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Abstract

We present a generalization of thin-plate splines for interpolation and approximation of manifold-valued data, and
demonstrate its usefulness in computer graphics with several applications from different fields. The cornerstone
of our theoretical framework is an energy functional for mappings between two Riemannian manifolds which
is independent of parametrization and respects the geometry of both manifolds. If the manifolds are Euclidean,
the energy functional reduces to the classical thin-plate spline energy. We show how the resulting optimization
problems can be solved efficiently in many cases. Our example applications range from orientation interpolation
and motion planning in animation over geometric modelling tasks to color interpolation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling, Splines

1. Introduction

Thin-plate splines (TPS) are a standard tool in computer
graphics and also in many other disciplines both for inter-
polation and approximation. So far, most work has been fo-
cused on Euclidean output data, for example in trajectory
design with control points in R3 or in implicit surface recon-
struction. The current paper generalizes thin-plate splines to
the case where the output space is a Riemannian manifold.

In computer graphics data living on manifolds occur quite
naturally. Some basic types are directions, angles, and ori-
entations, as well as smooth surfaces of objects and colors.
More generally any data in Euclidean space which under-
lie smooth constraints can be seen as lying on a manifold.
Therefore manifold-valued interpolation/approximation is
of general interest in computer graphics.

1.1. Related Work

Thin-plate splines are characterized as the minimizers of
a differential energy, the squared Frobenius norm of the
Hessian subject to data interpolation/approximation con-
straints. Research in manifold-valued splines has up to now
mainly focused on curves, in which case thin-plate splines
are equivalent to well-known cubic splines. Cubic splines

Figure 1: Manifold-valued thin-plate spline Ψ mapping a
2D region onto a 3D bunny model using five markers.

have been generalized to manifold-valued data in [GK85,
NHP89, BCGH92] by replacing the standard derivative with
the intrinsic covariant derivative on the manifold. Recently,
an approach using the second extrinsic derivative has been
investigated in [HP04] and then generalized to a network of
curves in [WPH07]. For a broad overview of existing tech-
niques for interpolating curves on manifolds, with an eye on
motion planning, see [NP07].

The energy of mappings between Riemannian manifolds
has been first studied by Eells and Sampson [ES64]. They
define an energy based on the first-order differential of the
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mapping. The local extrema of this energy are the so called
harmonic maps. Since distortion-free (isometric) mappings
are harmonic, discrete harmonic mappings with Euclidean
output are commonly used, e.g., in [ZRS05]. A method for
interpolation/approximation of manifold-valued data based
on the harmonic energy has been proposed in [MSO04].

1.2. Roadmap

The aim of this paper is to generalize thin-plate splines from
the Euclidean to the manifold setting, or equivalently gen-
eralize cubic splines on curved spaces to the case where
one has multivariate input. We will define a suitable energy
for multivariate mappings between two manifolds, which
reduces to the thin-plate spline energy if both manifolds
are Euclidean. The parametrization independent energy will
only use intrinsic geometric properties of the manifold. We
will show that similar to the difference between cubic and
linear splines, our method leads to a smoother solution than
using the harmonic energy which is based on the first order
derivative. Special attention will be given to the boundary
and appropriate boundary conditions. This will allow us to
smoothly extrapolate the mapping outside of the data range,
without fixing the boundary a priori. Note that extrapolation
is not possible in the formulation of cubic splines on curved
spaces in [GK85, NHP89, BCGH92, HP04] since start and
end points of the curve need to be fixed.

Particular emphasis will be placed on the efficient imple-
mentation of the corresponding optimization problem. We
believe that the theoretical soundness, the relatively easy and
efficient implementation, and a wide range of possible appli-
cations provide the potential that the manifold-valued gener-
alization of thin-plate splines will become a standard tool,
just as their Euclidean equivalent.

After a sketch of the theoretical framework in Section 2
we will describe in Section 3 the implementation of the op-
timization problem in detail. We demonstrate the method
on several examples, namely interpolation of rotations (Sec-
tion 4.1), learning of task-space tracking (Section 4.2), map-
ping two dimensional regions onto smooth surfaces (Sec-
tion 4.3), and color interpolation (Section 4.4).

2. Theoretical framework

We would like to define an energy functional for a mapping
φ : M → N between two Riemannian manifolds M and N.
Three objectives should hold for the energy functional.

