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Numerical Quadrature for
Probabilistic Policy Search

Julia Vinogradska, Bastian Bischoff, Jan Achterhold, Torsten Koller and Jan Peters

Abstract—Learning control policies has become an appealing alternative to the derivation of control laws based on classic control
theory. Model-based approaches have proven an outstanding data efficiency, especially when combined with probabilistic models to
eliminate model bias. However, a major difficulty for these methods is that multi-step-ahead predictions typically become intractable for
larger planning horizons and can only poorly be approximated. In this paper, we propose the use of numerical quadrature to overcome
this drawback and provide significantly more accurate multi-step-ahead predictions. As a result, our approach increases data efficiency
and enhances the quality of learned policies. Furthermore, policy learning is not restricted to optimizing locally around one trajectory,
as numerical quadrature provides a principled approach to extend optimization to all trajectories starting in a specified starting state
region. Thus, manual effort, such as choosing informative starting points for simultaneous policy optimization, is significantly
decreased. Furthermore, learning is highly robust to the choice of initial policy and, thus, interaction time with the system is minimized.
Empirical evaluations on simulated benchmark problems show the efficiency of the proposed approach and support our theoretical
results.
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1 INTRODUCTION

L EARNING control has become a viable approach in both
the machine learning and control community. Many

successful applications impressively demonstrate the ad-
vantages of learning control [1], [2], [3], [4], [5], [6], [7], [8]. In
contrast to classical control methods, learning control does
not presuppose a detailed understanding of the underlying
dynamics but tries to infer the required information from
data. Thus, relatively little expert knowledge about the
system dynamics is required and fewer assumptions, such
as a parametric form and parameter estimates, must be
made.

For real-world applications of learning control, it is
desirable to minimize the system interaction time. Thus,
approaches that explicitly learn a dynamics model are often
preferred, as model-free methods can require a prohibitive
amount of system interactions [9], [10], [11], [12]. However,
one drawback of model-based methods is that modeling
errors can derail learning, as the inherently approximate and
frequently highly erroneous model is implicitly assumed
to approximate the real dynamics sufficiently well [13].
Thus, solutions to the approximate control problem might
result in policies that do not solve the control task for the
true system dynamics. This model bias can have severe
consequences especially when few data is available and,
thus, the model predictions are highly uncertain. Hence,
employing Gaussian processes (GPs) as forward models
for learning control is particularly appealing as they in-
corporate uncertainty about the system dynamics estimate.
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GPs infer a distribution over all plausible models given the
observed data instead of compromising on an approximate
model and, thus, avoid severe modeling errors. Another
major advantage of Gaussian process forward models is that
stability analyses for such closed-loop control systems are
available [14], [15], including automatic tools [15] which do
not require any expert knowledge.

One difficulty of learning control based on a GP forward
model is that the state distribution when applying a policy
for several discrete time steps is analytically intractable.
Thus, to evaluate a policy, approximations for multi-step-
ahead predictions are required. Common choices include
Monte Carlo sampling [16], linearization of the posterior
mean [17] and moment matching [18]. While Monte Carlo
methods suffer from slow convergence [19] and introduce
the need for small learning rates due to noisy numerical gra-
dients, the deterministic linearization and moment match-
ing methods provide analytical gradients of the multi-step-
ahead predictions. However, such methods approximate the
state distribution as a Gaussian. As a consequence their
expressivity is limited, e.g., moment matching and lineariza-
tion cannot handle state distributions with multiple modes.
Thus, such approximations suffer from severe inaccuracies,
especially when the state distribution differs significantly
from a Gaussian.

Another major drawback of Gaussian approximations
for multi-step-ahead predictions is that learning is limited
to optimizing locally around one trajectory. This problem
arises from the limited expressivity of Gaussians. When
a distribution with high variance is propagated through
nonlinear dynamics, the predictive distribution is typically
highly complex and cannot be represented sufficiently well
by a Gaussian. Thus, approximating predictions at uncertain
inputs by a Gaussian is feasible only for state distributions
with low variance. As a workaround [20], multiple starting
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Fig. 1. A closed-loop control structure with controller πθ , system dy-
namics f and target state xd. We model the system dynamics f as a
Gaussian process and assume that the policy πθ is parameterized by
θ. The proposed algorithm learns f and θ from interactions with the real
system.

points that are representative of all starting states must
be hand-selected to learn a suitable policy. The trajectories
starting at the selected points must then be optimized
simultaneously. As a result, the learned policy is highly
dependent on the chosen starting points, suffers from bad
generalization between those points and optimization is
prone to local optima.

An alternative method to approximate multi-step-ahead
predictions [15] employs numerical quadrature and pro-
vides analytical expressions for the state distribution. It ap-
proximates even complex distributions with multiple modes
accurately and, additionally, bounds for the approximation
error can be obtained. However, no policy learning was
considered in [15]. A comparison of numerical quadrature
and moment matching for long-term predictions is shown
in Figure 2.

In this paper, we propose nuQuPS, a model-based pol-
icy search method that learns a Gaussian process forward
dynamics model and relies on numerical quadrature to
approximate multi-step-ahead predictions as introduced
in [15]. The use of numerical quadrature increases data-
efficiency and improves the quality of the learned policies
significantly. Furthermore, numerical quadrature enables
the use of arbitrary distributions for the starting state. Thus,
it is possible to learn a policy, e.g., for all starting points
in a certain region by choosing a uniform starting state
distribution. Overall, the proposed algorithm is capable
of learning global policies with remarkable data-efficiency,
while no manual effort or expert knowledge are required.

The paper will be organized as follows: first, we specify
the considered problem. In Section 1.2, we briefly review
related work. Section 2 introduces the proposed algorithm,
which is evaluated on multiple benchmark tasks in Sec-
tion 3. A conclusion summarizes and discusses the provided
results (Section 4).

