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Abstract

This technical report describes a cute idea of how to create new policy
search approaches. It directly relates to the Natural Actor-Critic methods
but allows the derivation of one shot solutions. Future work may include
the application to interesting problems.

1 Problem Statement

In reinforcement learning, we have an agent which is in a state s and draws
actions a from a policy π. Upon an action, it received a reward r (s, a) = Rsa
and transfers to a next state s′ where it will do a next action a′. In most cases,
we have Markovian environments and policies, where s′ ∼ p(s′|s, a) = Ps′sa and
a ∼ π(a|s). The goal of all reinforcement learning methods is the maximization
of the expected return

J̄(π) = E

{∑T

t=0
r(st, at)

}
. (1)

We are generally interested in two cases, i.e., (i) the episodic open loop case
where the system is always restarted from initial state distribution p(s0), and
(ii) the stationary infinite horizon case where T → ∞. Both have substantial
differences in their mathematical treatment as well as their optimal solution.

1.1 Episodic Open-Loop Case

In the episodic open-loop case, a distribution p(τ) over trajectories τ is assumed
and a return R(τ) of a trajectory τ , both are given by

p(τ) = p(s0)
∏T

t=1
p(st+1|st, at)π(at|t), (2)

R(τ) =
∑T

t=0
r(st, at). (3)

The expected return can now be given as J̄(π) =
∑
τ p(τ)R(τ). Note, that all

approximations to the optimal policy depend on the initial state distribution
p(s0). This case has been predominant in our previous work.
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1.2 Stationary Case

Among the different case of infinite horizons (i.e., recurrent/stationary and tran-
sient case), the stationary case can be analyzed with a particular beauty. In
this case, the system will converge to a stationary state distribution µπ(s) given
by

µπ(s′) =
∑

s,a
p(s′|s, a)π(a|s)µπ(s), (4)

1 =
∑

s
µπ(s). (5)

upon a sufficient amount of steps. The expected return can now be expressed
by J̄(π) =

∑
s µ

π(s)π(a|s)r(s, a). This case has been predominant in the RL
literature. We can express this optimal control problem as

min
π,µ

J̄(π) =
∑

s
µ(s)π(a|s)r(s, a), (6)

s.t. ∀s′.µ(s′) =
∑

s,a
p(s′|s, a)π(a|s)µ(s), (7)

1 =
∑

s,a
µ(s)π(a|s), (8)

∀s, a.0 ≤ µ(s)π(a|s) ≤ 1 (9)

From this problem, we can directly derive the Bellman-Poisson equations. For
simplicity, we omit the inequality constraints.

Theorem 1 The optimality conditions for the stationary case are given by

Rsa − J̄(π) +
∑

s′
Ps

′

saVs′ − Vs = 0, (10)

for all states s and actions a with J(π) =
∑
s,a psaRsa.

Proof. We write Lagrangian of the problem as

L =
∑

s
psaRsa −

∑
s′
Vs′
(∑

a′
ps′a′ −

∑
s,a
Ps

′

sapsa

)
− λ

(
1−

∑
s,a
psa

)
,

using psa = µ(s)π(a|s) and
∑
a psa = µ(s). Differentiation yields the Bellman-

Poisson equation

∂psaL = Rsa − λ+
∑

s′
Ps

′

saVs′ − Vs = 0.

The convex combination of zeros yields zero, thus the psa-weighted sum of all
optimality constraints yields

0 =
∑

s,a
psa∂psaL =

∑
s,a
psaRsa−λ+

∑
s′

(∑
s,a
psaPs

′

sa

)
︸ ︷︷ ︸

µ(s′)

Vs′−
∑

s,a
psaVs,

and as the later two terms disappear, we obtain λ =
∑
s,a psaRsa = J̄(π).

The conditions of optimality do not directly yield an optimal control policy.
In special cases, we can solve this problem, e.g., for discrete states, we can solve
for the optimal policy by rewriting the optimality principle as a linear equation
system and requiring a deterministic policy.
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2 Relative Entropy Policy Search (REPS)

Reinforcement Learning methods can be considered “optimal control techniques
by sample approximations”. Here, we usually have a sampling policy which want
to optimize. The bag of methods ranges from provably working heuristics (e.g.,
Q-Learning, SARSA, Resdidual Gradient, ...) to principled approaches (e.g.,
Policy Gradients Methods, PSDP, Natural Actor-Critic, Reward-Weighted Re-
gression, Policy Search by Inference, DP or DDP with learned models, ...) which
tend to be complicated in practice. In this paper, we take a fundamentally dif-
ferent approach to most previous methods where we attempt to choose the opti-
mal control policy regularized by our experience. Interestingly, we can directly
obtain solutions in that case.

