our approximation also
decreases with the L2 error as we increase the number of
basis functions (though not necessarily monotonously). Finally,
it is important to note that this approach guarantees that the
L∞-error is smaller than ε only under the assumption that the
global maximum of ρB is found. In our experiments, we found
ρB well-behaved and did not encounter problems to find its
global maximum.

Algorithm 3 shows the proposed approach for finding basis
functions to approximate the value function iterates. Figure 2
illustrates our approach to find basis functions. In the following,
we will analyze the convergence of AVINQ .

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

−5 −2 0 2 5
−10

0

10

Position

V
el

oc
ity

(a) Exact Solution of Bellman Eq. (10) AṼ t−1

−5 −2 0 2 5
−10

0

10

Position
V

el
oc

ity
(b) Our Approximation Ṽ t

−5 −2 0 2 5
−10

0

10

Position

V
el

oc
ity

(c) Ṽ t with Learned Basis Functions

Fig. 2: Finding suitable basis function for value function approximation with Alg. 3. Subplot (a) shows the exact value function
iterate AṼ t−1 computed at each pixel. Plot (b) shows the projection onto the space spanned by the obtained basis functions,
i.e., our approximation Ṽ t. In subplot (c), the obtained basis functions are indicated by 1σ-ellipsoids.

Algorithm 3 Find Basis Functions to Approximate V t+1

Input: function handle V t+1, tolerance ε
Output: basis function set B, s.t. ‖ΠB [V t]− V t‖L∞ < ε
B ← {}, l← 0, Ṽ t = 0
Set function handle ρB(s)← |Ṽ t(s)− V t(s)|
s∗ ← maxs∈S ρB(s)
while ‖Ṽ t − V t‖L∞ ≈ ρB(s∗) > ε do

Compute Σ∗ with Eq. (15)
φtl+1 ← N (s∗,Σ∗)
B ← B ∪ {φtl+1}
Ṽ t ← ΠB [V t]
Set function handle ρB ← |Ṽ t(s)− V t(s)|
s∗ ← maxs∈S ρB(s)

end while

B. Convergence Analysis

Much research has been conducted towards convergence
guarantees for value iteration and approximate value iteration
approaches. While guarantees can be given straightforwardly
for value iteration approaches on finite state and action spaces
[16], this task is a lot more challenging for approximate
value iteration approaches on infinite state and action spaces.
Guarantees that approximate value iteration will converge to a
globally optimal policy can be given assuming the dynamics
model is correct, if the value function approximation fulfills
certain criteria. Subsequently, we show that such a guarantee
can be given for AVINQ.

Theorem 1. Let a GP dynamics model g be given and assume
that Algorithm 3 always succeeds finding the global maximum
of ρB . Then, it holds

lim sup
t→∞

‖V ∗ − Ṽ t‖L∞ ≤
2γ

(1− γ)2
ε, (16)

for the functions Ṽ t computed by iterating Algorithm 2 with
the uniform approximation error bound ε = ε+ CεNQ.

Proof. In [15], it is shown that for the policy π̃t greedy with
respect to Ṽ t obtained with approximate value iteration, the
performance loss is bounded by

‖V ∗ − Ṽ t‖ ≤ 2γ

(1− γ)2
max

k=0,··· ,t
‖ΠB [AV k]− V k+1‖L∞

+
2γt+1

1− γ
‖V 0 − V ∗‖L∞ (17)

with the projection error ‖ΠB [AV k]− V k+1‖ and the initial
guess error ‖V 0 − V ∗‖. As t→∞, the second term vanishes
and the performance loss is governed by the projection error.
Thus, we are interested in a uniform bound of the projection
error introduced by AVINQ . Assuming that Algorithm 3
succeeds in finding the global optimum of ρB in all iteration
steps, the output of this algorithm is a basis function set B
such that the (exact!) L2-projection of V t+1 onto B deviates
from V t+1 by at most ε at any point. However, the projection
employed in AVINQ is not exact, as the right hand side bt+1 of
the projection equation system is approximated by numerical
quadrature. Fortunately, upper bounds for the quadrature error
are available, e.g., [35]. Let εNQ denote the upper bound for
the quadrature error, i.e., εNQ := maxi|〈φt+1

i ,AV t〉 − bt+1
i |.