1.1 Problem Statement

In this paper, we aim to learn to control a previously
unknown dynamics system. We consider discrete-time dy-
namics

xt+1 = f(xt,ut) + ε (1)

with xt,xt+1 ∈ RD, ut ∈ RF , unknown f and i.i.d.
Gaussian measurement noise ε ∈ N (0,Σε). Figure 1 shows
such a closed-loop control setting. Given a reward function
r : xt 7→ r(xt) ∈ R, the goal is to find a policy π : x 7→ π(x)
that maximizes the expected reward up to time horizon T ,
when choosing ut := π(xt) for t = 1, . . . , T . In policy
search, we assume that the policy is parameterized by the

parameter vector θ and write πθ(xt) := π(θ,x). The objec-
tive is then to find a parameter vector θ∗ that maximizes the
expected long-term reward

Rπ(θ) =
T∑
t=0

Ext
[r(xt)]. (2)

We rely on Gaussian processes to model the system dy-
namics f from observations of the system behavior, as will
be detailed in Section 2.1. To compute the expected long-
term reward (2) for a particular policy, the state distribu-
tions p(x1), . . . , p(xT ) must be determined. As with most
nonlinear dynamics models, for our GP forward dynamics
prediction of the next state becomes intractable when the
input is a distribution. Thus, multi-step-ahead predictions
must be approximated.

In our setting, it is desirable to learn a policy that is
suitable not only for one starting state, but can control
the system (1) reliably for a continuous region of starting
states. More precisely, we aim to learn policies suitable
for a given a starting state distribution p(x0). We assume
that p(x0) is piecewise differentiable, but make no other
assumptions e.g., that p(x0) is Gaussian or has low variance.
Thus, to approximate p(x1), . . . , p(xT ) we propose the use
of high performance numerical quadrature as in [15], see
Section 2.4. To maximize the expected long-term reward (2),
we perform gradient ascent. In Section 2.5 we will derive
analytical expressions for ∂Rπ/∂θ.

1.2 Related Work
The problem of deriving control laws when uncertainty is
present has been considered in classic control theory for
many years. In controller design, uncertainty may arise
from modeling inaccuracies, the presence of (external) dis-
turbances and the lack of data, as some system parameters
are not known in advance but only during operation. Thus,
a controller must be designed for a family of systems that is
specified, e.g., by bounds for model parameters or for non-
parametric uncertainties as bounds for the operator norm of
the unknown dynamics. Robust control [21], [22] designs
a single controller that is provably stable for all systems
in the specified family – often at cost of overall controller
performance. Adaptive control [23], [24] instead adjusts
control parameters online in order to achieve prespecified
performance, which can be computationally demanding.
These methods rely on parametric dynamics models, which
must be specified by an expert for each problem. In addition,
both schemes require stability analysis of the dynamics
system, e.g., via manually designed Lyapunov functions,
which can be extremely challenging for complex, nonlinear
systems.

Nonparametric system dynamics models are very ap-
pealing due to their high flexibility. They learn a dynamics
model from data instead of relying on expert knowledge to
pick a sufficiently accurate parametric form suitable for the
dynamics. Nonparametric regression methods that learn the
system dynamics from data have been considered in e.g., [1],
[2], [7], [13], [25]. In [13], locally weighted Bayesian regres-
sion has been employed to model the system dynamics and
uncertainty was treated as noise. To learn a policy, stochastic
dynamic programming was applied on the discretized state
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space. The approaches [1], [2], [7], [25] model the forward
dynamics as a Gaussian process.

Gaussian processes as forward models allow to incor-
porate uncertainty about the system dynamics without the
need to discretize the state space. GPs have also been
employed to model the system dynamics in [1], [25], [26],
[27], [28], [29]. The approaches [26], [27], [28], [29] learn
global value functions that are subsequently used to de-
rive policies. For example, the PVI algorithm [29] learns
the system dynamics and the value function, which are
both modeled as GPs, in an episodic setting. While these
value iteration based approaches provide great flexibility
as no assumptions on the policy are made, maintaining a
model for the global value function can be computationally
demanding in large state spaces.

In contrast to such GP based fitted value iteration meth-
ods, PILCO [1], GPREPS [25] and [30] are policy search
approaches that rely on GPs as forward dynamics models.
The PILCO algorithm [1] employs GPs as forward dynamics
models and conducts a search in the policy space, perform-
ing gradient ascent on the expected reward in an episodic
setting. PILCO is particularly appealing, as analytical gra-
dients of the expected reward with respect to the policy
parameters are available. These analytical gradients enable
scaling to high-dimensional problems and allow for highly
flexible policies with many parameters.

The GP based value iteration approaches as well as
the policy search PILCO and GPREPS approaches benefit
from Bayesian averaging over all plausible models by in-
corporating the uncertainty provided by the GP dynam-
ics models. However, propagating uncertainty through a
Gaussian process is analytically intractable even for simple,
Gaussian input distributions. All of the methods mentioned
above rely on the moment matching approximation [18]
or on sampling to propagate distributions through a GP.
This moment matching approximation is only applicable to
Gaussian input distributions and provides a good estimate
of the next state distribution only if the variance of the
input distribution is low. Unfortunately, these requirements
typically do not hold during learning. In [31], the training
of the GP dynamics is modified to improve the long-term
state predictions obtained with cascaded moment matching,
which leads to a significantly improved performance.

The sampling based approximations (Monte Carlo or
kernel herding [32], [33], [34]) do not make use of the
smoothness of a Gaussian process and, thus, require many
samples to get a reliable estimate. Furthermore, the gra-
dients of the expected long-term reward of a policy can-
not be computed analytically for sampling methods. Thus,
stochastic numerical gradients must be employed instead,
which introduces noise and is costly if the number of
parameters is high [1]. In [15], [35], an alternate approach
to approximate the state distribution based on numerical
quadrature was introduced. Numerical quadrature enables
highly accurate approximations of the state distribution
and can handle complex input distributions. However, no
learning of policies was considered in [15] or [35]. In this
paper, we employ the numerical quadrature approximation
for multi-step-ahead predictions in policy search based on
a GP dynamics model. Please note that our approach can
easily be combined with a modified GP training as [31].

2 NUMERICAL QUADRATURE BASED POLICY
SEARCH

We introduce nuQuPS, a model-based policy search ap-
proach with GPs as dynamics models and numerical
quadrature for long-term predictions. First, we briefly re-
cap Gaussian process regression which will be employed
to model the system dynamics. Section 2.2 provides an
overview of the nuQuPS algorithm. The choice of reward
function and policy parametrization are discussed in Sec-
tion 2.3. Subsequently, we elaborate on the proposed ap-
proximation for long-term predictions based on numerical
quadrature. Finally, we compute analytic expressions for the
gradients of the expected long-term reward with respect to
the policy parameters θ when numerical quadrature is used
to propagate uncertainties.