2.1 REPS in the Episodic Open-Loop Case

Assume that we have sampled a lot of state-action pairs (e.g., from a infinite,
recurrent path or an episodic setup), then we have a data distribution qπ(τ)
determined by our sampling policy π and we have obtained rewards R(τ). The
general goal now is to choose a new policy π′ such that the resulting data
distribution pπ

′
(τ) is as close as possible to the original one as possible while

maximizing the rewards.The natural gradient brings us the following idea, let
us bound the information loss as in

max
π′

J (π′) =
∑

τ
pπ

′
(τ)C(τ)︸ ︷︷ ︸

Expected Return J(π)

,

s.t. ε ≥
∑

τ
pπ

′
(τ) log

pπ
′
(τ)

pπ(τ)︸ ︷︷ ︸
Regularization D(pπ′ ,pπ(τ))

,

1 =
∑

τ
pπ

′
(τ).

Another way of looking at this problem is that we have a new goal

max
π′

J (π′) =
∑

τ
pπ

′
(τ)R(τ)︸ ︷︷ ︸

Expected Return J(π)

+
1

η

∑
τ
pπ

′
(τ) log

pπ
′
(τ)

pπ(τ)︸ ︷︷ ︸
Regularization D(pπ′ ,pπ(τ))

,

s.t. 1 =
∑

τ
pπ

′
(τ).

where η > 0 is an open parameter. However, the latter case is unprincipled as
it has no real interpretation.

In the simplest case, i.e., the one of an open loop policy where pπ
′
(τ) can be

set for episode τ , we can derive the optimal solution straightfowardly.
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Claim 1 The Relative Entropy Policy Search algorithm for open-loop policies
is given by

pπ
′
(τ) =

pπ(τ) exp(ηR(τ))∑
τ p

π(τ) exp(ηR(τ))
, (11)

where π(τ) denotes the previous open-loop policy and π′(τ) the current open
loop policy. The parameter η can be obtained by optimizing the dual function
g(η) = L(pπ

′
, η).

Proof. We have a Lagrangian of

L =
∑

τ
pπ

′
(τ)

(
R(τ)− λ+

1

η
log

pπ
′
(τ)

pπ(τ)

)
+
ε

η
+ λ.

Differentiating with respect to pπ
′
(τ), setting to zero

∂pπ′ (τ)L = R(τ)− λ+
1

η

(
log

pπ
′
(τ)

pπ(τ)
+ 1

)
= 0 (12)

and solving yields

pπ
′
(τ) = pπ(τ) exp (ηR(τ)) exp (ηλ− 1) .

Summing over all τ and inserting the equality constraint gives us∑
τ
pπ

′
(τ) = exp (ηλ− 1)

∑
τ
pπ(τ) exp (ηR(τ)) = 1.

As a result, we obtain Equation (13).
This algorithm can also be motivated by the EM-like policy update point of

view. Note both the similarity to the η-soft greedy update, however, also note
that the previous policy plays a much larger role here, making the algorithm
substantially different from SARSA-like approaches.

Nevertheless, open-loop policies are a rare special case as most problems
require feedback. In this case, the solution is not as straightforward as for the
open-loop case. We will now show how to perform Relative Entropy Policy
Search (REPS) for both the stationary and the episodic case. Subsequently, we
will take it and show its relation to Natural Policy Gradients.

2.2 REPS for the Stationary Closed-Loop Case

The stationary case is the most practical for dealing with infinite horizon prob-
lems. Again, we can give the reinforcement learning problem as a relative
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entropy-regularized problem. We have the goal function of

max
π′,µ′

J(π) =
∑

s
µ′(s)π′(a|s)r(s, a) (13)

s.t. ε ≥
∑

τ
µ′(s)π′(a|s) log

µ′(s)π′(a|s)
µ(s)π(a|s)

,

∀s′.µ(s′) =
∑

s,a
p(s′|s, a)π(a|s)µ(s), (14)

1 =
∑

s,a
µ(s)π(a|s). (15)

Just as in the open-loop case, we can give a clear algorithm. However, it will
always requiring solving an additional optimization problem.

Claim 2 The Relative Entropy Policy Search algorithm for stationary case
yields a new policy

π′(a|s) =
π(a|s) exp

(
−η
(
Rsa +

∑
s′ Ps

′

saVs′
))

∑
a π(a|s) exp (−η (Rsa +

∑
s′ Ps

′
saVs′))

, (16)

where Vs′ is determined by optimizing

g (V ) = −η−1 log

(∑
s,a

µ(s)π(a|s) exp
(
η
(
Rsa +

∑
s′
Ps

′

saVs′ − Vs
)))

. (17)