Then, the obtained weight vector αt+1 differs from the exact
solution of Equation (12) by at most ‖M−1εNQ‖∞. It remains
to note that the smallest eigenvalue of the matrices M for
t = 1, 2, . . . is lower bounded as V ∗ is differentiable, which
concludes the proof.

In an episodic setting, however, there is no guarantee that the
dynamics model will converge globally to the true dynamics.
If the employed dynamics model incorporates uncertainty,
exploration is encouraged as in regions of high uncertainty the
expected reward averages over many states. Thus, uncertain
states will be preferred over states with known low value.
However, without explicit exploration, no firm convergence
guarantees can be given.

Another interesting question is how the computational
complexity of the different components of AVINQ depend on
the task to be solved. Evaluation of the Bellman Equation at a

VINOGRADSKA et al.: APPROXIMATE VALUE ITERATION BASED ON NUMERICAL QUADRATURE 7

Fig. 3: Obtained value function for the mountain car task after
five episodes.

fixed point involves maximization with respect to the action and,
thus, scales cubically with the dimension F of the action space
if a Hessian based method is employed. Furthermore, it depends
linearly on the number of optimization steps Xa, i.e., the overall
complexity of one evaluation of maxaR(s, a) is O(F 3Xa).
Maximization of ρB is of complexity O(D3Xs) with the state
space dimension D and the number of optimizer steps Xs.
Thus, the complexity of finding one new basis function is
O(D3F 3XsXa). To add the basis function, a projection of the
value function onto the new basis function is computed via
numerical quadrature in D dimensions. Naive generalizations
of 1D quadrature to higher dimensions suffer from the curse
of dimensionality. However, sparse grid approaches make
numerical quadrature feasible for up to 20 dimensions [36].
Finally, the number of required basis functions to meet a
specified error tolerance ε highly depends on the smoothness
of the value function. More precisely, it is linked to the decrease
of the Fourier coefficients [37].

IV. EVALUATION

We evaluate AVINQ on the mountain car benchmark and
compare the results with other approaches.

In the mountain-car domain (see, e.g., [38], [16]), a car starts
at some point in a valley landscape and has to reach a certain
point on the hill to the right side of the valley and stay there.
However, the car’s engine is not powerful enough to reach the
goal directly from all starting positions. From the points in the
valley, the car has to first drive in the opposite direction and
gain momentum to reach the goal. The state space has two
dimensions: position and velocity of the car, the magnitude of
the control signal is limited to umax = 4.

We learn a globally optimal policy for the mountain car
benchmark with AVINQ. We choose γ = 0.95 and learn the
basis functions with Algorithm 3, such that the approximation
error is smaller than ε = 0.07. This is reached with up to 60
Gaussian basis functions in all iteration steps and episodes.

For the projection onto the linear space spanned by the basis
functions, we employ adaptive Gauss-Kronrod quadrature for
the integrals

∫
φti(s)V

t(s)ds. This adaptive scheme subdivides

0 1 2 3 4 5 6 7 8

0

2

4

6

8

Episode

R
ew

ar
d

PILCO
AVINQ

NFQ
discrete VI

Fig. 4: Average reward as function of system interaction time
for the mountain car task. One episode equals 3 seconds of
system interaction time.

the integration area and estimates the quadrature error on
each subregion by comparison of a higher and a lower order
quadrature rule. As Gauss-Kronrod quadrature is nested, i.e.,
the higher order rules contain all nodes of lower order rules,
this scheme is very efficient. To further increase the precision
and efficiency of the quadrature, we perform a coordinate
transformation, such that the basis function φti becomes axis
aligned in the new coordinate system. This transformation
concentrates the mass close to the center of the integration
area making sure that the adaptive quadrature scheme does
not stop prematurely. Furthermore, we normalize the height
of the integrand φti(s)V

t(s) for numerical stability and to
avoid cancellation effects. It is also well known that the
mass matrix M tends to be badly conditioned, if the basis
functions are not normalized with respect to L2-norm. After
normalizing the basis functions before solving Equation (12)
we found the solution to be highly robust. Please note that
these modifications are implementation details, introduced to
increase robustness of the computations involved. They do not
change the theoretical properties of AVINQ and are provided
for the sake of completeness.