2.1 Gaussian Process Regression

In the following, we will briefly recap Gaussian process
regression as it will be used to learn the system dynamics
from observed data.

Given noisy observations D = {(zi, yi = f(zi) + εi) |
1 ≤ i ≤ N}, where εi ∼ N (0, σ2

n), the prior on the
values of f is N (0,K(Z,Z) + σ2

nI). The covariance matrix
K(Z,Z) is defined by the choice of covariance function k
as [K(Z,Z)]ij = k(zi, zj). While the approach proposed in
this paper is not limited to a certain kernel, we employ the
squared exponential covariance function

k(z,w) = σ2
f exp

(
−1

2
(z −w)

ᵀ
Λ−1(z −w)

)
,

with signal variance σ2
f and squared lengthscales Λ =

diag(l21, . . . , l
2
D+F ) for all input dimensions. In general, any

covariance function that is differentiable with respect to the
inputs can be applied in the proposed approach.

Given a query point z∗, the conditional probability of
f(z∗) is

f(z∗) | D ∼ N
(
k(z∗, Z)β,

k(z∗, z∗)− k(z∗, Z)(K(Z,Z) + σ2
nI)−1k(Z, z∗)

)
(3)

with β = (K(Z,Z) + σ2
nI)−1y. The hyperparameters, e.g.,

σ2
n, σ

2
f ,Λ for the squared exponential kernel, are estimated

by maximizing the log marginal likelihood of the data [36].
In this paper, we employ a Gaussian process g to model

system dynamics. It takes state-action pairs z = (x,u)
ᵀ

and outputs differences to successor states, i.e., xt+1 =
xt + g(xt,ut). As these outputs are multivariate, we train
conditionally independent GPs for each output dimension.
We write σ2

n,m, σ2
f,m,Λm for the GP hyperparameters in out-

put dimension m and km for the corresponding covariance
function.

2.2 Learning Policies from Scratch: nuQuPS

The proposed algorithm proceeds in an episodic set-
ting. In the beginning, θ is initialized randomly. The
currently known best policy πθ is employed on the
real system to get new information about the system
dynamics. A starting point is sampled from the start-
ing state distribution p(x0) and a state-action trajectory
(x̃0,πθ(x̃0)), . . . , (x̃T−1,πθ(x̃T−1)), x̃T is observed. This
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Algorithm 1 Numerical Quadrature based Probabilistic Pol-
icy Search (nuQuPS)
Input: start distribution p(x0), time horizon T , reward

function r
Output: policy πθ∗ that maximizes Rπ(θ) (see Eq. (2))

1: sample initial parameters θ ∼ N (0, I)
2: D ← ∅
3: while not converged do
4: Sample x̃0 ∼ p(x0)
5: Compute rollout x̃0, . . . , x̃T from x̃0 employing πθ
6: D ′ ← {(x̃t,πθ(x̃t), x̃t+1) | t = 0, . . . , T − 1}
7: D ← D ∪D ′

8: Train GP g on D
9: Construct quadrature rule suited for g with Algo-

rithm 2
10: Compute p(x1), . . . , p(xT ) approximately with nu-

merical quadrature (see Sec. 2.4)
11: Rπ(θ)←

∑T
t=0 Ext

[r(xt)]
12: θ∗ ← argmaxθ Rπ(θ) via gradient ascent,

∂Rπ(θ)/∂θ as in Sec. 2.5
13: θ ← θ∗

14: end while
15: return πθ∗

rollout data is used to update the GP dynamics model
g. With the updated dynamics model, the current pol-
icy is evaluated according to Equation (2). For this pol-
icy evaluation, GP predictions at the uncertain inputs
p(x0), . . . , p(xT−1) must be computed. We employ numer-
ical quadrature as described in Section 2.4 to propagate
uncertainties through the GP. To ensure highly accurate
approximate predictions and maintain computational ef-
ficiency in high dimensional state spaces, we tailor the
quadrature rule to the GP dynamics g as described in
Section 2.6 and Algorithm 2. To improve the policy πθ , the
parameters θ are updated to maximize Rπ(θ) via gradient
ascent. Closed-form expressions for ∂Rπ/∂θ are given in
Section 2.5. The current parameters θ are set to the obtained
optimal parameters θ∗, which can then be used for a rollout
in the next episode. Algorithm 1 summarizes this approach.

Please note the conceptual similarity to PILCO, whose
high level algorithm steps coincide with nuQuPS. The main
difference between the two approaches is the way multi-
step-ahead predictions are handled. While PILCO approxi-
mates the system state as a Gaussian at any time step, we
choose a more flexible and powerful approximation method.
The numerical quadrature based approximation is beneficial
in several ways: (i) the controller performance and data
efficiency is greatly improved by the more accurate state
approximations, (ii) learning is more robust to different ini-
tializations of the policy and optimization is less likely to get
stuck in a local optimum, (iii) there are less restrictions, e.g.,
on the parametric form of the policy, needed to compute the
policy gradients analytically and, most importantly, (iv) due
to the greater expressivity of numerical quadrature, policy
optimization is not limited to local optimization around one
trajectory (i.e., from one starting state). Instead, the policy
can be optimized for a continuous region of starting states.

2.3 Choice of Policy Parametrization and Reward Func-
tion
In the following, we will elaborate on the possible choices
of reward function and parametric form for the policy. In
both cases, the restrictions result from our goal to provide
analytical gradients to speed up policy search and make it
scalable to high-dimensional problems. Fortunately, these
restrictions allow for fairly flexible choices for both the
policy and the reward function.