Proof. We write Lagrangian of the problem as

L =
∑

s
psa

(
Rsa +

1

η
log

psa
qsa

)
−
∑

s′
Vs′
(∑

a′
ps′a′ −

∑
s,a
Ps

′

sapsa

)
− λ

(∑
s,a
psa − 1

)
− ε

η
,

=
∑

s
psa

(
Rsa +

1

η
log

psa
qsa
− λ+

∑
s′
Ps

′

saVs′

)
−
∑

s′,a′
ps′a′Vs′ + λ− ε

η
,

=
∑

s
psa

(
Rsa +

1

η
log

psa
qsa
− λ+

∑
s′
Ps

′

saVs′ − Vs
)

+ λ− ε

η
,

using psa = µ′(s)π′(a|s), qsa = µ(s)π(a|s), and
∑
a psa = µ′(s). Differentiation

yields the Bellman principle of optimality with regularization cost

∂psaL = Rsa +
1

η
log

psa
qsa

+
1

η
− λ+

∑
s′
Ps

′

saVs′ − Vs = 0.

We determine the optimal state-action distribution

psa = qsa exp
(
η
(
Rsa +

∑
s′
Ps

′

saVs′ − Vs
))

exp (ηλ− 1) .

Now, we can obtain the dual function g (λ, V ) = −η−1
∑
s,a psa + λ. Similar as

before, we obtain

exp (ηλ− 1) =
(∑

s,a
qsa exp

(
η
(
Rsa +

∑
s′
Ps

′

saVs′ − Vs
)))−1

,
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by using
∑
s,a psa = 1. Thus, we have g (V ) = −η−1 +λ = η−1 log exp (ηλ− 1),

which yields Equation (19). Using the fact that π′(a|s) = psa /
∑
a psa , we

obtain

π′(a|s) =
µ (s)π(a|s) exp

(
η
(
Rsa +

∑
s′ Ps

′

saVs′ − Vs
))

∑
a µ (s)π(a|s) exp (η (Rsa +

∑
s′ Ps

′
saVs′ − Vs))

,

and after canceling out several terms, we have Equation (18).
This algorithm has a surprising similarity to SARSA, i.e., it uses nearly

exactly an η-soft policy update (only that the SARSA one was unweighted by
the previous policy) and it has a critic which employs a TD-style error function.
However, suprisingly, neither of these steps is exactly equal.

2.3 Relation to Natural Policy Gradients

One of the more interesting developments in policy gradient methods were nat-
ural policy gradients. These methods yielded a significant speed-up over tra-
ditional gradient methods which to date is not fully understood. However, the
employment of the right cost function be the reason here, i.e., if we take a second
order taylor expansion of J (π′) in pπ

′
(τ), we obtain

∇pπ′ (τ)J (π′) = R(τ) +
1

η

(
1 + log

pπ
′
(τ)

qπ(τ)

)
, (18)

∇2
pπ′ (τ)

J (π′) =
1

η

1

pπ′(τ)
. (19)

If we assume that we only incrementally update with a pπ
′
(τ) = qπ(τ) + δp (τ),

then we can give this cost function in the form

J (π′) = J (π) +
∑

τ
∇pπ′ (τ)J (π′)

T
δp (τ) (20)

+
1

2

∑
τ,τ̂
∇2
pπ′ (τ)

J (π′) δp (τ) δp (τ̂) ,

= J (π) +
∑

τ

[
R(τ) +

1

η
(1 + log (1 + δp (τ)))

]T
δp (τ) (21)

+
1

2

∑
τ,τ̂

[
1

η

1

pπ′(τ)

]
δp (τ) δp (τ̂) .

Note, that this step was exact. If we assume make this step approximate, we
can use

∇pπ′ (τ)J (π′)
∣∣∣
pπ′ (τ)=qπ(τ)

= R(τ) +
1

η
, (22)

and assume updates parametrized by θ, i.e., with

δp (τ) = ∇θpπ
′
(τ)T δθ. (23)
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Then, using the vanishing property of
∑
τ̂ ∇θpπ

′
(τ̂) = 0, we have

J (πθ+δθ) = J (πθ) +
∑

τ

(
R(τ) +

1

η

)
∇θpπ

′
(τ)︸ ︷︷ ︸

Policy Gradient ∇θJ(πθ) with baseline 1/η

δθ (24)

+
1

2

1

η

∑
τ,τ̂

δθT∇θpπ
′
(τ)

[
1

pπ′(τ)

]
∇θpπ

′
(τ)T︸ ︷︷ ︸

Fisher Information Matrix F (θ)

δθ.

Solving for δθ yields the Natural Policy Gradient, i.e.,

δθ = 2ηF−1(θ)∇θJ (πθ) . (25)

From a policy search point of view, this result is surprising.

3 Conclusion

While not fully developed, the REPS approach may offer an alternative to the
EM-like policy search methods. It basically optimizes the same cost function as
the Natural Actor-Critic but allows larger steps than a small gradient updates.
Its covariance properties are of course an open question. So is its efficient
implementation and application to real problems.
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