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Abstract. Autonomous robots that can adapt to novel situations has
been a long standing vision of robotics, artificial intelligence, and cog-
nitive sciences. Early approaches to this goal during the heydays of ar-
tificial intelligence research in the late 1980s, however, made it clear
that an approach purely based on reasoning or human insights would
not be able to model all the perceptuomotor tasks that a robot should
fulfill. Instead, new hope was put in the growing wake of machine learn-
ing that promised fully adaptive control algorithms which learn both by
observation and trial-and-error. However, to date, learning techniques
have yet to fulfill this promise as only few methods manage to scale
into the high-dimensional domains of manipulator robotics, or even the
new upcoming trend of humanoid robotics, and usually scaling was only
achieved in precisely pre-structured domains. In this paper, we inves-
tigate the ingredients for a general approach to motor skill learning in
order to get one step closer towards human-like performance. For doing
so, we study two major components for such an approach, i.e., firstly, a
theoretically well-founded general approach to representing the required
control structures for task representation and execution and, secondly,
appropriate learning algorithms which can be applied in this setting.

1 Introduction

Despite an increasing number of motor skills exhibited by manipulator and hu-
manoid robots, the general approach to the generation of such motor behaviors
has changed little over the last decades [2,11]. The roboticist models the task
as accurately as possible and uses human understanding of the required motor
skills in order to create the desired robot behavior as well as to eliminate all
uncertainties of the environment. In most cases, such a process boils down to
recording a desired trajectory in a pre-structured environment with precisely
placed objects. If inaccuracies remain, the engineer creates exceptions using hu-
man understanding of the task. While such highly engineered approaches are
feasible in well-structured industrial or research environments, it is obvious that
if robots should ever leave factory floors and research environments, we will need
to reduce or eliminate the strong reliance on hand-crafted models of the envi-
ronment and the robots exhibited to date. Instead, we need a general approach
which allows us to use compliant robots designed for interaction with less struc-
tured and uncertain environments in order to reach domains outside industry.



Such an approach cannot solely rely on human knowledge but instead has to be
acquired and adapted from data generated both by human demonstrations of
the skill as well as trial and error of the robot.

The tremendous progress in machine learning over the last decades offers us
the promise of less human-driven approaches to motor skill acquisition. However,
despite offering the most general way of thinking about data-driven acquisition
of motor skills, generic machine learning techniques, which do not rely on an
understanding of motor systems, often do not scale into the domain of manip-
ulator or humanoid robotics due to the high domain dimensionality. Therefore,
instead of attempting an unstructured, monolithic machine learning approach
to motor skill aquisition, we need to develop approaches suitable for this par-
ticular domain with the inherent problems of task representation, learning and
execution addressed separately in a coherent framework employing a combina-
tion of imitation, reinforcement and model learning in order to cope with the
complexities involved in motor skill learning. The advantage of such a concerted
approach is that it allows the separation of the main problems of motor skill
acquisition, refinement and control. Instead of either having an unstructured,
monolithic machine learning approach or creating hand-crafted approaches with
pre-specified trajectories, we are capable of aquiring skills, represented as poli-
cies, from demonstrations and refine them using trial and error. Using learning-
based approaches for control, we can achieve accurate control without needing
accurate models of the complete system.

2 Foundations for Motor Skill Learning

The principal objective of this paper is to find the foundations for a general
framework for representing, learning and executing motor skills for robotics. As
can be observed from this question, the major goal of this paper requires three
building blocks, i.e., (i) appropriate representations for movements, (ii) learning
algorithms which can be applied to these representations and (iii) a transforma-
tion which allows the execution of the kinematic policies in the respective task
space on robots.

2.1 Essential Components

We address the three essential components, i.e., representation, learning and ex-
ecution. In this section, we briefly outline the underlying fundamental concepts.