The reward function is used to determine the expected
long-term cost of a policy. To evaluate a policy, the ex-
pected reward for all state distributions p(x1), . . . , p(xT )
when following this policy must be computed. Thus, the
reward function r must be chosen such that Ext

[r(xt)]
is analytically tractable for all t = 0, . . . , T . As we will
see in Section 2.4, the state distribution is approximated
by a Gaussian mixture model when applying numerical
quadrature to propagate uncertainties. Due to linearity of
the expectation, we conclude that r must be chosen such
that expectations with respect to Gaussian distributions are
analytically tractable. This holds, e.g., for all polynomi-
als, Gaussians or mixtures of Gaussians [37] (which are a
universal function approximators on any compact set). A
straightforward choice for the reward function is to penalize
the distance of the state to the target state xd, e.g.,

r(x) = exp

(
−1

2
(x− xd)ᵀΣr(x− xd)

)
, (4)

where Σr defines width and orientation of the reward
function. This reward function depends only on the current
system state (and not, e.g., on the control signal u). Please
note that there is no technical requirement for r to be a
function of x only, dependencies on other variables, e.g., on
the control u, can be included as long as the expectation of r
remains differentiable with respect to the policy parameters
θ. Irrespective of the technical feasibility of more complex
reward functions we argue that a reward that only depends
on x is very well suited for approaches that assume no
expert knowledge of the system.

For the policy, we assumed that it is parameterized by a
parameter vector θ. To optimize the policy, we aim to per-
form a gradient ascent employing analytic gradients of the
expected long-term reward with respect to θ. Thus, the para-
metric form of the policy must be chosen such that it allows
for analytic gradient computation. Additionally, in many
real-world applications, the magnitude of the control signal
is limited, e.g., by a constant umax ≥ π(x) ≥ −umax. These
constraints must be incorporated in the parametric form.
In [1], it was proposed to apply a squashing function such
as, e.g., σ(x) = sin(x) or σ(x) = 9/8 sin(x) + 1/8 sin(3x).
Also, analytic gradients of the GP prediction with re-
spect to θ were provided for (i) squashed linear policies
π(x) = umaxσ(Mx + b) and (ii) squashed RBF policies
π(x) = σ(k(C,x)

ᵀ
β). Following [1], we squash the policies

to limit the magnitude. Applying numerical quadrature for
multi-step-ahead predictions, we will derive analytic policy
gradients based on the gradients given in [1]. Thus, nuQuPS
can handle squashed linear and squashed RBF policies.
Additionally, our numerical quadrature approach allows to
use sums of squashed linear policies, which corresponds to
a Fourier series expansion of an arbitrary, bounded function.
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2.4 Numerical Quadrature for Uncertainty Propagation

To evaluate a policy, multi-step-ahead predictions for a
given GP dynamics g must be computed, see Equation (2).
Given a query point (xt,ut), the GP predicts the next state
xt+1 to be normally distributed as stated in Equation (3).
When the input xt is uncertain, the next state distribution is
given as

p(xt+1) =

∫
p(xt+1 | xt)p(xt)dxt. (5)

In general, this distribution is not Gaussian even if p(xt)
is. Furthermore, for most choices of covariance function, as
e.g., for the widely employed squared exponential, p(xt+1)
is analytically intractable and must be approximated. Please
note that we omitted ut for notational convenience in Equa-
tion (5) as xt = π(xt).

When p(xt) is Gaussian, the first two moments of
p(xt+1) can be computed in closed-form, which gives rise
to the moment matching approximation [18]. The predictive
distribution p(xt+1) is then approximated by a Gaussian
with the computed moments. However, this approximation
has some major drawbacks. First, approximating the state
distribution by a Gaussian can lead to severe inaccuracies
when the true state distribution is more complex, e.g., has
multiple modes. Unfortunately, this is often the case when
the system dynamics is highly nonlinear. Second, the first
two moments of the predictive distribution can only be com-
puted analytically when the input distribution is Gaussian.
Starting with a Gaussian state distribution p(x0), the state
distribution p(x1) will be approximated with a Gaussian.
To compute p(x2), the approximation of p(x1) will be used
as the model input. However, as the true distribution p(x1)
is not Gaussian, the moment matching approximation will
not capture the first two moments of p(x2) correctly. As a
result, when cascading multiple moment matching steps,
the computed moments do not match the true moments
of the state distribution after only two steps. Typically, the
computed moments will drift further away from the true
moments with every time step. Figure 2 (cf. [15]) illustrates
the described problems, that can occur when applying mo-
ment matching for long-term predictions.

As an alternative to moment matching, in [15] numerical
quadrature was proposed to approximate the GP predictive
distribution. Numerical quadrature approximates the value
of an integral ∫ b

a
f(x)dx ≈

p∑
i=1

wif(ξi)

given a finite number p of function evaluations. A widely
used class of quadrature rules are interpolatory quadrature
rules, which integrate all polynomials up to a certain degree
exactly. In this paper, we employ Gaussian quadrature rules,
where the evaluation points ξ1, . . . , ξp are chosen to be
the roots of certain polynomials from orthogonal polyno-
mial families. They achieve the highest accuracy possible
for univariate interpolatory formulæ [38]. For multivariate
integrals, the quadrature problem is significantly harder.
While many formulæ for the univariate case can straight-
forwardly be generalized to multivariate integrals, they
often suffer from the curse of dimensionality. However,

quadrature methods that scale better and are feasible for
up to 20 dimensions have been developed. See [39] for
an overview. In [15], it has been shown that numerical
quadrature accurately approximates the state distribution
and can be computed efficiently, see also Figure 2. However,
no policy learning was considered in [15]. We follow this
approach and approximate the integral from Equation (5)
with numerical quadrature.

When learning to control a physical system, the state
space is bounded in most cases (e.g., for temperatures,
pressures, angles, lengths). Thus, we assume x ∈ X =
[a1, b1] × · · · × [aD, bD]. Please note that this assumption
is technically not necessary, as there exist quadrature rules
that are suited for the domain RD when integrating against
a Gaussian weight function as in our case. However, we
found the proposed quadrature rules, that are tailored to
the GP dynamics, to perform significantly better than these
generic rules. Given the state distribution p(xt), the next
state is determined by

p(xt+1) =

∫
X
p(xt+1 | xt)p(xt)dxt. (6)

