
Gaussian Process Dynamic
Programming

Marc Peter Deisenroth1

Department of Engineering, University of Cambridge, United Kingdom
Faculty of Informatics, Universität Karlsruhe (TH), Germany

Carl Edward Rasmussen

Department of Engineering, University of Cambridge, United Kingdom
Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Jan Peters

Max Planck Institute for Biological Cybernetics, Tübingen, Germany
University of Southern California, Los Angeles, CA, USA

January 8, 2009

Pre-print

The original article appears in Neurocomputing, Elsevier

DOI: 10.1016/j.neucom.2008.12.019

1corresponding author

Contents

Contents

1 Introduction 1

2 Background 3
2.1 Optimal Control and Reinforcement Learning 4
2.2 Gaussian Processes . 5

3 Gaussian Process Dynamic Programming 7
3.1 Computational and Memory Requirements 8
3.2 Policy Learning . 8
3.3 Evaluations . 10

3.3.1 General Setup . 11
3.3.2 Value Function and Policy Models 12
3.3.3 Performance Analysis . 13
3.3.4 Single GP Policy . 14

3.4 Discussion . 15
3.5 Summary . 16

4 Online Learning 16
4.1 Learning the Dynamics . 18
4.2 One-Step ahead Predictions . 19
4.3 Bayesian Active Learning . 20
4.4 ALGPDP . 21
4.5 Augmentation of the Training Sets 21

4.5.1 Utility Function . 22
4.5.2 Adding Multiple States . 23
4.5.3 Set of Candidate States . 23
4.5.4 Training Dynamics and Value Function Models 24

4.6 Computational and Memory Requirements of ALGPDP 25
4.7 Evaluations . 26

4.7.1 Swing-up . 26
4.7.2 Comparison to Neural Fitted Q Iteration 29

4.8 Discussion . 31
4.9 Summary . 32

5 Conclusions 32

A Gaussian Process Prediction with Uncertain Inputs 33

i

CONTENTS

ii

Abstract

Reinforcement learning (RL) and optimal control of systems with contin-
uous states and actions require approximation techniques in most interesting
cases. In this article, we introduce Gaussian process dynamic programming
(GPDP), an approximate value-function based RL algorithm. We consider
both a classic optimal control problem, where problem-specific prior knowl-
edge is available, and a classic RL problem, where only very general priors
can be used. For the classic optimal control problem, GPDP models the
unknown value functions with Gaussian processes and generalizes dynamic
programming to continuous-valued states and actions. For the RL problem,
GPDP starts from a given initial state and explores the state space using
Bayesian active learning. To design a fast learner, available data has to be
used efficiently. Hence, we propose to learn probabilistic models of the a
priori unknown transition dynamics and the value functions on the fly. In
both cases, we successfully apply the resulting continuous-valued controllers
to the under-actuated pendulum swing up and analyze the performances of
the suggested algorithms. It turns out that GPDP uses data very efficiently
and can be applied to problems, where classic dynamic programming would
be cumbersome.

1 Introduction

Reinforcement learning (RL) is based on the principle of experience-based, goal-
directed learning. In contrast to supervised learning, where labels are provided
from an external supervisor, a reinforcement learning algorithm must be able to
learn from experience collected through interaction with the surrounding world.
The objective in reinforcement learning is to find a strategy, which optimizes a long-
term performance measure, such as cumulative reward or cost. RL is similar to the
field of optimal control although the fields are traditionally separate. In contrast
to optimal control, reinforcement learning does not necessarily assume problem-
specific prior knowledge or an intricate understanding of the world. However, if we
call the RL algorithm “controller” and identify actions with the “control signal”
we have a one-to-one mapping from reinforcement learning to optimal control if the
surrounding world is fully known. In a general setting, however, an RL algorithm has
to explore the world and collect information about it. Since reinforcement learning is
inherently based on collected experience, it provides an intuitive setup for sequential
decision-making under uncertainty in autonomous learning.

The RL setup requires to automatically extract information and to learn struc-
ture from collected data. Learning is important when data sets are very complex
or simply too large to find an underlying structure by hand. The learned struc-
ture is captured in the form of a statistical model that compactly represents the
data. Bayesian data analysis aims to make inferences for quantities about which
we wish to learn by using probabilistic models for quantities we observe. The es-
sential characteristic of Bayesian methods is their explicit use of probability theory
for quantifying uncertainty in inferences based on statistical data analysis. Without
any notion of uncertainty, the RL algorithm would be too confident and claim exact
knowledge, which it actually does not have. Representation and incorporation of

1

1 INTRODUCTION

uncertainties in RL is particularly important in the early stages of learning when the
data set is still very sparse. Algorithms based on over-confident models can fail to
yield good results due to model bias as reported by Atkeson and Santamaŕıa (1997)
and Atkeson and Schaal (1997). Hence, it is important to quantify current knowl-
edge appropriately. However, a major drawback of Bayesian methods is that they
are computationally costly and the posterior distribution is often not analytically
tractable.

Dynamic programming (DP) is a general and efficient method of solving sequen-
tial optimization problems under uncertainty. Due to the work of Bellman (1957),
Howard (1960), Kalman (1960), and many others, dynamic programming became
a standard approach to solve optimal control problems. However, only in case of
linear systems with quadratic cost and Gaussian noise, exact global solutions are
known, (Bertsekas, 2005). Similarly, many reinforcement learning algorithms are
based on dynamic programming techniques comprising value iteration and policy
iteration methods, details of which are given by Sutton and Barto (1998) and Bert-
sekas and Tsitsiklis (1996). However, solving a nonlinear optimal control or RL
problem for continuous-valued states and actions is challenging and requires ap-
proximation techniques in general.

In continuous-valued state and action domains, discretization is commonly used
for approximations if required computations are no longer analytically tractable.
However, the number of cells in a discretized space does not only depend on the
dimensionality and the difficulty of the problem, but also on the time-sampling fre-
quency. The higher the sampling rate, the smaller the size and the larger the number
of cells required. Therefore, even low-dimensional problems can be infeasible to solve
in discretized spaces. Function approximators address discretization problems and
generalize to continuous-valued domains as described for instance by Bertsekas and
Tsitsiklis (1996) or Sutton and Barto (1998). The key idea is to model the DP
value function in a function space rather than representing this function as a ta-
ble of values at discrete input locations. Parametric function approximators, such
as polynomials or radial basis function networks often used for this purpose, but
they are only capable of modeling the unknown function within their correspond-
ing model classes. A fundamental problem of parametric function approximators
is that the model class is fixed before having observed any data. Often, it is hard
to know ahead of time which class of functions will be appropriate. In general, the
restriction to a wrong class of functions may result in diverging RL algorithms as
shown by Gordon (1995) and Ormoneit and Sen (2002). Non-parametric regression
techniques are generally more flexible than parametric models. “Non-parametric”
does not imply that the model is parameter-free, but that the number and nature
of the parameters are flexible and not fixed in advance.

Gaussian processes (GP) combine both flexible non-parametric modeling and
tractable Bayesian inference as described by Rasmussen and Williams (2006). The
basic idea of non-parametric inference is to use data to infer an unknown quan-
tity based on general prior assumptions. Often, this means using statistical models
that are infinite dimensional, (Wasserman, 2006). Matheron (1973) and others in-
troduced Gaussian processes to geostatistics decades ago under the name kriging.
They became popular in the machine learning community in the 1990s through
work by Williams and Rasmussen (1996) and the thesis by Rasmussen (1996). Re-

2

cently they got introduced to the control community by Murray-Smith and Sbarbaro
(2002), Murray-Smith et al. (2003) or Kocijan et al. (2003), for instance.

Gaussian process regression allows for an appropriate uncertainty treatment in
RL when approximating unknown functions. For value function and model learn-
ing the use of GPs in reinforcement learning has for instance been discussed for
model-free policy iteration by Engel et al. (2003, 2005), for model-based control
by Rasmussen and Kuss (2004), Murray-Smith and Sbarbaro (2002) , and Ras-
mussen and Deisenroth (2008), and model-based value iteration by Deisenroth et al.
(2008a,b). Furthermore, Ghavamzadeh and Engel (2007) discussed GPs in the con-
text of Actor-Critic methods.

In this article, we introduce and analyze the Gaussian process dynamic pro-
gramming (GPDP) algorithm. GPDP is a value-function-based RL algorithm that
generalizes dynamic programming to continuous state and action spaces and which
belongs to the family of fitted value iteration algorithms, (Gordon, 1995). The cen-
tral idea of GPDP is to utilize non-parametric, Bayesian Gaussian process models
to describe the value functions in the dynamic programming recursion. We will
consider both a classic optimal control problem, where much problem-specific prior
knowledge is available, and a classic RL problem, where only very general assump-
tions can be made a priori. In particular, the transition dynamics will be unknown.
To solve the RL problem, we will introduce a novel online algorithm that interleaves
dynamics learning and value function learning. Moreover, Bayesian active learning
is used to deal with the exploration-exploitation tradeoff.

The structure of this article is as follows. Section 2 briefly introduces optimal
control, reinforcement learning, and Gaussian processes. In Section 3, Gaussian
process dynamic programming is introduced in the context of an optimal control
setting, where the transition dynamics are fully known. Furthermore, it will be
discussed how a discontinuous, globally optimal policy can be learned if sufficient
problem-specific knowledge is available. GPDP will be applied to the illustrative
under-actuated pendulum swing up, a nonlinear optimal control problem introduced
by Atkeson (1994). In Section 4, we consider a general RL setting, where only very
general priors are available. We introduce a very data-efficient, fast learning RL
algorithm, which builds probabilistic models of the transition dynamics and value
functions on the fly. Bayesian active learning is utilized to efficiently explore the
state space. We compare this novel algorithm to the Neural Fitted Q Iteration
by Riedmiller (2005). Section 5 summarizes the article.

2 Background

Throughout this article, we consider discrete-time systems

xk+1 = f(xk,uk) + w , (1)

where x denotes the state, u the control signal (action), and w ∼ N (0,Σw) a
Gaussian distributed noise random variable, where Σw is diagonal. Moreover, k is
a discrete time index. The transition function f mapping a state-action pair to a
successor state is assumed to evolve smoothly over time.

3

2 BACKGROUND

2.1 Optimal Control and Reinforcement Learning

Both optimal control and reinforcement learning aim to find a policy that optimizes
a long-term performance measure. A policy π is a mapping from a state space Rnx

into a control space Rnu that assigns a control signal to each state. In many cases,
the performance measure is defined as the expected cumulative cost over a certain
time interval. For an initial state x0∈Rnx and a policy π, the (discounted) expected
cumulative cost of a finite N -step optimization horizon is

V π(x0) := E

[
γNgterm(xN) +

N−1∑
k=0

γkg(xk,uk)

]
, (2)

where k indexes discrete time. Here, u := π(x) is the control signal assigned by
policy π. The function gterm is a control-independent terminal cost that incurs at
the last time step N . The immediate cost is denoted by g(xk,uk). The discount
factor γ ∈ (0, 1] weights future cost. An optimal policy π∗ for the N -step problem
minimizes equation (2) for any initial state x0. The associated state-value function
V ∗ satisfies Bellman’s equation

V ∗(x) = min
u

(
g(x,u) + γ Ex′ [V

∗(x′)|x,u]
)

(3)

for all states x. The successor state for a given state-action pair (x,u) is denoted
by x′. The state-action value function Q∗ is defined by

Q∗(x,u) = g(x,u) + γ Ex′ [V
∗(x′)|x,u] , (4)

such that V ∗(x) = minuQ
∗(x,u) for all x. In general, finding an optimal policy

π∗ that leads to equation (3) is hard. Assuming time-additive cost and Markovian
transitions2, the minimal expected cumulative cost can be calculated by dynamic
programming. DP determines the optimal state-value function V ∗ by the DP recur-
sion

V ∗k (x) = min
u

(
g(x,u) + γ E

[
V ∗k+1(x′)|x,u]) (5)

for all states x and k = N − 1, . . . , 0. The state-value function V ∗k (x) is the minimal
expected cost over an N −k step optimization horizon starting from state x at time
step k. Analogously to equation (5), a recursive approximation of Q∗ by Q∗k can be
defined.

The classic dynamic programming algorithm is given in Algorithm 1. For known
transition dynamics f , a finite set of actions UDP, and a finite set of states XDP,
dynamic programming recursively computes the optimal controls π∗(XDP). Starting
from the terminal time N , DP exploits Bellman’s optimality principle to determine
the value function V ∗0 (XDP) and the corresponding optimal controls π∗0(XDP). The
value function V ∗N is initialized by the terminal cost gterm. The Q∗-values are com-
puted recursively for any state-action pair (xi,uj) in line 6 of Algorithm 1. For
deterministic transition dynamics, the expectation over all successor states in line 6

2The successor state x′ only depends on the current state-action pair (x,u).