1. independence of the parametrization of M and N,
2. intrinsic formulation, that is it should only depend on the

geometry of M and N,
3. penalization of the second order differential. In particular

for M⊆Rm and N ⊆Rn it should reduce to the thin-plate
spline energy,

SThinPlate(φ) =
�

M⊆Rm

m

∑
α,β=1

p

∑
µ=1

� ∂2φµ

∂xα∂xβ

�2
dx.

The first objective means that the energy should not depend
on the coordinate representation of the manifold, e.g., the
energy of curves on the sphere should be the same if we rep-
resent the sphere in spherical or stereographic coordinates.
This can be achieved by formulating the energy in the covari-
ant language of differential geometry. The second require-
ment is that the energy should only depend on the geome-
try of M and N, that is only intrinsic properties of M and
N should matter. In particular, if M and N are isometrically
embedded in Euclidean space like the sphere S2 in R3 or
SO3 in R3×3, no properties of the ambient spaces should be
taken into account, since the embedding is not unique. The
third objective is motivated by the fact that an energy func-
tional only penalizing the first order differential leads only
to piecewise differentiable solutions as is shown below.

We call the resulting energy functional Eells energy after
James Eells, who pioneered the study of harmonic maps be-
tween Riemannian manifolds. The derivation requires some
heavy machinery from differential geometry, for better read-
ability we have moved it into the Appendix A-C. Here, we
present a particular simple form of the energy functional in
the case where the input manifold M is Euclidean and the
output manifold N is a submanifold in Euclidean space Rp.
These conditions on input and output manifold hold in most
of our example applications covering many fields of com-
puter graphics. Let i : N → Rp be the isometric embedding
of N into Rp, which is just the identity map if N is a subman-
ifold of Rp. Then we denote by Ψ = i◦φ the composition of
the map φ : M → N with the inclusion map i.

Introducing standard Cartesian coordinates in M ⊂ Rm

and Rp, the Eells energy can be written as

SEells(Ψ) =
�

M⊆Rm

m

∑
α,β=1

p

∑
µ=1

�� ∂2Ψµ

∂xα∂xβ

���2
dx, (1)

where � denotes the projection onto the tangent space of N.
It can be shown that this form of the energy is equivalent to
the intrinsic formulation defined on N, although we are ap-
parently using extrinsic properties, i.e. properties related to
Rp. The crucial difference to standard multivariate splines is
the projection� onto the tangent space. This way, we penal-
ize only intrinsic variations.

It is instructive to discuss the difference in the case
of curves. For the interpolation of curves on mani-
folds an extrinsic energy has been proposed by Hofer
and Pottmann [HP04]. Their extrinsic energy is given

by
�

M⊆R ∑p
µ=1

�
∂2Ψµ

∂t2

�2
dt whereas the Eells energy re-

duces to the cubic spline energy for curves on mani-

folds
�

M⊆R ∑p
µ=1

��
∂2Ψµ

∂t2

���2
dt, as proposed in [GK85,

NHP89]. One can decompose the acceleration ∂2Ψµ

∂t2 into its
tangential and normal component. Thus, in the extrinsic en-
ergy, apart from the desired tangential, intrinsic acceleration
one penalizes also the normal, extrinsic acceleration. The set
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of minimizers of both energies can therefore differ substan-
tially. Since geodesics have zero intrinsic acceleration they
are clearly minimizing the Eells energy. This is quite desir-
able since geodesics correspond to the most “simple” curves
on manifolds. However, geodesics will not necessarily min-
imize the extrinsic energy of [HP04] due to the penalization
of the normal component of the acceleration of the curve.

The domains M that we consider usually possess a bound-
ary. Thus, we have to specify the behavior at the boundary
via boundary conditions. Using variational techniques we
find the extremal equation of the Eells energy, see Theorem
1 in Appendix A. We deduce sufficient boundary conditions
(BC), see Equation 12, which for the case M ⊆ Rm can be
written in extrinsic notation, see Theorem 2, as

m

∑
α=1

Nα
�

∂2Ψµ

∂xα∂xβ

��
= 0,

m

∑
α,β=1

Nα ∂
∂xβ

�
∂2Ψµ

∂xβ∂xα

��
= 0,

(2)

where Nα is the normal vector field at the boundary of M.
Consideration of these boundary conditions is novel even for
cubic splines on curved spaces. They allow the smooth ex-
trapolation of the solution.