We apply numerical quadrature to approximate this inte-
gral. We choose a composed Gaussian product quadrature
rule, which will be detailed in Section 2.6. For now, it is
sufficient to note that our quadrature rule provides a set of
evaluation points X and positive weights wn for all nodes
ξn ∈ X. Integral (6) is then approximated by

p(xt+1)≈
∑
ξn∈X

wnp(xt+1| xt= ξn)p(xt= ξn), (7)

which results in a weighted sum of Gaussian distributions.
The approximate state distribution at time t + 1 can be
written

p(xt+1) ≈ φᵀαt+1 (8)

with αt+1,n := wnp(xt = ξn) and φn(x) := p(xt+1 = x |
xt = ξn). Note that the Gaussian basis functions φn(x)
do not change over time, so the state distribution at time
t is represented by the weight vector αt. To propagate
any distribution multiple steps through the GP, the basis
functions φn must be calculated only once and the task
reduces to sequential updates of the weight vector α. As
p(xt) ≈ φᵀαt, the weight vector αt+1 is given by

αt+1 = diag(w)Φαt = (diag(w)Φ)tα1 (9)

with the matrix Φ, Φi j = φj(ξ
i) with 1 ≤ i, j ≤ n,

which contains the basis function values at all grid points. In
practice, it is helpful to normalize the matrix diag(w)Φ such
that each column sums to 1. In this case, unit vectors will be
mapped to unit vectors. This ensures that the approximate
state distribution is in fact a probability density, i.e., inte-
grates to 1. Note that the columns of Φ can be computed
independently and that, in general, Φ is very sparse. Thus,
the computation of Φ and the multiplication in Equation 9
are very well suited for parallel computation, e.g., on a GPU.

To evaluate a policy, we compute

Rπ(θ) =
T∑
t=0

Ext
[r(xt)] (2 revisited)
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Fig. 2. This figure illustrates multi-step-ahead prediction when the input is a distribution ( (a)-(c) are taken from [35]). Starting with a normally
distributed state centered around the inflection point of the right slope in the mountain car domain (see Sec. 3), the state distribution is approximated
at T = 30. The plots show the approximate state distribution obtained with numerical quadrature (a), moment matching (c) and the reference Monte
Carlo sampling result, computed with 105 samples (b). As can be seen, the state distribution significantly differs from a Gaussian. Furthermore,
moment matching does not match the first two moments of the state distribution. The distribution obtained with our NQ based approach (a) closely
matches the distribution resulting from MC sampling (b). In case of MM (c), the iterative approximation as Gaussian amplifies the initial error. As
a result, the distribution obtained by MM (a) is far off the sampled distribution. The KL-divergence between the Monte Carlo result and numerical
quadrature (blue)/ MC and moment matching (red) as a function of system time are shown in plot (d).

and due to linearity of the expectation the numerical
quadrature approximation results in

Rπ(θ) ≈
T∑
t=0

N∑
n=1

αt,nEx∼φn [r(x)] =: R̃π(θ). (10)

Thus, the expected reward in any time step is composed
of the rewards for the state to be distributed as one of the
Gaussians φn. When choosing r, hence, one must ensure
that expectations with respect to a normally distributed state
are analytically tractable, as detailed in Section 2.3.

2.5 Analytic Reward Gradients

When approximating predictions at uncertain inputs with
numerical quadrature, the expected long-term reward
R̃π(θ) for following policy πθ can be computed as given
in Equation (10). To improve the policy, we aim to maximize
R̃π(θ) via gradient ascent. In the following, we will derive
a closed-form expression for the gradient ∂R̃π(θ)/∂θ.

∂R̃π(θ)

∂θ
=

∂

∂θ

T∑
t=0

N∑
n=1

αt,nEx∼φn
[r(x)] (11)

=
T∑
t=0

N∑
n=1

∂αt,n
∂θ

Ex∼φn
[r(x)] (12)

+ αt,n
∂

∂θ
(Ex∼φn

[r(x)]) (13)

The gradient ∂/∂θ Ex∼φn [r(x)] was given in [1] for
squashed linear and squashed RBF policies. For the first
term, we compute ∂αt,n/∂θ as follows. Applying Equa-
tion (9), we get

∂αt
∂θ

=
∂

∂θ

(
(diag(w)Φ)tα1

)
. (14)

The derivative of a matrix power Ak with respect to
the parameter b can be computed as ∂Ak(b)/∂b =

∑k−1
l=0 A

l(b)∂A(b)
∂b Ak−l−1(b). Note also that ∂α1/∂θ = 0

and, thus,

∂αt
∂θ

=
∂

∂θ

(
(diag(w)Φ)tα1

)
=
∂(diag(w)Φ)t

∂θ
α1 (15)

=
t−1∑
l=0

(diag(w)Φ)l
∂(diag(w)Φ)

∂θ
(16)

(diag(w)Φ)t−l−1α1. (17)

Finally, it remains to compute the derivatives of the entries
of diag(w)Φ with respect to θ. As w are the quadrature
weights, which do not depend on θ, we compute the deriva-
tives of Φ with respect to θ

∂Φij
∂θ

=
∂φj(ξ

i)

∂θ
=
∂p(xt+1 = ξj | xt = ξi)

∂θ
. (18)

Let µj be the mean of φj and Σj its covariance matrix. Note
that Σj is diagonal, as φj is the GP predictive distribution at
the point ξj and, thus, the different state dimensions do not
covary.

The derivatives ∂µj/∂θ and ∂Σj/∂θ were provided
in [1] for squashed linear and squashed RBF policies.
Thus, it remains to compute ∂φj(ξ

i)/∂µj and ∂φj(ξ
i)/∂Σj

for diagonal Σj . Writing a(Σ) =
(
(2π)D det(Σ)

)− 1
2 and

b(µ, ξ,Σ) = exp
(
(µ− ξ)

ᵀ
Σ−1(µ− ξ)

)
these gradients are

computed as

∂φj(ξ
i)

∂µj
=

∂

∂µj

(
a(Σj)b(µj , ξ

i,Σj)
)

= −φj(ξi)Σ−1j (µj − ξ
i) (19)

∂φj(ξ
i)

∂Σj
=

∂

∂Σj

(
a(Σj)b(µj , ξ

i,Σj)
)

=
∂a(Σj)

∂Σj
b(µj , ξ

i,Σj)

+ a(Σj)
∂b(µj , ξ

i,Σj)

∂Σj

= −1

2
φj(ξ

i) det(Σj)
−1∆

+
1

2
φj(ξ

i)Σ−2j diag(µj − ξ
i)2 (20)
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Fig. 3. Construction of suitable quadrature rules. Plot (a) shows the nodes of a Gaussian product quadrature rule on the unit square. Here, the
quadrature rule for the unit square was constructed as an outer product of the Gaussian quadrature rule with 5 nodes. A state space partition
with approximately 4000 rectangles for the mountain car system obtained with Algorithm 2 is shown in (b). For each rectangle in this partition, a
Gaussian product quadrature such as (a) is employed.

with

∆ = diag


 D∏

m=1,

m6=m′

Σj,mm


m′=1,...,D

 . (21)

Combining these gradients with the ones provided in [1]
via chain rule, we get ∂Φij/∂θ. Substituting the result in
Equation (17), we compute ∂αt/∂θ. Finally, returning to
Equation (13) we have computed all components and get
a closed-form expression for ∂R̃π(θ)/∂θ.