4

2.2 Gaussian Processes

Algorithm 1 classic DP, known transition dynamics f

1: input: f,XDP,UDP

2: V ∗N(XDP) = gterm(XDP) . terminal cost
3: for k = N − 1 to 0 do . recursively
4: for all xi ∈ XDP do . for all states
5: for all uj ∈ UDP do . for all actions
6: Q∗k(xi,uj) = g(xi,uj) + γ Exk+1

[V ∗k+1(xk+1)|xi,uj, f]
7: end for
8: π∗k(xi) ∈ arg minu∈UDP

Q∗k(xi,u)
9: V ∗k (xi) = Q∗k

(
xi, π

∗
k(xi)

)
10: end for
11: end for
12: return π∗(XDP) := π∗0(XDP) . return optimal controls for XDP

is not required. The optimal control π∗k(xi) of the current recursion step is the min-
imizing argument of the Q∗-values for a particular state xi, and the value function
V ∗k (xi) at xi is the corresponding minimum value.

In contrast to optimal control, reinforcement learning usually does not assume a
priori known transition dynamics and cost. Hence, general RL algorithms have to
treat these quantities as random variables. However, if RL algorithms are applied to
a fully known Markov decision process (MDP), the RL problem can be considered
equivalent to optimal control. The DP recursion and, therefore, all related algo-
rithms can be used to solve this problem. Both reinforcement learning and optimal
control aim to find a solution to an optimization problem, where the effect of the
current decision can be delayed. As an example, we can consider a chess game. The
current move will influence all subsequent situations, moves, and decisions, but only
at the very end it becomes clear if the match was won or not.

For further details on optimal control, dynamic programming, and reinforcement
learning, we refer to the books by Bryson and Ho (1975), Bertsekas (2005, 2007),
Bertsekas and Tsitsiklis (1996), and Sutton and Barto (1998).

2.2 Gaussian Processes

In the following, a brief introduction to Gaussian processes will be given based on
the books by MacKay (2003) and Rasmussen and Williams (2006).

Given a data set {X,y} consisting of input vectors xi and corresponding obser-
vations yi = h(xi) + ε, ε ∼ N (0, σ2

ε), we want to infer a model of the (unknown)
function h that generated the data. Here, X = [x1, . . . ,xn] is the matrix of training
inputs, y = [y1, . . . , yn]> is the vector of corresponding training targets (observa-
tions). Within a Bayesian framework, the inference of h is described by the posterior
probability

p(h|X,y) =
p(y|h,X)p(h)

p(y|X)
,

where p(y|h,X) is the likelihood and p(h) is a prior on functions assumed by the
model. The term p(y|X) is called the evidence or the marginal likelihood. When
modeling with Gaussian processes, we place a Gaussian process prior p(h) directly in

5

2 BACKGROUND

the space of functions without the necessity to consider an explicit parameterization
of the function h. This prior typically reflects assumptions on the smoothness of
h. Similar to a Gaussian distribution, which is fully specified by a mean vector
and a covariance matrix, a Gaussian process is specified by a mean function m(·)
and a covariance function k(· , ·), also called a kernel.3 A GP can be considered
a distribution over functions. However, regarding a function as an infinitely long
vector, all necessary computations for inference and prediction can be broken down
to manipulating well-known Gaussian distributions. We write h ∼ GP(m, k) if the
latent function h is GP distributed.

Given a GP model of the latent function h, we are interested in predicting
function values for an arbitrary input x∗. The predictive (marginal) distribution
of the function value h∗ = h(x∗) for a test input x∗ is Gaussian distributed with
mean and variance given by

Eh[h∗] = k(x∗,X)(K + σ2
εI)−1y , (6)

varh[h∗] = k(x∗,x∗)− k(x∗,X)(K + σ2
εI)−1k(X,x∗) , (7)

where K ∈ Rn×n is the kernel matrix with Kij = k(xi,xj).
A common covariance function k is the squared exponential (SE)

kSE(x,x′) := α2 exp
(− 1

2
(x− x′)>Λ−1(x− x′)

)
(8)

with Λ = diag([`2
1, . . . , `

2
nx

]) and `k, k = 1, . . . , nx, being the characteristic length-
scales. The parameter α2 describes the variability of the latent function h. The pa-
rameters of the covariance function are the hyperparameters of the GP and collected
within the vector θ. We optimize them by evidence maximization4 as recommended
by MacKay (1999). The log-evidence is given by

log p(y|X,θ) = log

∫
p(y|h(X),X,θ) p(h(X)|X,θ) dh

= −1
2
y>(Kθ + σ2

εI)−1y︸ ︷︷ ︸
data fit term

−1
2

log |(Kθ + σ2
εI)|︸ ︷︷ ︸

complexity penalty

−nx

2
log(2π) .

(9)

Here, h(X) := [h(x1), . . . , h(xn)], where n is the number of training points. We made
the dependency of K on the hyperparameters θ explicit by writing Kθ. Evidence
maximization yields a model that a) rewards the data-fit and b) rewards simplicity
of the model. Hence, it automatically implements Occam’s razor.

Maximizing the evidence is a nonlinear, unconstrained optimization problem.
Depending on the data set, this can be hard. However, after optimizing the hyper-
parameters, the GP model can always explain the data although a global optimum
has not necessarily been found.

Training a Gaussian process requires O(n3) operations, where n is the number
of training examples. The computational complexity is due to the inversion of the
kernel matrix. After training, the predictive mean (6) requires O(n) operations to
compute, the predictive variance (7) requires O(n2) operations.

3We set the mean function to 0 everywhere, if not stated elsewhere.
4Rasmussen and Williams (2006) call this marginal likelihood optimization or maximum likeli-

hood type II estimate.

6

Algorithm 2 GPDP, known deterministic system dynamics

1: input: f,X ,U
2: V ∗N(X) = gterm(X) + wg . terminal cost
3: V ∗N(·) ∼ GPv . GP model for V ∗N
4: for k = N − 1 to 0 do . recursively
5: for all xi ∈ X do . for all support states
6: for all uj ∈ U do . for all support actions
7: Q∗k(xi,uj) = g(xi,uj) + wg + γ EV [V ∗k+1(f(xi,uj))]
8: end for
9: Q∗k(xi, ·) ∼ GPq . GP model for Q∗k

10: π∗k(xi) ∈ arg minu∈Rnu Q∗k(xi,u)
11: V ∗k (xi) = Q∗k

(
xi, π

∗
k(xi)

)
12: end for
13: V ∗k (·) ∼ GPv . GP model for V ∗k
14: end for
15: return GPv,X , π∗(X) := π∗0(X)

3 Gaussian Process Dynamic Programming

Gaussian process dynamic programming (GPDP) is a generalization of dynamic
programming/value iteration to continuous state and action spaces using fully prob-
abilistic Gaussian process models, Deisenroth et al. (2008a).

In this section, we consider a discrete-time optimal control problem, where the
transition function f in equation (1) is exactly known. To determine a solution for
continuous-valued state and action spaces, Gaussian process dynamic programming
describes the value functions V ∗k and Q∗k directly in function space by representing
them by fully probabilistic Gaussian process models. Gaussian process models for
this purpose make intuitive sense as they use available data to determine the un-
derlying structure of the value functions, which is often unknown. Moreover, they
provide information about the model confidence. Similar to classic DP (see Algo-
rithm 1), we choose finite sets X of states and U of actions. However, instead of
representing the state and action spaces, these sets are the support points (training
inputs) for two value function Gaussian process models

V ∗k (·) ∼ GPv(mv, kv) ,

Q∗k(x, ·) ∼ GPq(mq, kq) ,

respectively. The training targets (observations) are recursively determined by
GPDP itself. A sketch of the GPDP algorithm for known deterministic transi-
tion dynamics f is given in Algorithm 2. The advantage of modeling the state-value
function V ∗k by GPv is that the GP provides a predictive distribution of V ∗k (x∗)
for any state x∗ through equations (6) and (7). This property is exploited in
the computation of the Q∗-value (line 7): Due to the generalization property of
GPv, we are not restricted to a finite set of successor states when determining
EV [V ∗k+1(f(x,u))]. However, although we consider a deterministic system, we have
to take an expectation—with respect to the latent function V ∗k+1, which is prob-
abilistically modeled by GPv. Thus, EV [V ∗k+1(f(x,u))] is simply mv(f(x,u)), the

7

3 GAUSSIAN PROCESS DYNAMIC PROGRAMMING

predictive mean of V ∗k (f(x,u)) given by equation (6). The GP model of Q∗k in line 9
generalizes the Q∗-function to continuous-valued action domains. The immediate
reward g in line 7 is assumed to be measured with additive independent, Gaussian
noise wg ∼ N (0, σ2

g) with a priori unknown variance σ2
g . The GP model for Q∗k takes

this variance as additional hyperparameter to be optimized. Note that GPq models
a function of u only since xi is fixed. Therefore, minuQ

∗
k(xi,u) ≈ minumq(u), the

minimum of the mean function of GPq. The minimizing control π∗k(xi) in line 10
is not restricted to the finite set U , but can be selected from the continuous-valued
control domain Rnu since for arbitrary controls a predictive distribution of the corre-
sponding Q∗-value is provided by GPq. To minimize Q∗k we have to utilize numerical
methods.

Note that for all xi∈X independent GP models for Q∗k(xi, ·) are used rather than
modeling Q∗k(· , ·) in joint state-action space. This idea is largely based on three
observations. First, we are finally only interested in the values V ∗k (xi), the minimal
expected cumulative cost at a support point for the V ∗-function GP. Therefore, a
model of Q∗k in joint state-action space is not necessary. Second, a good model of
Q∗k in joint state-action space requires substantially more training points and makes
standard GP models computationally very expensive. Third, the Q∗-function can be
discontinuous in x as well as in u. We eliminate one possible source of discontinuity
by treating Q∗k(xi, ·) and Q∗k(xj, ·) independently.

Summarizing, the generalization of dynamic programming to continuous actions
is achieved by the Q∗-function model, the generalization to continuous states is
achieved by the V ∗-function model.

3.1 Computational and Memory Requirements

GPDP as described in Algorithm 2 requires O(|X ||U|3 + |X |3) computations per
time step since training a GP scales cubically in the number of training points, see
Section 2.2. Classic DP for deterministic settings requires O(|XDP||UDP|) compu-
tations: The Q∗-value for any state-action pair (xi,uj) has to be computed. Note
that the sets of states XDP and actions UDP used by DP usually contain substantially
more elements than their counterparts in GPDP. Thus, GPDP can use data more
efficiently than discretized DP.

In terms of memory requirements, the most demanding part of GPDP is the
storage of the inverse kernel matrices K−1

v and K−1
q , which contain |X |2 and |U|2

elements, respectively.
In contrast to classic dynamic programming, GPDP is independent of the time-

sampling frequency since the set X contains support points of the GP value func-
tion models rather than representations of the state space. Higher time-sampling
frequency will require an increase in the number and a decrease in the size of cells
in a classic DP setting, where the state space itself is defined by X .

3.2 Policy Learning

To learn an optimal, continuous-valued policy on the entire state space, we have to
model the policy based on a finite number of evaluations. We regard the policy as a
deterministic map from states to actions. Although any function approximator can

8

3.2 Policy Learning

π∗(X)

π∗+(X) π∗−(X)

GP+ GP−
π∗+ π∗−

x∗

π∗(x∗)

select policy model

classifier

Figure 1: Learning a discontinuous policy by switching between GP models. The
optimal controls π∗(X) are split into two groups: positive and negative control
signals. Two GPs are trained independently on either of the subsets to guarantee
local smoothness. A classifier selects greedily one GP to predict an optimal control
for a test input x∗. The resulting policy can be discontinuous along the decision
boundary.

be used for policy modeling purposes, we approximate the policy with a Gaussian
process, the policy GP.5

We interpret the optimal controls π∗(X) (line 15 of Algorithm 2) returned by
GPDP as noisy measurements of an optimal policy. We assume noisy measurements
to account for model errors and the noisy immediate cost function g. To generalize
that finite set of optimal controls to a continuous-valued, globally optimal policy
π∗ on the entire state space, we have to solve a regression problem. The training
inputs for the proposed policy GP are the locations X , that is, the training input
locations of the value function GP. The training targets are the values π∗(X). If we
lack problem-specific priors, this general approach is applicable.

Let us consider an example, where this problem-specific prior knowledge is avail-
able and discuss a way of learning a discontinuous optimal policy. Discontinuous
policies often appear in under-actuated systems. Traditional policy learning meth-
ods as discussed by Peters and Schaal (2008a,b,c) or standard GP models with
smoothness-favoring covariance functions, which have been used for instance by Ras-
mussen and Deisenroth (2008), are inappropriate to model discontinuities.