3. Implementation

Given the data points (xi,yi) with xi ∈M and yi ∈N, we gen-
erally compute approximating splines. Denoting the squared
geodesic distance in N by d2(., .), we minimize the func-
tional

SEells(Ψ)+C
k

∑
i=1

d2(yi,Ψ(xi)) (3)

over all Ψ : M →Rp subject to the conditions Ψ(x) ∈ N and
boundary conditions (2). For large C objective (3) enforces
interpolation.

If N is Euclidean, it can be shown that the minimizer of
(3) is a weighted sum of basis functions, piecewise cubic
polynomials for curves, or thin-plate basis functions in the
multivariate setting [HL93]. However, addition is not well
defined for points on general manifolds, thus we cannot hope
for such a nice expansion if N is a general manifold. Instead,
we resort to discretization of the input space M which is still
very efficient due to sparsity of all involved matrices.

Below we describe the necessary discretization steps, tak-
ing special care of boundaries of the domain M. We show
how to minimize the resulting optimization problem effi-
ciently using a geometrically motivated constrained Newton
approach.

3.1. Discrete Formulation of the Optimization Problem

In our model applications shown below, we use the spaces
[0,1], [0,1]2, and S1 as input manifolds M. We cover these
with a regular grid with spacing h, allowing us to use stan-
dard symmetric finite difference approximations for first and

second order derivatives. At the boundaries of M we use
a virtual point scheme: for each discretization point on the
boundary we compute the boundary normal, for points in
corners there may be several. We construct for any boundary
point in M two new "virtual" points outside the domain of
M by translating each boundary point along the normal vec-
tor by h and 2h. The virtual points are added to the interior
discretization points, yielding the set Xd of all d discretiza-
tion points. Domains with non-constant metric or non-trivial
boundary could be dealt with using an interpolation scheme
between non-uniformly spaced discretization points in M, or
employing techniques from [BCOS01] who discretize PDEs
on general manifolds.

We represent Ψ : M → Rp by its function values at the
discretization points, i.e. as a vector Ψ ∈ Rd p. Discrete ex-
pressions for the first and second derivatives in direction
α, β are stored in sparse block diagonal d p× d p matri-
ces Dα, Dα,β. Rows corresponding to virtual points are left
blank. The matrices Fint , Fbd filter out rows correspond-
ing to interior points, or boundary points respectively. From
the k data points (xi,yi) we build a vector y ∈ Rkp, and a
block diagonal kp×d p interpolation matrix S such that SΨ
yields weighted k-nearest neighbor estimates of Ψ(xi). The
d p×d p matrix P

Ψ
t is the orthogonal projection of Rd p vec-

tors onto the tangent spaces of the output manifold N at posi-
tions encoded in Ψ. Lastly, N

α are diagonal matrices storing
the α components of the boundary normals at the discretiza-
tion points on the boundary. In matrix notation problem (3)
then reads

minΨ ∑
α,β

ΨT
D

T
α,β

�
P

Ψ
t

�T
FintP

Ψ
t Dα,βΨ+Cd2(SΨ,y)

s.t. ∑
α

N
α

FbdP
Ψ
t Dα,βΨ = 0 ∀ β = 1, .., p (4)

∑
α,β

N
α

FbdDβP
Ψ
t Dβ,αΨ = 0

Ψ(x) ∈ N ∀ x ∈ Xd .

To exemplify the notation we sketch it for map-
pings Ψ : [0,1] → S2 ⊂ R3. Here, Xd = {−2h,−h, ..,1 +
2h} where −2h,−h,1 + h,1 + 2h are the virtual points.
We stack the different output components of Ψ above
each other, Ψ = (Ψ1(−2h),Ψ1(−h), ..,Ψ3(1 + 2h))T .
D1,D11,Fbd ,Fint ,S,N1 are block-diagonal matrices with
three identical sub-blocks, one for each output dimension.
It is D

sub
1,i j = δi, j+1− δi, j−1, except for the blank rows 1,d.

F
sub
bd,i j = δi=1, j=3 + δi=2, j=d−2 since the left (right) bound-

ary point has index 3 (d− 2) in Xd . Corresponding surface
normals in M are stored as N

1,sub = diag(−1,1). P
Ψ
t is as-

sembled from individual projections P
Ψ(x)
t ∈ R3×3, x ∈ Xd .