2.6 Construction of Quadrature Rules

Our proposed policy search approach nuQuPS employs
numerical quadrature to approximate GP predictions when
the input is a distribution. The derived expressions for the
approximate distribution and the gradients of the expected
long-term reward are valid for any choice of quadrature
rule. However, in practice, the choice of a suitable quadra-
ture rule is crucial to the accuracy of the approximate
long-term predictions and, thus, to the learning success of
nuQuPS. Thus, in the following, we will elaborate on how to
construct “good” quadrature rules for a given GP dynamics
model. During learning, nuQuPS constructs a quadrature
rule in every episode, that is suited to the current GP
dynamics model.

For smooth, univariate functions no rule can possi-
bly achieve faster convergence than Gaussian quadrature.
Gaussian product quadrature extends univariate Gaussian
quadrature to a multivariate rule using a product grid
of evaluation points. This construction has some desirable
properties, such as positive quadrature weights and read-
ily available quadrature nodes. However, being an outer
product of one-dimensional rules, it suffers from the curse
of dimensionality and is not optimal anymore. Other types
of (partially optimal) quadrature rules have been studied,
e.g. [40], however covering the whole space equally well
inevitably leads to the curse of dimensionality even for
optimal rules. In this paper, we apply numerical quadrature
to integrals as in Equation (6) and address the mentioned
drawback as follows. Typically, the system trajectories are
not uniformly spread over the state space. Instead, they
are concentrated in a significantly smaller region. We ex-
ploit this observation to improve the efficiency of high

dimensional quadrature and cope with the curse of di-
mensionality. For this purpose, we partition the state space
X = X1 t · · · t XL as outlined below and apply a multi-
variate quadrature rule to each obtained subregion Xl. The
next state distribution, cf. Equation (6), can be written as

p(xt+1) :=

∫
X
p(xt+1 | xt)p(xt)dxt

=
L∑
l=1

∫
Xl

p(xt+1 | xt)p(xt)dxt (22)

and, applying a numerical quadrature rule with nodes Xl
for each integral, we get

p(xt+1) ≈
L∑
l=1

∑
ξn∈Xl

wnlp(xt+1 | xt = ξn)p(xt = ξn).

Setting X = X1 t · · · t XL, we recover Equation (7). Thus,
composed quadrature rules can be handled just as a single
Gaussian product rule. We exploit this fact to construct
quadrature rules which are efficient for the computation
of next state distributions for our particular GP dynamics
model and subregion of policy parameter space. In other
words, we aim to find a partition X = X1 t · · · t XL

of the state space, such that integral (6) is approximated
well by the resulting quadrature rule for all policies πθ
that will be evaluated during gradient ascent in the current
episode. For this purpose, we maintain a partition of the
state space, sample trajectories and subdivide regions Xl

that were visited and fulfill a certain criterion which we
introduce below.

To sample representative system trajectories, we perturb
the currently known best policy parameters θ∗ with white
noise ε ∼ N (0,Σε). We sample starting states τ 0 from p(x0)
and compute simulated mean rollouts τ 0, . . . , τT starting
from τ 0 and from the target state xd with each sampled
policy parameter vector θ and the dynamics GP g. Thus,
every state in the simulated trajectories will be normally
distributed with mean τ i and variance Var(τ i). The noise
variance Σε determines how far we expect to differ from the
initial policy during gradient ascent. Thus, we start with a
high variance and decrease it with the number of episodes.

We subdivide the regionXl, if it does not contain enough
quadrature nodes to integrate predictive distributions from
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Algorithm 2 Construction of composed quadrature rules
Input:

dynamics GP g : (xt,ut) 7→ xt+1, start distribution
p(x0), current best policy πθ∗ , state space X , maximum
partition size Lmax, policy noise variance Σε

Output:
composed quadrature rule with nodes X and weight
vector w

1: Initialize partition X = X1 t · · · t Xs and quadrature
X = X1 t · · · t Xs with s < Lmax

2: while s < Lmax do
3: Sample starting state τ 0 ∼ p(x0) and policy parame-

ters θ ∼ N (θ∗,Σε)
4: Compute rollouts τ 0, . . . , τT and xd = τ ′0, . . . , τ

′
T

with dynamics GP g and policy πθ
5: for l = 1, . . . , s do
6: if vol(Xl)

|Xl|minτi,τ
′
i
∈Xl

Var(τ i)
< 1 then subdivide Xl,

add nodes to X fi
7: od
8: od
9: return quadrature nodes X and weights w

the dynamics GP well. To estimate whether Xl should be
divided, we introduce

ρl(τ ) :=
vol(Xl)

|Xl|minτ i∈Xl
Var(τ i)

(23)

and subdivide Xl if ρl(τ ) is greater than 1. This criterion
relates the higher order derivatives of GP predictions which
fall inside Xl with the quadrature node density in Xl.

Constructing a composed quadrature rule with this ap-
proach will concentrate most quadrature nodes in state
space regions that are visited frequently when following
system trajectories. Algorithm 2 summarizes our approach
and Figure 3 illustrates the constructed quadrature rules.

3 EMPIRICAL EVALUATION ON TYPICAL BENCH-
MARK PROBLEMS

We evaluate the proposed algorithm on three benchmark
tasks: mountain car, cart-pole swing up and hold and cart-
double-pendulum balancing. We compare our results with
other model-based approaches in multiple experiments.
First, we briefly introduce the two test-beds.