In the following, we assume that there exists a near-optimal policy that is piece-
wise smooth with possible discontinuities at certain states, where the sign of the
control signal changes. Due to these considerations, we attempt to model the pol-
icy π∗ by switching between two GPs. The main idea of this step is depicted in
Figure 1. The set of optimal controls π∗(X) returned by GPDP is split into two
subsets of training targets: controls with positive sign and controls with negative

5Other function approximators can be employed as well. We use GPs to stay in the same class
of function approximators throughout this article.

9

3 GAUSSIAN PROCESS DYNAMIC PROGRAMMING

Algorithm 3 Full RL algorithm

1: (V ∗, X , π∗(X)) = GPDP . learn value function
2: π∗ = learn policy(X , π∗(X)) . learn policy

sign. One GP is trained solely on the subset π∗+(X) ⊂ π∗(X) of positive controls
and the corresponding input locations, the other GP uses the remaining set denoted
by π∗−(X). As the training inputs of either GP model is restricted to a part of the
entire training set, we call them “locally trained”. We denote the corresponding
GPs by GP+ and GP−, respectively. Note that the values π∗(X) are known from
the GPDP algorithm. Both GP models play the role of local experts in the region of
their training sets. After training, it remains to select a single GP model given a test
input x∗. In the considered case, this decision is made by a binary (GP) classifier
that selects the most likely local GP model to predict the optimal control.6 The
training inputs of the classifier are the states X and the corresponding targets are
the labels “+” or “−”, depending on the values π∗(X). This classifier plays a simi-
lar role as the gating network in a mixture-of-experts setting introduced by Jacobs
et al. (1991). receive the same training inputs since the set π∗(X) is divided into two
complementary subsets to train the experts. In contrast to the work by Jacobs et al.
(1991), we greedily choose the GP model with higher class probability to predict the
optimal control to be applied in a state. We always apply the predicted mean of the
locally trained GP policy model although we obtain distributions over the policies
p(π∗+) and p(π∗−), respectively. Note that convex combination of the predictions of
GP+ and GP− according to the corresponding class probabilities will not yield the
desired discontinuous policy. Instead, the policy will be smoothed out along the
decision boundary.

Binary classification maps outcomes of a latent function f into two different
classes. In GP classification (GPC) a GP prior is placed over f , which is squashed
through a sigmoid function to obtain a prior over the class labels. In contrast to
GP regression, the likelihood p(ci|f(xi)) in GPC is not Gaussian. The class label of
f(xi) is ci∈{−1,+1}. The integral that yields the posterior distribution of the class
labels for test inputs is not analytically computable. The expectation propagation
(EP) algorithm approximates the non-Gaussian likelihood to obtain an approximate
Gaussian posterior. We refer to the work by Minka (2001) or the book by Rasmussen
and Williams (2006) for further details.

Combining GPDP with a policy learning method yields the full RL algorithm (Al-
gorithm 3) that is dealt with in this article. The algorithm determines a continuous-
valued (probabilistic) value function model and a continuous-valued policy model.

3.3 Evaluations

We analyze GPDP by applying it to a comprehensible, but still challenging, nonlin-
ear control problem, the under-actuated pendulum swing up. The algorithms are im-
plemented using the gpml toolbox from the book by Rasmussen and Williams (2006).
Additional code will be publicly available at http://mlg.eng.cam.ac.uk/marc/.

6It is not required that the classifier is a GP classifier. Other binary classifiers, such as SVMs
can be utilized as well.

10

http://mlg.eng.cam.ac.uk/marc/

3.3 Evaluations

3.3.1 General Setup

goal position

umax

We consider a discrete-time approximation of the continuous-time
pendulum dynamics governed by the ODE

ϕ̈(t) =
−µϕ̇(t) +mgl sin(ϕ(t)) + u(t)

ml2
,

where µ = 0.05 kg m2/s is the coefficient of friction, l = 1 m is the
pendulum length, m = 1 kg is the pendulum mass, and g = 9.81 m/s2

the gravitational constant. The applied torque is restricted to u ∈
[−5, 5] Nm and is not sufficient for a direct swing up. The characteristic pendulum
frequency is approximately 0.5 Hz. Angle and angular velocity are denoted by ϕ
and ϕ̇, respectively. The control signal is piecewise constant and can be modified
every 200 ms. Starting from an arbitrary state, the task is to swing the pendulum
up and to balance it in the inverted position around the goal state [0, 0]>. Atkeson
and Schaal (1997) show that this task is not trivial. Moreover, discretization can
become prohibitively expensive despite the low dimensionality as shown by Doya
(2000). To avoid discretization, we apply GPDP to work directly in function space
and minimize the undiscounted expected total cost (2) over a horizon of 2 s. We
choose the saturating immediate cost function g

g(x, u) = 1− exp(−x> diag([1, 0.2]) x) ∈ [0, 1] , (10)

which does not penalize the applied action but only the state. The immediate
cost (10) is affected by additive Gaussian noise wg with standard deviation σw =
0.001, which has to be accounted for by GPq and is not a priori known to the
controller.

For both value function models GPv and GPq we choose the covariance function

k(xi,xj) := kSE(xi,xj) + kn(xi,xj) ,

where kSE is the SE kernel defined in equation (8). The noise kernel

kn(xi,xj) := σ2
εδij

smooths model errors of previous computations out. Here, δij is the Kronecker
delta.7 We randomly select 400 states8 as the set of support points X for GPv in
the state space hypercube [−π, π]> rad × [−7, 7]> rad/s. At the kth iteration, we
define the prior mean functions mv := k =: mq as constant. This makes states far
away from the training set X unfavorable. This setup is reasonable as we assume
that the relevant part of the state space is sufficiently covered with support points
for the value function GP, GPv.

For GPq, a linear grid of 25 actions in the admissible range [5, 5] Nm defines the
training inputs U of GPq for any particular state x ∈ X . The training targets are
the Q∗-values determined in line 7 of Algorithms 2.

7In this article, we restrict ourselves to reporting results with the SE kernel for simplicity
reasons. We also analyzed the results for kq being the Matérn kernel, which gave slightly better
results.

8We successfully tested the algorithm for 200 to 600 data points.

11

3 GAUSSIAN PROCESS DYNAMIC PROGRAMMING

−2 0 2
−5

0

5

angle in rad

an
g.

ve
l.

in
 r

ad
/s

2

4

6

8

(a) Optimal DP value function.

−2 0 2
−5

0

5

angle in rad

an
g.

ve
l.

in
 r

ad
/s

−2

0

2

4

6

8

(b) Mean of value function model (GPDP).

Figure 2: Optimal and learned value functions. Note that the angle has wrap-around
boundary conditions.

We model the discontinuous policy by switching between two GP models as
described in Section 3.2. Since we assume a locally smooth latent near-optimal
policy, we use smoothness favoring squared exponential kernels to train the policy
models GP+ and GP−, respectively.9 The prior mean functions for GP+ and GP−
are set to zero everywhere. Although we do not expect that the positive or negative
policies are in average zero, we want the policy to be conservative “in doubt”. If the
predictive distribution of the optimal control signal has high variance, a conservative
policy will not add more energy to the system.

As it is assumed that the deterministic transition dynamics f are a priori known,
the considered learning problem almost corresponds to a classic optimal control
problem. The only difference is that noisy immediate cost (10) are perceived. To
evaluate the quality of the learned policy, we compare it against an optimal solution.
In general, an optimal policy for continuous-valued state and control domains cannot
be determined. Thus, we rely on classic DP with cumbersome state and control space
discretization to design the benchmark controller. Here, we used regular grids of
approximately 6.2×105 states and 121 possible control values. We consider this DP
controller optimal.

3.3.2 Value Function and Policy Models

Figure 2(a) shows the optimal value function determined by dynamic programming.
The axes define the phase space, that is, angle and angular velocity of the pendulum.
Since the pendulum system is under-actuated, the value function is discontinuous
around the central diagonal band. The borders are given by states where the ap-
plicable torque is just strong enough to perform the swing up, which causes little
total cost. In the neighboring state, the pendulum will fall over independent of the
torque applied incurring high cumulative cost. The goal state is in the center of the
figure at [0, 0]>.

9Results with the rational quadratic kernel are similar.

12

3.3 Evaluations

−3 −2 −1 0 1 2 3
−5

0

5

angle in rad

an
g.

ve
l.

in
 r

ad
/s

high pos.

low pos.

neutral

low neg.

high neg.

Figure 3: Mean function of policy model. White circles are the inputs for GP−,
black crosses are the input locations for GP+. Due to this separation, a GP policy
model with discontinuities is determined. The colors encode the strength of the
force to be applied.

The mean function of the value function model determined by GPDP is given
in Figure 2(b). Although the mean of the value function model GPv in the origin
is negative, its shape corresponds to the shape of the optimal value function in
Figure 2(a). The discontinuous border is smoothed out, though. Apart from the
small negative region in the model, the values are very close to the values of the
optimal value function in Figure 2(a).

The mean of the resulting learned policy is given in Figure 3. We can model
the discontinuous borders of the policy due to the selection of the corresponding
locally trained GP as explained in Section 3.2. The white circles in Figure 3 are the
training input locations of GP−, the black crosses are the training input locations
of GP+. The colors in the plot encode the strengths of the mean predicted torques
to be applied. Although some predicted torques can exceed the admissible range of
[−5, 5] Nm, we only apply the maximum admissible torque when interacting with
the pendulum system.

3.3.3 Performance Analysis

Example trajectories of state and applied controls are given in Figure 4. In the
considered particular trajectory, the total cost of the GPDP controller is approxi-
mately 9% higher than the total cost incurring when applying the DP controller.
The corresponding incurring immediate cost are shown in Figure 5.

1,000 initial states [ϕ0, ϕ̇0]> ∈ [−π, π]> rad×[−7, 7]> rad/s are selected randomly
to analyze the global performance of the learned policy. The normalized root mean
squared error (NRMSE) is 0.0566 and quantifies the expected error introduced by
GPDP compared to the cumbersome optimal DP solution. The average total cost
is about 4.6 units for DP and 5.3 units for GPDP. Both controllers are often very
similar as for instance shown in Figure 4, but in rare cases the GPDP controller
causes substantially more total cost when it needs an additional pump to swing the
pendulum up. However, GPDP always solved the task, the maximum total cost

13

3 GAUSSIAN PROCESS DYNAMIC PROGRAMMING

 2.5

 5

−π/2

0

−π

π/2

GPDP
DP

0 1 2 3 4 5

0

2

4

an
g.

ve
l.

GPDP
DP

0 1 2 3 4 5
−5

0

5

time in s

ac
tio

n

GPDP
DP

Figure 4: Example trajectories for the states and the corresponding applied control
signals of the under-actuated pendulum swing up for the DP (red, dashed) and
GPDP (blue, solid) controllers starting from [−π, 0]>. The left panel is a polar plot
of the angle trajectories (in radians) when applying the optimal DP controller (red,
dashed) and the GPDP controller (blue, solid). The radius of any graph increases
linearly with the time step: at time step zero (initial state [−π, 0]>), the trajectories
start in the origin of the figure. Every time step, the radius becomes larger and
moves toward the boundary of the polar plot, which it finally reaches at the last
time step after 5 seconds. Both trajectories are close to each other. While the GPDP
controller brings the angle more rapidly to the upright position, the DP controller is
less aggressive, which is revealed in the angular velocities shown in the right upper
panel. The corresponding actions are shown in the right lower panel.

incurred was 13.6.

3.3.4 Single GP Policy

Thus far, we modeled the policy by switching between locally trained GP models.
This problem-specific approach is only applicable if sufficient prior knowledge about
a good solution is available. Otherwise, a more general approach is to model the
policy with a single Gaussian process. The global performance of the single policy
is close to the performance we reported for the case of switching between two lo-
cally trained GP models. The NRMSE for the single GP policy is 0.0686 (0.0566
for switching GPs), whereas the average cost over 5 s is 5.5 (5.3 for switching GPs).
Although the global performances are almost identical, it can happen that the single
GP policy performs poorly even when the policy modeled by switching GPs per-
forms well. In particular, this happens if the state trajectory hits a boundary of
discontinuity. Such an example is depicted in Figure 6, where the initial state lies
close to such a boundary.

14

3.4 Discussion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time in s

im
m

ed
ia

te
 c

os
ts

GPDP
DP

Figure 5: Immediate cost. Initially, both the DP and the GPDP controller cause
full immediate cost. After about 1.5 s, the DP controller starts incurring less cost,
whereas the GPDP controller requires another time step to follow. The trajectories
of both controllers are approximately cost-free after about 2.4 s as the controllers
stabilize the pendulum in the inverted position.