Figure 3 shows the resulting value function after five
episodes. As can be seen, the obtained value function captures
the dynamics of the mountain car very well. In Figure 4 the
obtained discounted reward during learning is compared to
PILCO and NFQ and discretized Value Iteration. The reported
results for PILCO were obtained with the code published
by the authors. As no official code is available for NFQ,
we reimplemented this approach for the comparison. As a
baseline, we implemented a discretized Value Iteration approach
based on a GP dynamics model. For this approach, the value
function was updated for the discrete states only and the
update step employed transition probabilites predicted by
the GP dynamics model. We chose a discretization with
50×50×30 states. All results were averaged over multiple runs
with different initializations of the random number generator.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

AVINQ outperforms all tested algorithms. Please note also
that PILCO does not learn a global policy, while the other
approaches do.

V. CONCLUSION

In this paper we introduced AVINQ, an approach to learn
globally optimal control on continuous state and action domains
from scratch, while maintaining high data efficiency. AVINQ
approximates the value function by projection onto a linear
space of learned features. The forward dynamics are modeled
as GP and learned in an episodic setting. Numerical quadrature
is employed to enable projection of the value function. AVINQ
benefits from Bayesian averaging over all plausible models by
incorporating the uncertainty of the GP model. Furthermore,
it requires no manual effort or problem specific knowledge to
obtain a task solution. We also provided theoretical analysis
of AVINQ, showing that convergence of the value iteration
can be guaranteed under some assumptions, but convergence
of model learning cannot be guaranteed without presupposing
problem specific knowledge.

REFERENCES

[1] M. Deisenroth, D. Fox, and C. Rasmussen, “Gaussian processes for
data-efficient learning in robotics and control,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 2, pp. 408–423, 2015.

[2] Y. Pan and E. Theodorou, “Probabilistic differential dynamic program-
ming,” in Advances in Neural Information Processing Systems 27
(NIPS 2014), Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 1907–1915.

[3] E. Klenske, M. Zeilinger, B. Schölkopf, and P. Hennig, “Nonparametric
dynamics estimation for time periodic systems,” in 51st Annual Allerton
Conference on Communication, Control, and Computing. IEEE, 2013,
pp. 486–493.

[4] J. Maciejowski and X. Yang, “Fault tolerant control using gaussian
processes and model predictive control,” in Conference on Control and
Fault-Tolerant Systems (SysTol 2013). IEEE, 2013, pp. 1–12.

[5] D. Nguyen-Tuong and J. Peters, “Model learning in robotics: a survey,”
Cognitive Processing, no. 4, 2011.

[6] Y. Engel, P. Szabo, and D. Volkinshtein, “Learning to control an octopus
arm with gaussian process temporal difference methods,” in Advances
in Neural Information Processing Systems 18 (NIPS 2005), Y. Weiss,
B. Schölkopf, and J. Platt, Eds. MIT Press, 2006, pp. 347–354.

[7] J. Kocijan, R. Murray-Smith, C. Rasmussen, and A. Girard, “Gaussian
process model based predictive control,” in Proceedings of the American
Control Conference, (ACC 2004)., vol. 3. IEEE, 2004, pp. 2214–2219.

[8] C. G. Atkeson and J. C. Santamaria, “A comparison of direct and model-
based reinforcement learning,” in Proceedings of 1997 IEEE International
Conference on Robotics and Automation. IEEE, 1997, pp. 3557–3564.

[9] L. Kuvayev, “Model-based reinforcement learning with an approximate,
learned model,” in in Proceedings of the Ninth Yale Workshop on Adaptive
and Learning Systems, 1997.

[10] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less time,” Machine Learning, vol. 13, no. 1,
pp. 103–130, 1993.

[11] R. S. Sutton, “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming,” in In Proceedings of
the Seventh International Conference on Machine Learning (ICML 1990).
Morgan Kaufmann, 1990, pp. 216–224.

[12] J. Schneider, “Exploiting model uncertainty estimates for safe dynamic
control learning,” in Advances in Neural Information Processing Systems
9 (NIPS 1996).

[13] T. Beckers and S. Hirche, “Stability of gaussian process state space
models,” in Proceedings of the European Control Conference. IEEE,
2016, pp. 2275–2281.