Representation. For the representation of motor skills, we can rely on the insight
that humans, while being capable of performing a large variety of complicated
movements, restrict themselves to a smaller amount of primitive motions [10]. As
suggested by Ijspeert et al. [4,3], such primitive movements can be represented by
nonlinear dynamic systems. We can represent these in the differential constraint
form given by

Aθi
(xi, ẋi, t)ẍ = bθi

(xi, ẋi, t), (1)
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Fig. 1. This figure illustrates our general approach to motor skill learning by dividing
it into motor primitive and a motor control component. For the task execution, fast
policy learning methods based on observable error need to be employed while the task
learning is based on slower episodic learning.

where i ∈ N is the index of the motor primitive in a library of movements, θi ∈

R
L denote the parameters of the primitive i, t denotes time and xi,ẋi,ẍi ∈ R

n

denote positions, velocities and accelerations of the dynamic system, respectively.

Learning. Learning basic motor skills1 is achieved by adapting the parameters
θi of motor primitive i. The high dimensionality of our domain prohibits the ex-
ploration of the complete space of all admissible motor behaviors, rendering the
application of machine learning techniques which require exhaustive exploration
impossible. Instead, we have to rely on a combination of supervised and rein-
forcement learning in order to aquire motor skills where the supervised learning
is used in order to obtain the initialization of the motor skill while reinforce-
ment learning is used in order to improve it. Therefore, the aquisition of a novel
motor task consists out of two phases,i.e., the ‘learning robot’ attempts to repro-
duce the skill acquired through supervised learning and improve the skill from
experience by trial-and-error, i.e., through reinforcement learning.

Execution. The execution of motor skills adds another level of complexity. It
requires that a mechanical system

u = M (q, q̇, t)q̈ + F (q, q̇, t), (2)

with a mapping xi = f i(q, q̇, t) can be forced to execute each motor primitive
Aiẍi = bi in order to fulfill the skill. The motor primitive can be viewed as a
mechanical constraint acting upon the system, enforced through accurate com-
putation of the required forces based on analytical models. However, in most
cases it is very difficult to obtain accurate models of the mechanical system.
Therefore it can be more suitable to find a policy learning approach which re-
places the control law based on the hand-crafted rigid body model. In this paper,

1 Learning by sequencing and parallelization of the motor primitives will be treated
in future work.



we will follow this approach which forms the basis for understanding motor skill
learning.

2.2 Resulting Approach

As we have outlined during the discussion of our objective and its essential com-
ponents, we require an appropriate general motor skill framework which allows
us to separate the desired task-space movement generation (represented by the
motor primitives) from movement control in the respective actuator space. Based
on the understanding of this transformation from an analytical point of view on
robotics, we presente a learning framework for task execution in operational
space. For doing so, we have to consider two components, i.e., we need to deter-
mine how to learn the desired behavior represented by the motor primitives as
well as the execution represented by the transformation of the motor primitives
into motor commands. We need to develop scalable learning algorithms which
are both appropriate and efficient when used with the chosen general motor skill
learning architecture. Furthermore, we require algorithms for fast immediate
policy learning for movement control based on instantly observable rewards in
order to enable the system to cope with real-time improvement during the exe-
cution. The learning of the task itself on the other hand requires the learning of
policies which define the long-term evolution of the task, i.e., motor primitives,
which are learned on a trial-by-trial basis with episodic improvement using a
teacher for demonstration and reinforcement learning for self-improvement. The
resulting general concept underlying this paper is illustrated in Figure 1.

2.3 Novel Learning Algorithms

As outlined before, we need two different styles of policy learning algorithms,
i.e., methods for long-term reward optimization and methods for immediate
improvement. Thus, we have developed two different classes of algorithms, i.e.,
the Natural Actor-Critic and the Reward-Weighted Regression.