3.4 Discussion

Training GPq scales cubically in the number of actions used for training. If the
action space cannot easily be covered with training points, sub-sampling actions is
possible to speed up training: Assume that the most relevant part of the Q∗k-function
(line 7 of Algorithm 2) is the one close to the optimum and choose those M actions
that yield the lowest expected cost in state xi. These M actions define U and are
the training inputs of GPq in Algorithm 2. Then, we obtain more training points
in the part of the action space which results in a good approximation performance
of the GP model around the optimum of Q∗k. A similar perspective to this kind of
local function approximation is mentioned by Martinez-Cantin et al. (2007).

In line 10 of Algorithm 2, we minimize the mean function of GPq, that is, we
do not take the variance of GPq into account. Instead of simply minimizing the
predictive mean function, it is possible to add a fraction of the predictive variance.
This approach will favor actions that yield little expected predictive cost, but will
penalize uncertain predictions.

The suggested approach for learning a discontinuous policy by using two different
GPs seems applicable to many dynamic systems and more effective than training
a single GP with a problem-specific kernel. Although problem-specific kernels may
perform better, they are difficult to determine. However, selecting the switching
criterion can vary from case to case. In the considered case, the distinction between
positive and negative makes sense for intuitive and practical reasons. A point to be
discussed in future is the scalability to high-dimensional inputs.

Finding a globally optimal policy is very difficult in general. Moreover, it requires
many data points, particularly in higher dimensions. In practical applications, a
globally optimal policy is not required, but rather a policy that can solve a particular
task. Thus far, we have placed the support points X for the value function model

15

4 ONLINE LEARNING

−3 −2 −1 0 1 2 3
−5

0

5

angle in rad

an
g.

ve
l.

in
 r

ad
/s

high pos.

low pos.

neutral

low neg.

high neg.

(a) Learned policy using a single GP. The initial
state (black cross) is located close to the disconti-
nuity, which has been smoothed by single GP pol-
icy model. For comparison, see Figure 3, where the
discontinuities are modeled by switching between
two GP models.

 2.5

 5

−π/2π/2

0

−π

switch policies
single policy

(b) Angle trajectories for con-
trollers using switching GPs
(blue) and a single GP (green) to
model the policy.

Figure 6: The effect of smoothing out discontinuities in the policy is displayed:
When starting from the state [−0.77, 1]>, which is close to the boundary where the
pendulum falls over, the discontinuous policy (blue) still can go straight toward the
target state, whereas the smoothed policy (green) lets the pendulum fall over.

GPv randomly in the state space. We consider this a suboptimal strategy, which
can be highly data-inefficient. In the next section, we will describe how to combine
both issues, solving a particular task and using data efficiently.

3.5 Summary

We introduced Gaussian process dynamic programming (GPDP). Based on noisy
measurements of the immediate cost, Gaussian processes were used to model value
functions to generalize dynamic programming to continuous-valued state and control
domains. Modeling the value functions directly in function space allowed us to
avoid discretization problems. Moreover, we proposed to learn a continuous-valued
optimal policy on the entire state space.

For a particular problem, in which problem-specific prior knowledge was avail-
able, we switched between two locally trained Gaussian processes to model discon-
tinuities in the policy. The application of the concept to a nonlinear problem, the
under-actuated pendulum swing up, yielded a policy that achieved the task with
slightly higher cumulative cost than an almost optimal benchmark controller.

4 Online Learning

A central issue for reinforcement learning algorithms is the speed of learning, that
is, the number of trials necessary to learn a task. Many learning algorithms require
a huge number of trials to succeed. In practice, however, the number of actual trials
is very limited due to time or physical constraints. In the following, we discuss an
RL algorithm in detail, which aims to speed up learning in a general way.

16

There are broadly two types of approaches to speed up learning of artificial
systems. One approach is to constrain the task in various ways to simplify learning.
The issue with this approach is that it is highly problem dependent and relies on
an a priori understanding of the characteristics of the task. Alternatively, one can
speed up learning by extracting more useful information from available experience.
This effect can be achieved by carefully modeling the observations. In a practical
application, one would typically combine these two approaches. In the following, we
are concerned solely with the second approach: How can we learn as fast as possible,
given only very limited prior understanding of a task?

In the sequel, we will generalize the assumptions made in the previous section
and assume that the transition dynamics f in equation (1) are a priori unknown and
that we perceive noisy immediate rewards10. The objective is to find an optimal
policy leading the system from an initial state to the goal state requiring only a
small number of interactions with the real system. This constraint also implies that
Monte Carlo sampling, and therefore classical model-free RL algorithms, are often
infeasible. Hence, it seems worth building a dynamics model since model-based
methods often make better use of available information as described by Bertsekas
and Tsitsiklis (1996), p. 378. As discussed by Rasmussen and Deisenroth (2008),
probabilistic models appropriately quantify knowledge, alleviate model bias, and
can lead to very data-efficient solutions.

In the sequel, we will build a probabilistic model of the transition dynamics and
incorporate it into the GPDP algorithm. We distinguish between training the model
offline or online. Training the model offline, that is, prior to the entire planning
algorithm in which an optimal policy is determined, requires either a good cover of
the state space or sufficiently good prior knowledge of the task, such that we can
restrict the state space to a dynamically relevant part. We followed this approach
in our previous work, (Deisenroth et al., 2008b). In this article, we will take a
more general approach and train the dynamics model online. With “online” we
mean that dynamics model and value function models are being built alternately.
Solely based on gathered experience, the idea is to explore a relevant region of the
state space automatically while using only general prior assumptions. Solving the
described problem within a generalized dynamic programming framework demands
treatments of the exploration-exploitation tradeoff, online dynamics learning, and
one-step ahead predictions. We will address all these issues in this section.

To perform a particular task, we will adapt GPDP (Algorithm 2) such that only
a relevant part of the state space will be explored. Figure 7 gives an impression how
such a solution can be found. Starting from an initial state, training inputs for the
involved GP models are placed only in a relevant part of the state space (shaded
area). The algorithm finds a solution leading the system through this relevant region
to the goal state. GP models of the transition dynamics and the value functions will
be built on the fly. The resulting algorithm replaces GPDP in line 1 of Algorithm 3.
The policy learning part is not affected. By utilizing Bayesian active learning, we
will determine a set of optimal future experiments (interactions with the real system)
to use data efficiently.

10In this section, we aim at maximizing rewards instead of minimizing cost. Although both
approaches are equivalent in their original form, we prefer rewards in this online setting as they
can be intuitively combined with information-based rewards.

17

4 ONLINE LEARNING

initial state
goal state

final path

training set

relevant region

Figure 7: Starting from an initial state, the algorithm iteratively finds a solution to
the RL problem without searching the entire state space, but by placing the training
set in relevant regions (shaded area) of the state space only.

4.1 Learning the Dynamics

We attempt to model short-term transition dynamics based on interactions with
the real dynamic system. We assume that the dynamics evolve smoothly over time.
Moreover, we implicitly assume time-invariant (stationary) dynamics. We utilize a
Gaussian process model, the dynamics GP, to describe the dynamics f ∼ GPf . For
each output dimension i we train a separate GP model

xik+1 − xik ∼ GP(mf , kf) .

This model implies that the output dimensions are conditionally independent given
the inputs. Note that the correlation between the state variables is implicitly con-
sidered when we observe pairs of states and successor states. The training inputs to
the dynamics GP are state-action pairs, the targets are the differences between the
successor state and the state in which the action was applied. For any test input
input (x∗,u∗) the predictive distribution of f(x∗,u∗) is Gaussian distributed with
mean vector µ∗ and covariance matrix Σ∗. The posterior dynamics GP reveals the
remaining uncertainty about the underlying latent function f . For a deterministic
system, where the noise term w in equation (1) is considered measurement noise, the
uncertainty about the latent transition function f tends to zero in the limit of infinite
data, and the dynamics GP converges to the deterministic transition function, such
that GPf ≡ f . For a stochastic system, the noise term w in the system equation (1)
is process noise. In this case, we obtain a dynamics model GPf of the underlying
stochastic transition function f that contains two sources of uncertainty. First, as in
the deterministic case, the uncertainty about the underlying system function itself,
and second the uncertainty induced by the process noise. In the limit of infinite
data the first source of uncertainty tends to zero whereas stochasticity due to the
process noise w is always present. This means that only the uncertainty about the
model vanishes.

In practice, a deterministic GP model contains only one source of uncertainty
as the additive measurement noise can be subtracted from the total uncertainty
(measurement noise plus uncertainty about latent function). In the stochastic case,
the process noise can never be subtracted as it is part of the transition dynamics.

In the following, we solely consider the case of unknown deterministic transi-
tion dynamics with additive measurement noise. Stochastic dynamics with additive
process noise can be treated analogously.11

11This is not true for classic dynamic programming.

18

4.2 One-Step ahead Predictions

4.2 One-Step ahead Predictions

Let us revisit the GPDP algorithm (Algorithm 2). In a general RL setting, the
deterministic transition dynamics f are no longer known, but rather modeled by
the dynamics GP. Assume for a moment that this model is known. The only place
where the dynamics come into play is when the Q∗-values are determined. Here, the
expected value of V ∗ at a successor state distribution (line 7 of Algorithm 2),

EV,f [Vk+1(xk+1)|xi,uj,GPf] =

∫ ∫
V (f(xi,uj))p(V |f)p(f(xi,uj)) df dV (11)

has to be computed for any state-action pair (xi,uj) ∈ X × U . Both the system
function f and the value function V ∗ are latent and modeled by GPf and GPv,
respectively. Explicitly incorporating the uncertainty of the dynamics model in
equation (11) is important in the context of robust and adaptive control as discussed
by Murray-Smith and Sbarbaro (2002). In a Bayesian way, we take the uncertainties
about both latent functions into account by averaging over f and V ∗. Hence, we have
to predict the value of V ∗ for uncertain inputs f(xi,uj). We use the Bayesian Monte
Carlo method described by Rasmussen and Ghahramani (2003) and O’Hagan (1991).
In short, the mean and variance of the predictive distribution of V ∗(f(xi,uj)) can
be computed analytically. The mean is given by∫

mv(f(xi,uj))p(f(xi,uj)) df = β>l , (12)

with β := (K + σ2
wI)−1y and where

li =

∫
kv(xi, f(xi,uj))p(f(xi,uj)) df(xi,uj)

is an expectation of kv(xi, f(xi,uj)) with respect to f(xi,uj). Here, y are the
training targets for GPv. Further details including the final expression for kv being
the SE covariance function and the corresponding expressions for the predictive
variance are given in the paper by Girard et al. (2003) and in Appendix A.

Table 1 summarizes four cases of how to solve the integral in equation (11)
for deterministic dynamics depending on which functions are known. All unknown
functions are assumed to be modeled by GPs. To improve readability, we omit
the indices i and j in x and u, respectively. In the first case, we assume that
the value function V ∗ and the dynamics f are deterministic and known. That is,
p(x′|x,u) = δ(x′ = f(x,u)) is a Dirac delta, and the solution to (11) is simply
given by V ∗(f(x,u)). In the second case, we consider a known value function, but
unknown dynamics f . The dynamics are modeled by GPf , and we obtain Gaussian

Table 1: Solutions to integral (11).

known det. f GPf
known V ∗ V ∗(f(x,u))

∫
V ∗(f(x,u))p(f) df

GPv mv(f(x,u)) β>l

19

4 ONLINE LEARNING

predictions p(f(x,u)) since x′ = f(x,u) is Gaussian distributed for any input pair
(x,u). Mean and variance are given by equations (6) and (7), respectively. In combi-
nation with nonlinear value functions, the integral in equation (11) is only in special
cases analytically solvable, even if the value function is exactly known. In the third
case, we assume that the dynamics are deterministic and known, but the value func-
tion is unknown and modeled by GPv. This case corresponds to the standard GPDP
setting (Algorithm 2) we have proposed in previous work, (Deisenroth et al., 2008a).
The expectation with respect to x′ vanishes. However, the expectation has to be
taken with respect to the value function V ∗ to average over the uncertainty of the
value function model. Hence, the solution of equation (11) is given by mv(f(x,u)),
the evaluation of the mean function of GPv at f(x,u). In the fourth case, neither
the value function nor the dynamics are exactly known but modeled by GPv and
GPf , respectively. Therefore, we have to average over both the uncertainty about
the value function and the uncertainty about the dynamics. Due to these sources
of uncertainty, solving the integral (11) corresponds to Gaussian process prediction
with uncertain inputs f(x,u). The solution is given by equation (12).

4.3 Bayesian Active Learning

It remains to discuss two open problems: How can we learn the transition dynamics
online and how do we attack the exploration-exploitation dilemma? We utilize
Bayesian active learning (optimal design) to answer both questions.