Mountain Car. In the mountain-car domain (see, e.g.,
[41], [42]), a car starts at some point in a valley landscape
and has to reach a certain point on the hill to the right side
of the valley and stay there. However, the car’s engine is not
powerful enough to reach the goal directly from all starting
positions. From the points in the valley, the car has to first
drive in the opposite direction and gain momentum to reach
the goal. The state space has two dimensions: position and
velocity of the car, the control signal is limited to umax = 4.

Cart-Pole. In the cart-pole domain [1], a cart with an
attached free-swinging pendulum is running on a track of
limited length. The goal is to swing the pendulum up and
balance it, with the cart in the middle of the track. The state
space has four dimensions: position of the cart x, velocity of
the cart ẋ, angle of the pendulum ϑ and the angular velocity
ϑ̇. A horizontal force of umax = 10 can be applied to the cart.

Cart-Double-Pendulum. In the inverted double
pendulum on a cart balancing task, a double pendulum
is mounted on a cart. Starting with an (almost) upright
position, the goal is to balance the pendulum and stabilize
the system. The state space has six dimensions: position of
the cart, velocity of the cart, angles of the two pendulum
arms and their angular velocities. A horizontal force with
umax = 10 can be applied to the cart.

To evaluate the proposed algorithm (nuQuPS), we per-
form several experiments on the two test-beds. First, we
examine how the approximation of multi-step-ahead predic-
tions affects learning, comparing moment matching to the
proposed numerical quadrature on the mountain car task.
Second, we perform the cart-pole swing up and balance
task. Third, we demonstrate how nuQuPS is capable of
learning global policies.

3.1 Learning Control in the Mountain Car Domain

In this experiment, we want to evaluate how the proposed
numerical quadrature approximate inference performs in
comparison to moment matching and how these approxima-
tion methods affect learning. For this purpose, we start with
a given, pre-trained GP dynamics model for the mountain
car domain. We want to test how well we can learn policies
for starting states concentrated in different regions of the
state space. Thus, we build a grid in the state space region
[−1, 1] × [−0.2, 0.2] and conduct a policy search for each
grid point, choosing p(x0) as a Gaussian centered at the cor-
responding grid point. To evaluate the learned policies, we
test them on the given GP dynamics via Monte Carlo. From
each starting distribution, we compute 100 sample rollouts
employing the learned policy. We average the distance of the
final rollout point to the target state over these rollouts. We
color each cell according to the computed average distance,
which gives a map of the learning success. Here, lower
values (and darker colors) indicate better performance of
the policy.

We perform this experiment computing the expected
long-term reward and its gradient with respect to the policy
parameters with (i) numerical quadrature and (ii) moment
matching. For the start distributions, we choose the covari-
ance matrix 0.0025I . For every starting distribution, we set
the time horizon T = 30 and learn a squashed linear policy
π(x) = umaxσ(Mx + b), cf. Section 2.3. For the numerical
quadrature, we employed our quadrature rule construction
method (Algorithm 2) with an outer product of the Gaussian
rule with 5 nodes in each subregion.

Figure 4, plots (a) and (b), show the results. As can
be seen, numerical quadrature provides a more accurate
estimate of the expected reward and its gradient and, thus,
is more reliable in learning a successful policy. However,
maximizing the expected long-term reward is a non-convex
optimization task and, thus, optimization may not find a
successful policy in all cases.

Note, that solving the mountain car task with a squashed
linear policy requires to maintain a delicate balance between
gaining momentum for the car to drive up the hill and
slowing the car down at the right time to hold it at the
target. To evaluate whether we succeeded to learn policies
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(a) Our Numerical Quadrature, T = 30
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(b) Moment Matching, T = 30
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(c) Our Numerical Quadrature, T = 90
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(d) Moment Matching, T = 90
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Fig. 4. Comparison of the numerical quadrature and moment matching approximations for policy search. Given a pre-trained GP dynamics model
for the mountain car domain, a squashed linear policy was learned starting in each cell. Policy values and gradients were computed with numerical
quadrature (plots (a) and (c)) and moment matching (plots (b) and (d)). With the learned policy, rollouts from the corresponding cell were computed
with time horizons T = 30 and T = 90. The cells are colored according to the average distance of the rollout final state to the target state (darker
is better).

that are capable of both accelerating the car sufficiently and
hold it, as opposed to the local optimum of accelerating the
car as much as possible and overshoot, we also test the
learned policies with a larger time horizon T = 90. The
results are shown in Figure 4, plots (c) and (d). As can be
seen, in most cases numerical quadrature finds a policy that
can both accelerate and hold the car. In contrast, moment
matching typically fails at this task.

3.2 Learning Control in the Cart-Pole and Cart-Double-
Pendulum Domains

To evaluate overall performance of the proposed nuQuPS
algorithm, we learn to swing up and balance the pendulum
in the cart-pole (CP) domain. Starting with the cart standing
in the middle of the tracks, pendulum down, we perform
five experiments with different initial policies. The starting
state variance was set to 10−6 and the time horizon to
T = 40. As a quadrature rule, the CN:3-1 rule [40], [43] was
employed. We learn squashed linear policies for this task.
Note that a linear policy cannot swing up and then balance
the pendulum on the cart. However, there are squashed
linear policies that are capable of this task.

Secondly, we learn to balance the double pendulum on a
cart (CDP) with nuQuPS and PILCO. For this task, we also
learn a squashed linear policy to stabilize the system. The
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CP: PILCO

CDP: nuQuPS
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Fig. 5. Average reward with standard deviation as a function of system
interaction time for the cart-pole swing up and hold and the cart-double-
pole balancing tasks. One episode equals 4 seconds of system inter-
action time. For both tasks, squashed linear policies were learned with
our nuQuPS approach (blue) and PILCO (red). All results were averaged
over five trials with different initial policies.
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Fig. 6. Average reward with standard deviation as a function of system
interaction time for the mountain car task. One Episode equals 3 sec-
onds of system interaction time. The task was to learn a squashed linear
policy for all car starting positions in [−1, 1] × [−0.1, 0.1]. For nuQuPS,
a uniform distribution over this region was chosen as the starting state.
For PILCO, we chose 10 starting points on a regular grid in the starting
region. PVI obtained rollouts with the starting point sampled from the
uniform starting distribution at the end of each episode. After learning, a
squashed, linear policy was fitted with a least squares approach.

starting state variance was set to 10−4 and the time horizon
to T = 40. For the quadrature, we used Algorithm 2 and the
CN:3-1 rule [40], [43].