Natural Actor-Critic. The Natural Actor-Critic algorithms [8,9] are the fastest
policy gradient methods to date and “the current method of choice” [1]. They
rely on the insight that we need to maximize the reward while keeping the loss
of experience constant, i.e., we need to measure the distance between our cur-
rent path distribution and the new path distribution created by the policy. This
distance can be measured by the Kullback-Leibler divergence and approximated
using the Fisher information metric resulting in a natural policy gradient ap-
proach. This natural policy gradient has a connection to the recently introduced
compatible function approximation, which allows to obtain the Natural Actor-
Critic. Interestingly, earlier Actor-Critic approaches can be derived from this
new approach. In application to motor primitive learning, we can demonstrate
that the Natural Actor-Critic outperforms both finite-difference gradients as well
as ‘vanilla’ policy gradient methods with optimal baselines.
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Fig. 2. Systems and results of evaluations for learning operational space control: (a)
screen shot of the 3 DOF arm simulator, (c) Sarcos robot arm, used as simulated
system and for actual robot evaluations in progress. (b) Tracking performance for a
planar figure-8 pattern for the 3 DOF arm, and (d) comparison between the analytically
obtained optimal control commands in comparison to the learned ones for one figure-8
cycle of the 3DOF arm.

Reward-Weighted Regression. In contrast to Natural Actor-Critic algorithms,
the Reward-Weighted Regression algorithm [6,5,7] focuses on immediate reward
improvement and employs an adaptation of the expectation maximization (EM)
algorithm for reinforcement learning instead of a gradient based approach. The
key difference here is that when using immediate rewards, we can learn from
our actions directly, i.e., use them as training examples similar to a supervised
learning problem with a higher priority for samples with a higher reward. Thus,
this problem is a reward-weighted regression problem, i.e., it has a well-defined
solution which can be obtained using established regression techniques. While
we have given a more intuitive explanation of this algorithm, it corresponds to a
properly derived maximization-maximization (MM) algorithm which maximizes
a lower bound on the immediate reward similar to an EM algorithm. Our appli-
cations show that it scales to high dimensional domains and learns a good policy
without any imitation of a human teacher.

3 Robot Application

The general setup presented in this paper can be applied in robotics using an-
alytical models as well as the presented learning algorithms. The applications
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Fig. 3. This figure shows (a) the performance of a baseball swing task when using the
motor primitives for learning. In (b), the learning system is initialized by imitation
learning, in (c) it is initially failing at reproducing the motor behavior, and (d) after
several hundred episodes exhibiting a nicely learned batting.

presented in this paper include motor primitive learning and operational space
control.

3.1 Learning Operational Space Control

Operational space control is one of the most general frameworks for obtaining
task-level control laws in robotics. In this paper, we present a learning framework
for operational space control which is a result of a reformulation of operational
space control as a general point-wise optimal control framework and our insights
into immediate reward reinforcement learning. While the general learning of op-
erational space controllers with redundant degrees of freedom is non-convex and
thus global supervised learning techniques cannot be applied straightforwardly,
we can gain two insights, i.e., that the problem is locally convex and that our
point-wise cost function allows us to ensure global consistency among the lo-
cal solutions. We show that this can yield the analytically determined optimal
solution for simulated three degrees of freedom arms where we can sample the
state-space sufficiently. Similarly, we can show the framework works well for sim-
ulations of the both three and seven degrees of freedom robot arms as presented
in Figure 2.

3.2 Motor Primitive Improvement by Reinforcement Learning

The main application of our long-term improvement framework is the optimiza-
tion of motor primitives. Here, we follow essentially the previously outlined idea
of acquiring an initial solution by supervised learning and then using reinforce-
ment learning for motor primitive improvement. For this, we demonstrate both
comparisons of motor primitive learning with different policy gradient methods,
i.e., finite difference methods, ‘vanilla’ policy gradient methods and the Natural
Actor-Critic, as well as an application of the most successful method, the Nat-
ural Actor-Critic to T-Ball learning on a physical, anthropomorphic SARCOS
Master Arm, see Figure 3.



4 Conclusion

In conclusion, in this paper, we have preseted a general framework for learn-
ing motor skills which is based on a thorough, analytically understanding of
robot task representation and execution. We have introduced two classes of
novel reinforcement learning methods, i.e., the Natural Actor-Critic and the
Reward-Weighted Regression algorithm. We demonstrate the efficiency of these
reinforcement learning methods in the application of learning to hit a baseball
with an anthropomorphic robot arm on a physical SARCOS master arm using
the Natural Actor-Critic, and in simulation for the learning of operational space
with reward-weighted regression.
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