Active learning can be seen as a strategy for optimal data selection to make
learning more efficient. In our case, training data are selected according to a utility
function. The utility function often rates outcomes or information gain of an exper-
iment. Before running an actual experiment, these quantities are uncertain. Hence,
in Bayesian active learning, the expected utility is considered by averaging over pos-
sible outcomes.12 Information-based criteria as proposed by MacKay (1992), Krause
et al. (2008), and Pfingsten (2006), for example, or their combination with expected
outcomes as discussed by Verdinelli and Kadane (1992) and Chaloner and Verdinelli
(1995) are commonly used to define utility functions. Solely maximizing an expected
information gain tends to select states far away from the current state set. MacKay
(1992) calls this phenomenon the “Achilles’ heel” of these methods if the hypotheses
space is inappropriate.

To find an optimal policy guiding the system from an initial state to the goal
state, we will incorporate Bayesian active learning into GPDP such that only a rele-
vant part of the state space will be explored. GP models of the transition dynamics
and the value functions will be built on the fly. A priori it is unclear, which parts
of the state space are relevant. Hence, “relevance” is rated by a utility function
within a Bayesian active learning framework in which the posterior distributions of
the value function model GPv will play a central role. This novel online algorithm
largely exploits information, which is already computed within GPDP. The combi-
nation of active learning and GPDP will be called ALGPDP in the sequel. Instead
of a globally, sufficiently accurate value function model, ALGPDP aims to find a lo-
cally appropriate value function model in the vicinity of most promising trajectories

12Note that the utility function in this context does not necessarily depend on the RL reward
function.

20

4.4 ALGPDP

Algorithm 4 Online Learning with GPDP

1: train GPf around initial states XN . initialize dynamics model
2: V ∗N(XN) = gterm(XN) + wg . terminal cost
3: V ∗N(·) ∼ GPv . GP model for V ∗N
4: for k = N − 1 to 0 do . DP recursion (in time)
5: determine Xk through Bayesian active learning
6: update GPf . GP transition model
7: for all xi ∈ Xk do . for all support states
8: for all uj ∈ U do . for all support actions
9: Q∗k(xi,uj) = g(xi,uj) + wg + γ E[V ∗k+1(xk+1)|xi,uj,GPf]

10: end for
11: Q∗k(xi, ·) ∼ GPq . GP model for Q∗k
12: π∗k(xi) ∈ arg maxu∈Rnu Q∗k(xi,u)
13: V ∗k (xi) = Q∗k

(
xi, π

∗
k(xi)

)
14: end for
15: V ∗k (·) ∼ GPv . GP model for V ∗k
16: end for
17: return GPv,X , π∗(X0) := π∗0(X0)

from the initial states to the goal state.
In RL, the natural setting is that the final objective is to gain both information

and high reward. Therefore, we combine the desiderata of expected information gain
and expected total rewards to find promising states in the state space that model
the value functions well. In a parametric setting, such a utility function has been
discussed by Verdinelli and Kadane (1992). We will discuss a non-parametric case
in this article.

4.4 ALGPDP

Algorithm 4 describes the entire ALGPDP algorithm. In contrast to GPDP in
Algorithm 2, the sets X , are time-variant. Therefore, we will denote them by Xk,
k = N, . . . , 0, in the following, where N is the length of the optimization horizon.
ALGPDP starts from a small set of initial input locations XN . Using Bayesian active
learning (line 5), new locations (states) are added to the current set Xk at any time
step k. The sets Xk serve as training input locations for both the dynamics GP
and the value function GP. At each time step, the dynamics model GPf is updated
(line 6) to incorporate most recent information. Furthermore, the GP models of
the dynamics f and the value functions V ∗ and Q∗ are updated. Table 2 gives an
overview of the respective training sets, where xi ∈ Xk and uj ∈ U . Here, x′ denotes
an observed successor state of the state-action pair (x,u).

4.5 Augmentation of the Training Sets

ALGPDP starts from a small set of initial input locations XN . In the following,
we define criteria and describe the procedure according to which the training input
locations Xk, k = N − 1, . . . , 0, are found. Let us assume that in each iteration of

21

4 ONLINE LEARNING

Algorithm 4, l new states are added to the current input locations Xk. Note that Xk
are the training inputs of the value function GP. The new states are added (line 5
in Algorithm 4) right after training GPv.

4.5.1 Utility Function

Consider a given set X̃ of possible input locations, which could be added. For
efficiency reasons, only the best candidates shall be added to Xk. In reinforcement
learning, we naturally expect from a “good” state x̃ ∈ X̃ to gain both information
about the latent value function and high reward. Hence, we choose a utility function
U that captures both objectives to rate the quality of candidate states. We aim to
find the most promising state x̃∗ that maximizes the utility function. Due to the
probabilistic value function GP model, we consider the expected utility requiring
Bayesian averaging. In the context of GPDP, we define the expected utility as

U(x̃) := ρEV [V ∗k (x̃)|Xk] +
β

2
log
(
varV [V ∗k (x̃)|Xk]

)
(13)

with weighting factors ρ, β. We explicitly conditioned on the given input locations
Xk on which the current value function has been trained. This utility requires that
we have a notion of the distribution of V ∗k (x̃). Fortunately, the predictive mean and
variance

EV [V ∗k (x̃)|Xk] = kv(x̃,Xk)K−1
v yv ,

varV [V ∗k (x̃)|Xk] = kv(x̃, x̃)− kv(x̃,Xk)K−1
v kv(Xk, x̃)

of V ∗k (x̃) are directly given by the equations (6) and (7), respectively. The utility (13)
expresses, how much total reward is expected from x̃ (first term) and how surprising
V ∗k (x̃) is expected to be given the current training inputs Xk of the GP model for
V ∗k (second term). As described by Chaloner and Verdinelli (1995), the second term
can be derived from the expected Shannon information (entropy) of the predictive
distribution V ∗k (x̃) or the Kullback-Leibler divergence between the predictive distri-
bution of V ∗k (x̃)|Xk and V ∗k (Xk). The parameters ρ and β weight expected reward
and expected information gain. A large (positive) value of ρ favors high expected
reward, whereas a large value (positive) β favors gaining information based on the
predicted variance.13 Aiming at high expected rewards exploits current knowledge
represented and provided by the probabilistic value function model. Gaining infor-
mation means to explore places with few training points. By adding states with
expected high rewards and high information gain we lead state trajectories from the

13A negative value of β will lead to conservative solutions that avoid solutions with high variance
(“pessimism in the face of uncertainty” in contrast to “optimism in the face of uncertainty”).

Table 2: Training sets of GP models involved in Algorithm 4.

GPf GPv GPq
training inputs (xi,ui) xi uj
training targets x′i − xi max

u∈Rnu
Q∗
(
xi,u

)
Q∗
(
xi,uj

)
22

4.5 Augmentation of the Training Sets

initial point to the goal state. Therefore, the parameters ρ, β in equation (13) can
be considered to be parameters that control the exploration-exploitation tradeoff.

4.5.2 Adding Multiple States

Instead of finding only a single promising state x̃∗, we are interested in the best
l states x̃∗j , j = 1, . . . , l, of the candidate set X̃ = {x̃i : i = 1, . . . , L}. A näıve
approach is to select all states independently of each other by just taking the best l
values of the expected utility (13) when plugging in X̃ . However, we can incorporate
cross-information between the candidate states. This approach accounts for the fact
that states very close to one another often do not contribute much more information
than a single state. To avoid combinatorial explosion in the selection of the best set
of l states, we add states sequentially.

We greedily choose the first state x̃∗1 ∈ X̃ maximizing the expected utility (13).
Then, the covariance matrix is augmented according to

Kv :=

[
Kv kv(Xk, x̃∗)

kv(x̃
∗,Xk) kv(x̃

∗, x̃∗)

]
(14)

with x̃∗ = x̃∗1 and kv being the covariance function of GPv. Now, Kv incorporates
information about how V ∗k (Xk) and V ∗k (x̃∗1) covary. The updated covariance matrix
is used to evaluate the expected utility (13), which means to update the predictive
variance of V ∗k (x̃2) conditioned on Xk and x̃∗1. Therefore, we explicitly consider
cross-covariance information between V ∗k (x̃∗1) and V ∗k (x̃2). The predictive mean of
V ∗k (x̃2), the first term in equation (13), does not change. Executing this procedure

l times, determines promising states l states x̃∗1,...,l ∈ X̃ . A state x̃i+1 depends on its
expected total reward and its expected information gain conditioned on Xk ∪ x̃∗≤i.
To define the set Xk−1, we could use the locations x̃∗i , i = 1, . . . , l, directly. This
approach will cause problems as the states x̃∗i are solely based on simulation. If the
value function model GPv or the transition model GPf were totally wrong, it would
be possible to add states, which are never dynamically reachable. Hence, we are
seeking input locations by interacting with the real system.

Thus far, we have discussed how to find promising locations x̃∗i from a set X̃ of
candidates. However, we do not yet know how this set is defined. Moreover, it is
not clear yet, how to define the training sets for GPf and GPv (see Table 2) and
how to augment the locations Xk to obtain Xk−1 using the information provided by
the promising states x̃∗i , which are determined through simulation. We will discuss
these issues in the following paragraphs. Note that the locations Xk serve as training
inputs for both the dynamics GP and the value function GP.

4.5.3 Set of Candidate States

Although it is possible to choose candidate states X̃ randomly, such selections would
be highly inefficient and irregular. Therefore, we take a different approach and
exploit the dynamics model for one-step ahead predictions in any recursion within
ALGPDP (Algorithm 4), which does not lead us to completely unexplored regions
of the state space. Using the dynamics GP, the predicted means of the successor
states of the set Xk (applying the set of actions U in each of them) are chosen as

23

4 ONLINE LEARNING

candidates X̃ . In line 9 of Algorithm 4, these states are denoted by xk+1. Therefore,
their predicted state distributions are already known from previous computations.

4.5.4 Training Dynamics and Value Function Models

In order to train the dynamics model around the initial state (line 1 of Algorithm 4),
we observe short trajectories of states starting from the initial state. As we do not
have a notion of a good strategy, we may apply actions randomly. The state-action
pairs (xinit

i ,uinit
i) along the observed trajectories define the training inputs for the

dynamics GP, the corresponding successor states f(xinit
i ,uinit

i) define the training
targets, which can be noisy. We define the set XN := {xinit

i }i as the training input
locations of the initial dynamics GP.

Starting from XN , we employ Bayesian active learning to augment this set of
locations in each iteration of ALGPDP. Assume in the following that the set of
input locations Xk is known. We determine the input locations Xk−1 to be employed
in the subsequent step of ALGPDP according to the following steps:

1. Determine X̃ , that is, the predicted means of the successor states when starting
from Xk and applying U , X̃ := Ef [f(Xk,U)]. The dynamics GP determines
the distribution of the successor states using equations (6) and (7).

2. Bayesian active learning determines the most promising predicted states x̃∗i ∈
X̃ , i = 1, . . . , l.

3. Determine l tuples (x′i,u
′
i) ∈ Xk such that Ef [f(x′i,u

′
i)] = x̃∗i ∈ X̃ . These

tuples can be determined by a table look-up since the sets Xk and U are finite.

4. We interact with the real system and apply action u′i in state x′i and observe
f(x′i,u

′
i). We define Xk−1 := Xk ∪ {f(x′i,u

′
i) : i = 1, . . . , l}.

Note that we do not augment Xk with the predicted states x̃∗i , which optimize the
utility function (13). Rather, we interact with the real system and apply action u′i
in state xi, such that the mean of the successor state is predicted to be x̃∗i . We
augment Xk with the corresponding observation. Particularly, in the early stages of
learning, where not many observations are available, the prediction does not nec-
essarily correspond to the observation. However, the probabilistic dynamics model
recognizes and accounts for any discrepancy between the real observations and the
predicted means in the next update.

In line 15 of Algorithm 4, we update the value function model GPv. The training
inputs are the set of states Xk and the goal state14. Initially at time step N , the
value function equals the terminal reward function gterm from equation (2), which
depends on the state only. In general, the corresponding training targets are defined
as the maximum of the Q∗-function evaluated at the locations Xk and the goal state.
The goal state serves as additional training input in the value function model and
makes learning more stable and faster since it provides some information about the
solution of the task. However, we do not think that this information requires strong
prior assumptions: If the rewards are not externally given, the reward function has

14Riedmiller (2005) calls the inclusion of the goal state “hint-to-goal heuristic”.

24

4.6 Computational and Memory Requirements of ALGPDP

to be evaluated internally. Note that the maximum immediate reward tells us, where
the goal state is.