[14] J. Vinogradska, B. Bischoff, D. Nguyen-Tuong, A. Romer, H. Schmidt,
and J. Peters, “Stability of controllers for gaussian process forward
models,” in Proceedings of the 33nd International Conference on Machine
Learning (ICML 2016), 2016, pp. 545–554.

[15] D. Bertsekas and J. Tsitsiklis, Neuro-dynamic Programming, ser. Anthro-
pological Field Studies. Athena Scientific, 1996.

[16] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[17] D. Bertsekas, Dynamic Programming and Optimal Control, ser. Athena
Scientific optimization and computation series. Athena Scientific, 2005,
no. vol. 1.

[18] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design. John Wiley & Sons, 2005.

[19] K. Zhou and J. Doyle, Essentials of Robust Control, ser. Prentice Hall
Modular Series for Eng. Prentice Hall, 1998.

[20] K. Narendra and A. Annaswamy, Stable Adaptive Systems, ser. Dover
Books on Electrical Engineering. Dover Publications, 2012.

[21] G. Tao, Adaptive Control Design and Analysis. John Wiley & Sons,
Inc., 2003.

[22] A. G. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann, “Data-
efficient generalization of robot skills with contextual policy search.” in
AAAI, 2013.

[23] C. Rasmussen and M. Kuss, “Gaussian processes in reinforcement
learning,” in Advances in Neural Information Processing Systems 16
(NIPS 2003). MIT Press, 2004, pp. 751–759.

[24] A. Rottmann and W. Burgard, “Adaptive autonomous control using online
value iteration with gaussian processes,” in Proceedings of the 2009 IEEE
International Conference on Robotics and Automation. IEEE, 2009, pp.
2106–2111.

[25] M. Deisenroth, C. Rasmussen, and J. Peters, “Gaussian process dynamic
programming,” Neurocomputing, vol. 72, no. 7-9, pp. 1508–1524, Mar.
2009.

[26] B. Bischoff, D. Nguyen-Tuong, H. Markert, and A. Knoll, “Learning
control under uncertainty: A probabilistic value-iteration approach,” in
21st European Symposium on Artificial Neural Networks, ESANN 2013,
2013.

[27] M. Riedmiller, “Neural fitted q iteration – first experiences with a data
efficient neural reinforcement learning method,” in Proceedings of the
16th European Conference on Machine Learning (ECML). Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 317–328.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[29] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of machine learning research, vol. 4, no. Dec, pp. 1107–1149, 2003.

[30] P. W. Keller, S. Mannor, and D. Precup, “Automatic basis function
construction for approximate dynamic programming and reinforcement
learning,” in Proceedings of the 23rd international conference on Machine
learning. ACM, 2006, pp. 449–456.

[31] C. Painter-wakefield and R. Parr, “Greedy algorithms for sparse rein-
forcement learning,” in Proceedings of the 29th International Conference
on Machine Learning (ICML-12), J. Langford and J. Pineau, Eds. New
York, NY, USA: ACM, 2012, pp. 1391–1398.

[32] A.-m. Farahmand and D. Precup, “Value pursuit iteration,” in Proceedings
of the 25th International Conference on Neural Information Processing
Systems (NIPS 2012). Curran Associates Inc., 2012, pp. 1340–1348.

[33] A. Girard, C. E. Rasmussen, J. Q. Candela, and R. Murray-Smith,
“Gaussian process priors with uncertain inputs - application to multiple-
step ahead time series forecasting,” in Advances in Neural Information
Processing Systems 15 (NIPS 2002), 2002, pp. 529–536.

[34] C. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[35] M. Masjed-Jamei, “New error bounds for gauss-legendre quadrature
rules.” Filomat, vol. 28, no. 6, pp. 1281–1293, 2014.

[36] F. Heiss and V. Winschel, “Likelihood approximation by numerical
integration on sparse grids,” Journal of Econometrics, vol. 144, no. 1,
pp. 62 – 80, 2008.

[37] B. Fornberg and N. Flyer, “Accuracy of radial basis function interpolation
and derivative approximations on 1-d infinite grids,” Advances in
Computational Mathematics, vol. 23, no. 1, pp. 5–20, 2005.

[38] A. W. Moore and C. G. Atkeson, “The parti-game algorithm for
variable resolution reinforcement learning in multidimensional state-
spaces,” Machine Learning, vol. 21, no. 3, pp. 199–233, 1995.