Figure 5 shows the average reward per episode obtained
with nuQuPS in comparison to the PILCO algorithm for
the cart-pole (solid lines) and cart-double-pendulum (dotted
lines). The policies from each episode were evaluated on 100
rollouts, where the starting point was drawn from the start
distribution p(x0).

3.3 Learning Global Policies for the Mountain Car Task

In this experiment, our goal is to learn a policy that can
successfully solve the mountain car task for a continuous
region of starting points. One major advantage of nuQuPS
is that it can handle arbitrary starting state distributions.
For our task, we choose the starting state to be uniformly
distributed on [−1,−0.1]× [1, 0.1].

We compare the learning success with two other model-
based approaches: probabilistic value iteration (PVI) [29]
and PILCO [1]. PVI learns a global value function and,
thus, can handle our uniform starting state distribution.
For the rollout performed at the end of an episode, the
starting point is sampled from p(x0). As a value iteration
approach, PVI does not assume a certain parametric form
of the policy, which enables highly flexible and complex
policies. However, to compute the learned optimal actions,
an argmax must be performed for every time step, which
is computationally challenging and often impractical. To
overcome this drawback and also make PVI comparable
to the other algorithms, after learning, we fit a squashed
linear policy with least squares. The policy obtained with
this approach will be named linPVI to distinguish from

the optimal policy, that can be computed from the value
function obtained with PVI.

To learn a policy for all starting states in [−1,−0.1] ×
[1, 0.1] with PILCO, we follow the approach in [20]. We
distribute ten starting points over [−1,−0.1] × [1, 0.1] and
maximize the mean expected long-term reward of these
points with PILCO.

The results are shown in Figure 6. For each policy,
the obtained reward was averaged over 3000 rollouts with
starting points sampled from the initial state distribution.
We perform five trials with different initial policies for the
three approaches. As can be seen, nuQuPS outperforms
PILCO and PVI on this task. We found that PILCO is prone
to local optima, which leads to a high variance in learning
success. PVI, on the other hand, shows slower convergence,
as learning a global value function is a significantly harder
task than finding policy parameters for a given starting state
distribution. In addition, in PVI the support points must be
chosen, where the value function will be computed and used
as training data for the value function model. This selection
of support points is a nontrivial task and can highly affect
the learning success.

4 CONCLUSION

Learning control is promising as it allows to drastically
reduce the amount of expert knowledge, that is required
otherwise. Model-based approaches are particularly appeal-
ing since they are highly data efficient, especially when
probabilistic models are employed to account for the in-
herently uncertain dynamics estimates. However, long-term
predictions with such models typically become intractable,
introducing the need for approximations. In this paper, we
show that the accuracy of the chosen approximation method
significantly affects learning and propose numerical quadra-
ture to approximate long-term predictions. We conclude the
paper with a short summary of the main contributions and
a brief outlook on possible future work in this direction.

4.1 Summary of Contributions

In this paper, we introduced nuQuPS, a model-based policy
search approach, that makes use of Gaussian processes as
dynamics models. To propagate uncertainties through the
GP dynamics model, nuQuPS employs numerical quadra-
ture. Numerical quadrature for approximate inference can
model complex distributions, e.g., with multiple modes.
The numerical quadrature approximation can be paral-
lelized straightforwardly and, thus, be computed efficiently.
Furthermore, we provided analytic gradients that can be
used for policy search. With these analytic gradients, policy
improvement can be performed with any gradient based
optimization scheme.

Due to its flexibility, numerical quadrature provides
highly accurate approximations even for complex distribu-
tions, e.g., when the input distribution has high variance.
This high accuracy significantly speeds up learning and
results in enhanced robustness and data efficiency. Addi-
tionally, numerical quadrature can handle arbitrary, non-
Gaussian starting state distributions, e.g., a uniform distri-
bution over all possible starting states. As a result, nuQuPS
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provides a principled way to learn policies, that are suitable,
e.g., for all feasible starting states. Thus, nuQuPS combines
the ability to learn global policies and remains scalable to
high-dimensional problems.

Combining Bayesian averaging with high-performance
uncertainty propagation, nuQuPS achieves remarkable
data-efficiency on all tested tasks. It is highly robust to dif-
ferent choices of initial policy. Evaluation on three simulated
test-beds demonstrates nuQuPSs superior performance.

4.2 Discussion and Next Steps
The proposed nuQuPS algorithm allows to robustly learn
global policies with unprecedented data-efficiency. How-
ever, there remain several open questions. First of all, while
we evaluated nuQuPS on multiple benchmark domains in
simulation, it has not yet been applied on a real system and
will be adressed in future work.

Second, to learn a policy, nuQuPS proceeds in an
episodic setting, acquiring more data from system inter-
actions, updating its dynamics model and re-optimizing
the policy to suit the updated dynamics model. In all
tests we performed, this procedure converged after a few
episodes. However, as for most policy search approaches on
continuous state and action spaces, there is no guarantee
that nuQuPS will converge. In nuQuPS, maximizing the
expected long-term reward is a non-convex optimization
task and, thus, no guarantees can be given. However, even
when assuming that the global optimum is found in every
episode, convergence of nuQuPS remains an open problem.

Third, our nuQuPS approach, as most previous policy
search approaches, optimizes the policy for the case that
there are no external disturbances. Robust control, however,
considers the problem of learning a policy that is success-
ful even when external disturbances are present. To solve
this task, assumptions e.g., on the parametric form of the
disturbance are made and stability analysis is employed.
Recently, stability analysis for learned GP dynamics and
policies was provided [15]. This stability analysis combined
with a high performance policy search approach as the
proposed nuQuPS could open the door for learning robust
control.

Finally, numerical quadrature has proven to provide
highly accurate approximate multi-step-ahead predictions,
that greatly speed up policy learning. These high-quality ap-
proximations could as well support other Bayesian model-
based learning approaches. Especially for value iteration
based on GP dynamics models [26], [28], [29], numerical
quadrature could be promising to cope with the intractabil-
ity of the model.
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