The utility function (13) is solely optimized for a deterministic set X̃ , which
effectively consists of predicted means of successor states. Instead, it is possible to
define the utility as a function of the successor state distribution. This will require
to determine the predictive distribution of V ∗ with uncertain inputs. Mean and
variance can be computed analytically and the corresponding expressions for an SE
kernel are given in Appendix A. However, when updating the matrix (14), one has to
compute the cross-covariances between V ∗(x̃) and V ∗(X̃k), which is computationally
more involved than computing the corresponding expression for deterministic inputs
(which basically is an n-fold evaluation of the kernel). However, computation of the
cross-covariance is also analytically tractable. Although a definition of the expected
utility based on distributions p(x̃) will be a clean Bayesian treatment, we do not
explicitly discuss this case in this article.

4.6 Computational and Memory Requirements of ALGPDP

Let us consider the case of unknown (deterministic or stochastic) dynamics first,
which are trained offline. Apart from training the dynamics GP once, which scales
cubically in the number of training points, we have to solve the integral in equa-
tion (11). Computing a full distribution over the integral can be reformulated as a
standard GP prediction, which is quadratic in the number of training points X .15

However, if we utilize the mean only, the additional computations are O(|X |2|U|)
per time step.

Compared to the case of unknown deterministic transition dynamics, there is
no additional computational burden for unknown stochastic dynamics. Moreover,
no more memory is required to perform necessary computations. DP for stochastic
dynamics is often very cumbersome and hardly applicable without approximations
because of the O(|UDP||XDP|2) memory required to store a full transition matrix.
Moreover, the computational complexity of DP for a stochastic problem is also
O(|UDP||XDP|2).

Now, let us consider the case of ALGPDP, which trains the transition dynam-
ics and value function models online. The extended covariance matrix in equa-
tion (14) can be inverted in O(n2), where n2 is the number of entries of the pre-
vious Kv. Hence, the computational cost of Bayesian active state selection is
O(|U|(l|Xk|2 + (l2 − l)|Xk|)) ∈ O

(|U||Xk|l(l + |Xk|)
)
. The dynamics GP can be

retrained in O((|Xk| + l)3) since the updated covariance matrix Kf has to be in-
verted. The total computational complexity of ALGPDP at time step k is therefore
O(|U|(l|Xk|2 +(l2− l)|Xk|)+(|Xk|+ l)3 + |Xk|3(1+ |U|)+ |U|3|Xk|) ∈ O(|U|(l|Xk|(l+
|Xk|)) + |Xk|3(1 + |U|) + |U|3|Xk|), which includes training GPf , GPv,GPq, and the
evaluation of integral (11) for all successor states of the states Xk when applying U .
Note that Xk (Xk−1 = Xk ∪ {x̃∗≤l} and that standard GPDP in an optimal control
setting as discussed in Section 3 utilizes the full set X0 at any time step. Hence,
ALGPDP can lead to a remarkable speedup of GPDP.

15The support points X are considered time-invariant if we train the dynamics offline.

25

4 ONLINE LEARNING

4.7 Evaluations

We consider the under-actuated pendulum task, which has been introduced in Sec-
tion 3.3. Instead of minimizing the expected cumulative cost, we now aim to maxi-
mize the expected cumulative reward.16 We will consider the saturating immediate
reward function

g(x) := −1 + exp
(− 1

2
d(x)2/a2

) ∈ [−1, 0] , a = 1
6

m , (15)

where
d(x)2 = 2 l2 − 2 l2 cos(ϕ) , l = 1 m ,

is the squared distance between the tip of the pendulum and the goal state. Note
that the immediate reward (15) solely depends on the angle. In particular, it does
not depend on the angular velocity or the control variables. This reward function
requires the learning algorithm to discover automatically that a low angular velocity
around the goal state is crucial to solve the task. The reward function (15) saturates
for angles that deviate more than 17◦ ≈ 0.3 rad from the goal position.

We maximize the (undiscounted) expected long-term reward over a horizon of
2 s and assume that the dynamics are a priori unknown if not stated elsewhere. The
exploration/exploitation parameters in the utility function (13) are set to ρ := 1, β :
= 2.17 The initial state is chosen as [−π, 0]>, the goal state is the origin [0, 0]>.
The policy is modeled by a single GP instead of two GPs between we can switch to
account for discontinuities in the policy. In a general learning approach, we cannot
assume that specific prior knowledge is available that describes a properties of a
good solution.

4.7.1 Swing-up

To learn the transition dynamics around the initial state (line 1 of Algorithm 4),
we observe two trajectories of length 2 s, measured and controlled every 200 ms.
Initially, we apply actions randomly due to the lack of a good control strategy. The
resulting set XN consists of 20 states.

To perform the swing up, we use a total of 150 states including the 20 states in
XN along the initial random trajectories. This means, we augment Xk by l = 13
states at each time step to define Xk−1. As in Section 3.3, we compared the solution
learned by ALGPDP to the optimal DP solution. Figure 8 shows that a typical
solution provided by ALGPDP is close to the quality of the solution of the optimal
DP solution. The left panel shows that the angle trajectories are close to each other.
Therefore the immediate rewards do not differ much either, which is shown in the
right panel. Remember that the reward function (15) is independent of the angular
velocity and the control signal. For this particular trajectory, the cumulative reward
of ALGPDP is approximately 7% lower than the cumulative reward of the optimal
dynamic programming solution. Note that due to the reward function (15), only a
very small range of angles actually causes rewards significantly deviating from -1.

16Both objectives are regarded equivalent since a negative reward is the corresponding positive
cost.

17We did not thoroughly investigate many other parameter settings. However, we observed that
the algorithms also work for different values of ρ and β reasonably well.

26

4.7 Evaluations

 2.5

 5

π/2 −π/2

0

−π
ALGPDP
DP 0 1 2 3 4 5

−1

−0.8

−0.6

−0.4

−0.2

time in s

im
m

ed
ia

te
 r

ew
ar

ds

ALGPDP
DP

Figure 8: Trajectories of the angle and immediate rewards when applying optimal
policies. The left panel is a polar plot of the angle trajectories (in radians) when
applying the optimal DP controller (red, dashed) and the approximate ALGPDP
controller (blue, solid). The radius of any graph increases linearly in time: at
time step zero (initial state [−π, 0]>), the trajectories start in the origin of the
figure. Every time step, the radius becomes larger and moves toward the boundary
of the polar plot, which it finally reaches at the last time step after 5 seconds of
simulating the system. Both trajectories are close to each other. The goal state is
the upright position, 0 rad. Both controllers move the pendulum rapidly to the goal
state in the upright position although the optimal DP controller is slightly faster.
The right panel shows the corresponding immediate rewards over time. Initially, the
rewards are identical. After 1.8 s they deviate because the DP controller brought the
pendulum quicker into the region with higher reward. After 2.2 s both trajectories
are in a high-reward zone and do no longer differ noticeably.

Please keep in mind that the optimal DP solution is cumbersome to determine and
requires much prior knowledge, computation time, and memory.

Figure 9 shows a typical evolution of the mean of the probabilistic value function
model throughout the iterations of ALGPDP. Starting from the initial random tra-
jectories, input locations are added by using Bayesian active learning. It can be seen
that initially the inclusion of new states is based on exploration. The final value
function model (lower right plot) is trained with a higher concentration of states
around the goal state, which is due to the fact that states in this region are very fa-
vorable according to the utility function (13). After finding the high-reward region,
the algorithm still explores further until the gap between expected information gain
and low reward can no longer be bridged.

ALGPDP can perform the swing up reliably for a size of X0 of 75–300 states,
which corresponds to a total experience (interaction with the system) of less than a
minute. The computation times on a standard computer with a 2.4 GHz processor
and 2 GB RAM is given in Table 3 for different sizes of X0. The effective use of data

Table 3: Real computation times of ALGPDP on a standard computer.

|X0| = 75 |X0| = 150 |X0| = 225 |X0| = 300

126 s 256 s 429 s 689 s

27

4 ONLINE LEARNING

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

angle in rad

an
g.

ve
l.

in
 r

ad
/s

−1

−0.8

−0.6

−0.4

−0.2

0

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

angle in rad

an
g.

ve
l.

in
 r

ad
/s

−2

−1.5

−1

−0.5

0

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

angle in rad

an
g.

ve
l.

in
 r

ad
/s

−4

−3

−2

−1

0

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

angle in rad

an
g.

ve
l.

in
 r

ad
/s

−10

−8

−6

−4

−2

0

Figure 9: Means of value function GP after 0, 2, 5, 10 steps of ALGPDP. The
GP models of the value function were trained on the input locations marked by
the white dots. The upper left panel shows the initial value function model, which
was learned with only two input locations: the initial state (left border) and the
goal state (center), both in white. The cyan squares are the input locations of the
first dynamics model, that is, the random trajectories when starting from the initial
state. Note that in all panels the cyan squares are not used to train the current
value function model, but rather added to the set of states, which serves as training
inputs of the next iteration. The upper right panel displays the mean of the value
function after 2 iterations of ALGPDP. The value function is still very flat in the
area close to the white dots. Bayesian active learning selects promising locations to
fill the relevant part of the state space. Due to its flatness, the expected total reward
is not decisive to maximize the utility function. Thus, variance information comes
into play and selects locations, where the value function model is very uncertain.
Hence, it can happen that the cyan squares are added in uncertain regions in which
the expected reward is somewhat lower than elsewhere. The lower left panel shows
the mean of the value function GP after 5 iterations. In this plot, it can already be
seen that the recently added states (cyan squares) slowly “move” toward the goal
state (white dot in the center), which is the point with highest expected reward.
The lower right panel shows the value function model after the last iteration and
the full set of 250 input locations. The last states were added close to the goal state,
and exploration focuses on high-reward regions close to the goal state. Close to the
input locations, which are considered to be the relevant part of the state space, the
value function model is sufficiently accurate.

28

4.7 Evaluations

Algorithm 5 Neural Fitted Q Iteration

1: init: P−1 . initialize training pattern
2: Q∗−1 = MLP(P−1) . train initial Q∗-function
3: for k = 0 to N do
4: Pk = generate Pattern . collect new data
5: Q∗k = Rprop train(P−1, . . . , Pk) . update Q∗-function model
6: end for
7: return Q∗ := Q∗N . return final Q∗-function model

is mainly due to the involved probabilistic models for the dynamics and the value
functions. In contrast, Doya (2000) solved the task using experience of between
400 s and 7, 000 s meaning that ALGPDP can learn very quickly.

4.7.2 Comparison to Neural Fitted Q Iteration

Riedmiller (2005) introduced the Neural Fitted Q Iteration (NFQ) as a model-free
RL algorithm, which models the Q∗-function by a multi-layer perceptron (MLP).
An MLP is a deterministic, non-parametric and is therefore well-suited to nonlinear
function approximation if the parametric form of the latent function is a priori un-
known. However, in contrast to GPs, MLPs usually do not provide confidence about
the function model itself. The entire NFQ algorithm is described in Algorithm 5.
In the kth iteration, the Q∗k-function model is trained based on the entire set of
transition experiences, P−1, . . . , Pk. The training inputs to the MLP that models
Q∗k are state-action pairs (x,u), the training targets are the values

Q∗k(x,u) = g(x,u) + max
u′

γ Q∗k−1(x′,u′) ,

where x′ is the observed successor state of the state-action pair (x,u) (following
an ε-greedy policy). Using the Rprop-algorithm by Riedmiller and Braun (1993),
the Q∗-function model is updated offline (line 5 of Algorithm 5) to increase data
efficiency, which is not given in case of online Q∗-function updates as described
by Riedmiller (2000). NFQ collects transition experiences from interactions with
the real system, stores them, and reconsiders them for updating the Q∗-function
approximator. Riedmiller’s NFQ is a general, state-of-the-art RL algorithm and a
particular implementation of the Fitted Q Iteration by Ernst et al. (2005).

We compare the ALGPDP results from Section 4.7.1 to NFQ with 11 discrete,
equidistant actions ranging from −5 Nm to 5 Nm.18 Both algorithms have to solve
the swing-up task from scratch, that is, using only very general prior knowledge.
The MLP that models the Q∗-function consists of two layers with 20 and 12 units,
respectively. The length of an epoch that generates the training pattern Pk is 20 time
steps, that is, 8 s. The Q∗-function model requires N = 64 iterations to converge.
Hence, the final training set consists of 1280 elements, which corresponds to a total
experience of approximately 256 s. Note that this NFQ setting aims to find a policy,
which is very close to optimal. The reward function used in NFQ is similar to the
ALGPDP reward function (15) and does not penalize angular velocity or applied

18Roland Hafner and Martin Riedmiller kindly carried the corresponding NFQ experiments out
and made the results available.

29

4 ONLINE LEARNING

 2.5

 5

−π/2π/2

0

−π

ALGPDP
DP
NFQ

(a) Angle trajectories.

0 1 2 3 4 5

−4

−2

0

an
g.

ve
l.

ALGPDP
DP
NFQ

0 1 2 3 4 5
−5

0

5

time in s

ac
tio

n

ALGPDP
DP
NFQ

(b) Angular velocities and applied actions.

Figure 10: State and action trajectories for DP, ALGPDP, and NFQ controllers.
The trajectories resulting from the NFQ controller are close to the optimal ones
determined by the DP controller and slightly outperform the ALGPDP controller.
Angles and angular velocities follow the same trend, whereas the applied actions
noticeably differ in the stabilization phase.

action but solely the distance from a goal. The immediate rewards range from -
0.1 to 0. If the pendulum is in a defined goal region, maximum reward is gained.
A maximum reward region simplifies learning although the reward region in this
particular case is very small. In contrast to Bayesian active learning in ALGPDP,
NFQ uses an ε-greedy policy to explore the state space.

The optimal actions determined by NFQ quickly bring the pendulum into the
upright position and stabilize it there as shown in Figure 10(a). Compared to
ALGPDP (reward -10.25), NFQ (reward -9.6619) is even closer to the optimal DP
solution (reward -9.60).

With the above setting, the computation time of NFQ on a 2.4 GHz processor is
about 1560 s and higher than the computation times of ALGPDP, which are given in
Table 3 for different sizes of X0. Using fewer iterations in NFQ and, therefore, fewer
data, still leads to a controller that can solve the swing-up task. For instance, using
only 18 (instead of 64) iterations results in a cumulative reward of about -10.1,
a solution which corresponds to the quality of the one determined by ALGPDP,
which yields a reward of -10.25. The size of the entire NFQ data set decreases to
360 elements, while the required interaction time reduces to 72 s, which is also in
the ballpark of the ALGPDP solution requiring less than a minute of interactions.
This efficiency is due to the fact that ALGPDP exploits the probabilistic models
of the value function and the transition dynamics to explore relevant regions of the
state space.

Although the settings of ALGPDP and NFQ were not exactly identical in our
evaluations, both algorithms yielded similar results for small data sets. Furthermore,
both ALGPDP and NFQ are remarkably more data efficient than the comparable
solution to the pendulum swing-up by Doya (2000).

19We applied the reward function (15) to the NFQ trajectory.

30

4.8 Discussion

4.8 Discussion

The proposed Bayesian approach of active state selection avoids extreme designs
by solely considering states that can be dynamically reached within one time step.
Furthermore, it combines an information-based criterion and expected high rewards,
the natural choice in RL, to explore the state space. All required mean and variance
information (apart from the update of the covariance matrix in equation (14)) are
directly given by the Gaussian process models of the system dynamics, the state-
value function V ∗, and the state-action value function Q∗. All required Bayesian
averaging can be done analytically by exploiting properties of GP models.

We sequentially add new states based on the information provided by the value
function GP model. In order to explore the relevant part of the state space, it
is necessary to add states every time step. However, already in the setting we
discussed in this section, there are states, which do not contribute much to the
accuracy of the value function GP (or the dynamics GP). It will be helpful to
consider sparse approximations, some of which are discussed in Quiñonero-Candela
and Rasmussen (2005) to compactly represent the data set. Incorporation of these
sparse methods will not be difficult, but remains to future work. In particular, the
FITC approximation by Snelson and Ghahramani (2006) will be of high interest.
Sparse approximations will also be unavoidable if the data sets become remarkably
larger. This fact is due to the scaling properties of Gaussian process training.

The value function and policy models in ALGPDP depend on the initial trajecto-
ries, which are random in our case. Nevertheless, different initializations always led
the pendulum to the goal state hinting at the robustness of the method. However,
problem-specific prior knowledge can easily be incorporated to improve the models.
For example, Ko et al. (2007a) evaluate a method of combining idealized ODEs de-
scribing the system dynamics with GP models for the observations originating from
the real system.

The dynamics GP model can be considered an efficient machine learning ap-
proach to non-parametric system identification, which models the general input-
output behavior. All involved parameters are implicitly determined. A drawback of
this method is that using a non-parametric model does usually not yield an inter-
pretable relationship to a mechanical or physical meaning.

If some parameters in system identification cannot be determined with certainty,
classic robust control (minimax/H∞-control) aims to minimize the worst-case error.
This methodology often leads to suboptimal and conservative solutions. Possibly, a
fully probabilistic Gaussian process model of the system dynamics can be used for
robust control as follows. As the GP model reflects uncertainty about the underlying
function, it implicitly covers all transition dynamics that explain observed data. By
averaging over all these models, we appropriately treat uncertainties and determine
a robust controller.

Treatment of noisy measurements in the dynamics learning part is another issue
to be dealt with in future. So far, we assumed that we measure the state directly
without being squashed through a measurement function. Incorporation of measure-
ment maps demands filter techniques combining predictions and measurements to
determine an updated posterior distribution of the hidden state, which is no longer
directly accessible. First results in filtering for Gaussian process models are already
given by Ko et al. (2007b) and Ko and Fox (2008), where GP dynamics and observa-

31

5 CONCLUSIONS

tion models are incorporated in the unscented Kalman filter, (Julier and Uhlmann,
2004), and the extended Kalman filter.

The proposed ALGPDP algorithm is related to adaptive control and optimal de-
sign. Similar ideas have been proposed for instance by Murray-Smith and Sbarbaro
(2002) and Krause et al. (2008).

A major shortcoming of ALGPDP is that it cannot directly be applied to a
dynamic system: If we interact with a real dynamic system such as a robot, it is
often not possible to experience arbitrary state transitions. A possible adaptation
to real-world problems is to experience most promising trajectories following the
current policy. This approach can basically combine ideas from this article and the
paper by Rasmussen and Deisenroth (2008).

4.9 Summary

We have introduced a data-efficient model-based Bayesian algorithm for learning
control in continuous state and action spaces. GP models of the transition dynam-
ics and the value functions are trained online. We utilize Bayesian active learning
to explore the state space and to update the training sets of the current GP models
on the fly. The considered utility function rates states according to expected infor-
mation gain and expected total reward, which seems a natural setting in RL. Our
algorithm uses data efficiently, which is important when interacting with the system
is expensive.

5 Conclusions

Probabilistic models in artificial learning algorithms can speed up learning notice-
ably as they quantify uncertainty in experience-based knowledge and alleviate model
bias. Hence, they are promising to design data-efficient learning algorithms.

In this article, we introduced Gaussian process dynamic programming (GPDP),
a value-function based RL algorithm for continuous-valued state and action spaces.
GPDP iteratively models the latent value functions with flexible, non-parametric,
probabilistic Gaussian processes. In the context of a classic optimal control prob-
lem, the under-actuated pendulum swing up, we have shown that GPDP yields a
near-optimal solution. However, in this setting, we still required problem-specific
knowledge.

To design a general, fast learning algorithm, we extended GPDP, such that a
probabilistic dynamics model can be learned online if the transition dynamics are a
priori unknown. Furthermore, Bayesian active learning guides exploration and ex-
ploitation by sequentially finding states with high expected reward and information
gain. This flexibility comes with the price of not modeling the final policy globally,
but only locally sufficiently accurate. However, this methodology is useful when only
little knowledge about the task and only limited interactions with the real system
are available.

We provided experimental evidence that our online algorithm works well on a
pendulum swing-up task. The methodology is quite general, relying on GP models,
not adapted especially to the pendulum problem. A fairly limited number of points

32

are selected by the active learning algorithm, which enables learning a policy that is
very close to the ones found by Neural Fitted Q Iteration, a state-of-the-art model-
free reinforcement learning algorithm, and dynamic programming, which uses a very
fine discretization with millions of states.

We believe that our algorithm combines aspects, which are crucial to solving more
challenging RL problems, such as active online learning and flexible non-parametric
modeling. In particular, efficiency in terms of the necessary amount of interaction
with the system will often be a limiting factor when applying RL in practice.

Acknowledgements

We are very grateful to Roland Hafner and Martin Riedmiller for performing the
Neural Fitted Q Iteration experiments and for valuable discussions. We thank the
anonymous reviewers for instructive comments and suggestions. MPD acknowledges
support by the German Research Foundation (DFG) through grant RA 1030/1-3 to
CER.

A Gaussian Process Prediction with Uncertain

Inputs

In the following, we re-state results from Rasmussen and Ghahramani (2003), O’Hagan
(1991), Girard et al. (2003), and Kuss (2006) of how to predict with Gaussian pro-
cesses when the test input is uncertain.

Consider the problem of predicting a function value h(x∗) for an uncertain test
input x∗, where h ∼ GP with a squared exponential kernel kh and x∗ ∼ N (µ,Σ).
This problem corresponds to seeking the distribution

p(h) =

∫
p(h(x∗)|x∗)p(x∗) dx∗ . (16)

Let the predictive distribution p(h(x∗)|x∗) be given by the standard GP predictive
mean and variance, equations (6) and (7), respectively. For the squared exponential
kernel (8), we can compute mean ν and variance ψ2 of the predictive distribution (16)
in close form. We approximate the exact predictive distribution with a Gaussian,
which possesses the same mean and variance (moment matching). The mean ν is
given by

ν = Eh[Ex∗ [h(x∗)]] = Ex∗ [Eh[h(x∗)]] = Ex∗ [mh(x∗)]

=

∫
mh(x∗)p(x∗) dx∗ = β>l

with β := (K + σ2
εI)−1y and where

li =

∫
kh(xi,x∗)p(x∗) dx∗

= α2|ΣΛ−1 + I|− 1
2 exp

(− 1
2
(xi − µ)>(Σ + Λ)−1(xi − µ)

)
33

REFERENCES

is an expectation of kh(xi,x∗) with respect to x∗. Here, Λ = diag([`2
1, . . . , `

2
nx

])
and `k, k = 1, . . . , nx, are the characteristic length-scales. Note that the predictive
mean depends explicitly on the mean and covariance of the uncertain input x∗. The
variance of p(h(x∗)) is denoted by ψ2 and given by

ψ2 = Ex∗ [mh(x∗)
2] + Ex∗ [σ

2
h(x∗)]− Ex∗ [mh(x∗)]

2

= β>Lβ + α2 − tr
(
(K + σ2

εI)−1L
)− ν2

with

Lij =
kh(xi,µ)kh(xj,µ)

|2ΣΛ−1 + I| 12 exp
(
(zij − µ)>(Σ + 1

2
Λ)−1ΣΛ−1(zij − µ)

)
and zij := 1

2
(xi+xj). Again, the predictive variance depends explicitly on the mean

and the covariance matrix of the uncertain input x∗.

References

Atkeson, C. G., 1994. Using Local Trajectory Optimizers to Speed up Global Opti-
mization in Dynamic Programming. In: Hanson, J. E., Moody, S. J., Lippmann,
R. P. (Eds.), Advances in Neural Information Processing Systems 6. Morgan Kauf-
mann, pp. 503–521.

Atkeson, C. G., Santamaŕıa, J. C., 1997. A Comparison of Direct and Model-
Based Reinforcement Learning. In: Proceedings of the International Conference
on Robotics and Automation.

Atkeson, C. G., Schaal, S., July 1997. Robot Learning from Demonstration. In:
Fisher Jr., D. H. (Ed.), Proceedings of the 14th International Conference on Ma-
chine Learning. Morgan Kaufmann, Nashville, TN, USA, pp. 12–20.

Bellman, R. E., 1957. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, USA.

Bertsekas, D. P., 2005. Dynamic Programming and Optimal Control, 3rd Edition.
Vol. 1 of Optimization and Computation Series. Athena Scientific, Belmont, MA,
USA.

Bertsekas, D. P., 2007. Dynamic Programming and Optimal Control, 3rd Edition.
Vol. 2 of Optimization and Computation Series. Athena Scientific, Belmont, MA,
USA.

Bertsekas, D. P., Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming. Optimization
and Computation. Athena Scientific, Belmont, MA, USA.

Bryson, A. E., Ho, Y.-C., 1975. Applied Optimal Control: Optimization, Estimation,
and Control. Hemisphere, New York City, NY, USA.

Chaloner, K., Verdinelli, I., 1995. Bayesian Experimental Design: A Review. Statis-
tical Science 10, 273–304.

34

References

Deisenroth, M. P., Peters, J., Rasmussen, C. E., June 2008a. Approximate Dynamic
Programming with Gaussian Processes. In: Proceedings of the 2008 American
Control Conference. Seattle, WA, USA, pp. 4480–4485.

Deisenroth, M. P., Rasmussen, C. E., Peters, J., April 2008b. Model-Based Rein-
forcement Learning with Continuous States and Actions. In: Proceedings of the
16th European Symposium on Artificial Neural Networks. Bruges, Belgium, pp.
19–24.

Doya, K., January 2000. Reinforcement Learning in Continuous Time and Space.
Neural Computation 12 (1), 219–245.

Engel, Y., Mannor, S., Meir, R., August 2003. Bayes Meets Bellman: The Gaussian
Process Approach to Temporal Difference Learning. In: Proceedings of the 20th
International Conference on Machine Learning. Vol. 20. Washington, DC, USA,
pp. 154–161.

Engel, Y., Mannor, S., Meir, R., August 2005. Reinforcement Learning with Gaus-
sian Processes. In: Proceedings of the 22nd International Conference on Machine
Learning. Vol. 22. Bonn, Germany, pp. 201–208.

Ernst, D., Geurts, P., Wehenkel, L., 2005. Tree-Based Batch Mode Reinforcement
Learning. Journal of Machine Learning Research 6, 503–556.

Ghavamzadeh, M., Engel, Y., 2007. Bayesian Policy Gradient Algorithms. In:
Schölkopf, B., Platt, J. C., Hoffman, T. (Eds.), Advances in Neural Information
Processing Systems 19. The MIT Press, Cambridge, MA, USA, pp. 457–464.

Girard, A., Rasmussen, C. E., Quiñonero Candela, J., Murray-Smith, R., 2003.
Gaussian Process Priors with Uncertain Inputs—Application to Multiple-Step
Ahead Time Series Forecasting. In: Becker, S., Thrun, S., Obermayer, K. (Eds.),
Advances in Neural Information Processing Systems 15. The MIT Press, Cam-
bridge, MA, USA, pp. 529–536.

Gordon, G. J., 1995. Stable Function Approximation in Dynamic Programming. In:
Prieditis, A., Russell, S. (Eds.), Proceedings of the 12th International Conference
on Machine Learning. Morgan Kaufmann, San Francisco, CA, USA, pp. 261–268.

Howard, R. A., 1960. Dynamic Programming and Markov Processes. The MIT Press,
Cambridge, MA, USA.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., Hinton, G. E., 1991. Adaptive Mixtures
of Local Experts. Neural Computation 3, 79–87.

Julier, S. J., Uhlmann, J. K., March 2004. Unscented Filtering and Nonlinear Esti-
mation. IEEE Review 92 (3), 401–422.

Kalman, R. E., 1960. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME — Journal of Basic Engineering 82 (Series D), 35–45.

35

REFERENCES

Ko, J., Fox, D., September 2008. GP-BayesFilters: Bayesian Filtering Using Gaus-
sian Process Prediction and Observation Models. In: Proceedings of the 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Nice, France, pp. 3471–3476.

Ko, J., Klein, D. J., Fox, D., Haehnel, D., April 2007a. Gaussian Processes and
Reinforcement Learning for Identification and Control of an Autonomous Blimp.
In: Proceedings of the International Conference on Robotics and Automation.
Rome, Italy, pp. 742–747.

Ko, J., Klein, D. J., Fox, D., Haehnel, D., October 2007b. GP-UKF: Unscented
Kalman Filters with Gaussian Process Prediction and Observation Models. In:
Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems. San Diego, CA, USA, pp. 1901–1907.

Kocijan, J., Murray-Smith, R., Rasmussen, C. E., Likar, B., September 2003. Pre-
dictive Control with Gaussian Process Models. In: Zajc, B., Tkalčič, M. (Eds.),
Proceedings of IEEE Region 8 Eurocon 2003: Computer as a Tool. Piscataway,
NJ, USA, pp. 352–356.

Krause, A., Singh, A., Guestrin, C., February 2008. Near-Optimal Sensor Place-
ments in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies.
Journal of Machine Learning Research 9, 235–284.

Kuss, M., February 2006. Gaussian Process Models for Robust Regression, Classifi-
cation, and Reinforcement Learning. Ph.D. thesis, Technische Universität Darm-
stadt, Germany.

MacKay, D. J. C., 1992. Information-Based Objective Functions for Active Data
Selection. Neural Computation 4, 590–604.

MacKay, D. J. C., 1999. Comparison of Approximate Methods for Handling Hyper-
parameters. Neural Computation 11 (5), 1035–1068.

MacKay, D. J. C., 2003. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK.

Martinez-Cantin, R., de Freitas, N., Doucet, A., Castellanos, J., June 2007. Ac-
tive Policy Learning for Robot Planning and Exploration under Uncertainty. In:
Proceedings of Robotics: Science and Systems III. Atlanta, GA, USA.

Matheron, G., 1973. The Intrinsic Random Functions and Their Applications. Ad-
vances in Applied Probability 5, 439–468.

Minka, T. P., January 2001. A Family of Algorithms for Approximate Bayesian
Inference. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA.

Murray-Smith, R., Sbarbaro, D., July 2002. Nonlinear Adaptive Control Using Non-
Parametric Gaussian Process Prior Models. In: Proceedings of the 15th IFAC
World Congress. Vol. 15. Academic Press, Barcelona, Spain.

36

References

Murray-Smith, R., Sbarbaro, D., Rasmussen, C. E., Girard, A., August 2003. Adap-
tive, Cautious, Predictive Control with Gaussian Process Priors. In: 13th IFAC
Symposium on System Identification. Rotterdam, Netherlands.

O’Hagan, A., 1991. Bayes-Hermite Quadrature. Journal of Statistical Planning and
Inference 29, 245–260.

Ormoneit, D., Sen, Ś., November 2002. Kernel-Based Reinforcement Learning. Ma-
chine Learning 49 (2–3), 161–178.

Peters, J., Schaal, S., 2008a. Learning to Control in Operational Space. The Inter-
national Journal of Robotics Research 27 (2), 197–212.

Peters, J., Schaal, S., 2008b. Natural Actor-Critic. Neurocomputing 71 (7–9), 1180–
1190.

Peters, J., Schaal, S., 2008c. Reinforcement Learning of Motor Skills with Policy
Gradients. Neural Networks 21, 682–697.

Pfingsten, T., September 2006. Bayesian Active Learning for Sensitivity Analysis. In:
Proceedings of the 17th European Conference on Machine Learning. pp. 353–364.

Quiñonero-Candela, J., Rasmussen, C. E., 2005. A Unifying View of Sparse Approx-
imate Gaussian Process Regression. Journal of Machine Learning Research 6 (2),
1939–1960.

Rasmussen, C. E., 1996. Evaluation of Gaussian Processes and other Methods for
Non-linear Regression. Ph.D. thesis, Department of Computer Science, University
of Toronto.

Rasmussen, C. E., Deisenroth, M. P., November 2008. Probabilistic Inference
for Fast Learning in Control. In: Girgin, S., Loth, M, Munos, R., Preux, P.,
Ryabko, D. (Eds.), Recent Advances in Reinforcement Learning. Vol. 5323 of
Lecture Notes on Computer Science. Springer-Verlag, pp. 229–242.

Rasmussen, C. E., Ghahramani, Z., 2003. Bayesian Monte Carlo. In: Becker, S.,
Thrun, S., Obermayer, K. (Eds.), Advances in Neural Information Processing
Systems 15. The MIT Press, Cambridge, MA, USA, pp. 489–496.

Rasmussen, C. E., Kuss, M., June 2004. Gaussian Processes in Reinforcement Learn-
ing. In: Thrun, S., Saul, L. K., Schölkopf, B. (Eds.), Advances in Neural Informa-
tion Processing Systems 16. The MIT Press, Cambridge, MA, USA, pp. 751–759.

Rasmussen, C. E., Williams, C. K. I., 2006. Gaussian Processes for Machine Learn-
ing. Adaptive Computation and Machine Learning. The MIT Press, Cambridge,
MA, USA.
URL http://www.gaussianprocess.org/gpml/

Riedmiller, M., 2000. Concepts and Facilities of a Neural Reinforcement Learning
Control Architecture for Technical Process Control. Neural Computation and Ap-
plication 8, 323–338.

37

http://www.gaussianprocess.org/gpml/

REFERENCES

Riedmiller, M., 2005. Neural Fitted Q Iteration—First Experiences with a Data
Efficient Neural Reinforcement Learning Method. In: Proceedings of the 16th
European Conference on Machine Learning. Porto, Portugal.

Riedmiller, M., Braun, H., 1993. A Direct Adaptive Method for Faster Backpropa-
gation Learning: The RPROP Algorithm. In: In Proceedings of the IEEE Inter-
national Conference on Neural Networks. pp. 586–591.

Snelson, E., Ghahramani, Z., 2006. Sparse Gaussian Processes using Pseudo-inputs.
In: Weiss, Y., Schölkopf, B., Platt, J. C. (Eds.), Advances in Neural Information
Processing Systems 18. The MIT Press, Cambridge, MA, USA, pp. 1257–1264.

Sutton, R. S., Barto, A. G., 1998. Reinforcement Learning: An Introduction. Adap-
tive Computation and Machine Learning. The MIT Press, Cambridge, MA, USA.

Verdinelli, I., Kadane, J. B., June 1992. Bayesian Designs for Maximizing Infor-
mation and Outcome. Journal of the American Statistical Association 87 (418),
510–515.

Wasserman, L., 2006. All of Nonparametric Statistics. Springer Texts in Statistics.
Springer Science+Business Media, Inc., New York, NY, USA.

Williams, C. K. I., Rasmussen, C. E., 1996. Gaussian Processes for Regression. In:
Touretzky, D. S., Mozer, M. C., Hasselmo, M. E. (Eds.), Advances in Neural
Processing Systems 8. The MIT Press, Cambridge, MA, USA, pp. 598–604.

38

References

Marc Peter Deisenroth is a Ph.D. candidate at Universität
Karlsruhe (TH), Germany, while being visiting graduate stu-
dent at the Computational and Biological Learning Lab at the
Department of Engineering, University of Cambridge, UK. He
graduated from Universität Karlsruhe (TH) in August 2006
with a German Masters degree in Informatics. From October
2006 to September 2007, he has been a graduate research as-
sistant at the Max Planck Institute for Biological Cybernetics
in Tübingen, Germany. He has been a visiting researcher at

Osaka University, Japan, in 2006 and at Kanazawa University, Japan, in 2004. His
research interests include Bayesian inference, reinforcement learning, optimal and
nonlinear control.

Carl Edward Rasmussen is a lecturer in the Computational
and Biological Learning Lab at the Department of Engineering,
University of Cambridge and an adjunct research scientist at
the Max Planck Institute for Biological Cybernetics, Tübingen,
Germany. His main research interests are Bayesian inference
and machine learning. He received his Masters in Engineer-
ing from the Technical University of Denmark and his Ph.D.
in Computer Science from the University of Toronto in 1996.

Since then he has been a post doc at the Technical University of Denmark, a senior
research fellow at the Gatsby Computational Neuroscience Unit at University Col-
lege London from 2000–2002, and a junior research group leader at the Max Planck
Institute for Biological Cybernetics in Tübingen, Germany, from 2002–2007.

Jan Peters heads the Robot Learning Lab (RoLL) at the
Max Planck Institute for Biological Cybernetics (MPI) in
Tübingen, Germany, while being an invited researcher at the
Computational Learning and Motor Control Lab at the Uni-
versity of Southern California (USC). Before joining MPI, he
graduated from University of Southern California with a Ph.D.
in Computer Science in March 2007. Jan Peters studied Elec-
trical Engineering, Computer Science and Mechanical Engineer-
ing. He holds two German M.S. degrees in Informatics and in
Electrical Engineering (from Hagen University and Munich Uni-

versity of Technology) and two M.S. degrees in Computer Science and Mechanical
Engineering from USC. During his graduate studies, Jan Peters has been a visiting
researcher at the Department of Robotics at the German Aerospace Research Center
(DLR) in Oberpfaffenhofen, Germany, at Siemens Advanced Engineering (SAE) in
Singapore, at the National University of Singapore (NUS), and at the Department
of Humanoid Robotics and Computational Neuroscience at the Advanded Telecom-
munication Research (ATR) Center in Kyoto, Japan. His research interests include
robotics, nonlinear control, machine learning, reinforcement learning, and motor
skill learning.

39

	Introduction
	Background
	Optimal Control and Reinforcement Learning
	Gaussian Processes

	Gaussian Process Dynamic Programming
	Computational and Memory Requirements
	Policy Learning
	Evaluations
	General Setup
	Value Function and Policy Models
	Performance Analysis
	Single GP Policy

	Discussion
	Summary

	Online Learning
	Learning the Dynamics
	One-Step ahead Predictions
	Bayesian Active Learning
	ALGPDP
	Augmentation of the Training Sets
	Utility Function
	Adding Multiple States
	Set of Candidate States
	Training Dynamics and Value Function Models

	Computational and Memory Requirements of ALGPDP
	Evaluations
	Swing-up
	Comparison to Neural Fitted Q Iteration

	Discussion
	Summary

	Conclusions
	Gaussian Process Prediction with Uncertain Inputs