3.2. Optimization

Optimization problem (4) closely resembles a linear con-
strained quadratic problem, that could be solved in one New-
ton step. However, the geodesic distance function d2(., .), the
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Algorithm 1 Optimization routine
1: Ψ← ProjectOnN(free TPS solution)
2: repeat

3: PΨ
t ← tangent space projection at current Ψ

4: Compute geodesic distance SΨ to y,
ỹ← SΨ− 1

2∇d2(SΨ,y)
5: Determine direction δΨ: Set Ψ0 ←Ψ

A← ∑α,β D
T
α,β

�
P

Ψ
t

�T
FintP

Ψ
t Dα,β +C2S

T
S

C←




∑α N

α
FbdP

Ψ
t Dα,β

∑α,β N
α

FbdDβP
Ψ
t Dβ,α

1−PΨ
t





b← 2S
T

ỹ, d←
�
0 0 ΨT

0 (1−PΨ
t )

�T

and solve system (6) for x = Ψ. δΨ←Ψ−Ψ0
6: t∗ = argmint>0 Energy

�
ProjectOnN(Ψ0 + tδΨ)

�

7: Ψ← ProjectOnN(Ψ0 + t∗δΨ)
8: until �Ψ−Ψ0�∞ < threshold

constraint Ψ(x)∈N, and the dependence of P
Ψ
t on Ψ rule out

such a direct approach. Instead, as outlined in algorithm 1,
we solve the problem iteratively, approximating (4) in each
step with the closest linearly constrained quadratic problem.
This numerical scheme turned out to be robust and efficient,
typically converging in few iterations.

Given a current solution Ψ0, we replace the non-linear
constraint Ψ(x)∈N at each point with a geometrically moti-
vated linear alternative: We constrain δΨ(x) = Ψ(x)−Ψ0(x)
to lie in the tangent space of N at Ψ0(x). Furthermore, the
non-linear squared geodesic distance function d2(SΨ,y) is
approximated by a Euclidean distance term. We compute the
geodesic distance from SΨ to y, and place a virtual target ỹ

in the tangent plane of SΨ in direction of y at the computed
distance value. This way, the Euclidean term �SΨ− ỹ�2 has
the same value and gradient as the replaced d2(SΨ,y). For-
mally, ỹ = SΨ0− 1

2∇d2(SΨ0,y).

In each iteration we then solve a constrained quadratic ob-
jective of the form

min
x

1
2

x
T

Ax−b
T

x s.t. Cx = d. (5)

Introducing Lagrange multipliers λ, the minimum is
achieved by the solution of

�
A C

T

C 0

��
x

λ

�
=

�
b

d

�
. (6)

Since all involved matrices are extremely sparse, these prob-
lems are amenable to efficient sparse solvers. For medium
to large problems we used the exact solver CHOLMOD
[CDHR06], for very large problems preconditioned conju-
gate gradient methods could be used. We add a small ridge
to increase numerical stability.

Having solved the quadratic problem, the vectors δΨ in-
dicate a direction of descent. We perform a line search using

Goldstein’s rule. For each proposed step size we project the
corresponding Ψ back onto the manifold, and evaluate its en-
ergy there. The optimization is terminated when the maximal
change of Ψ in one iteration is less than a small threshold.

As initial solution for the iterative scheme, we use the free
solution, projected onto the manifold N. I.e., we first com-
pute the minimizer of (4) pretending the output space was
Rp, in which case the problem is equivalent to the normal
thin-plate spline solution. For complex output manifolds the
projection of the free Ψ onto N may introduce large distor-
tions increasing the danger of local minima. Where neces-
sary, we thus move Ψ slowly towards N in an iterative man-
ner targeting a low Eells energy already for intermediate so-
lutions. The squared distance of Ψ(x) to the closest point on
N is added to objective (4) while the constraint Ψ(x) ∈ N is
dropped. We solve for a new Ψ in each iteration with increas-
ing weight on the distance term. To compute tangent space
projections for points Ψ(x) �∈ N as required during this pro-
cess, we use the iso-distance manifold to N through Ψ(x).

Note that it is mainly the constraint Ψ(x) ∈ N that cou-
ples the different components of Ψ in (4). In the case where
N is Euclidean or where N is the direct sum of several Rie-
mannian manifolds, all involved matrices are block diagonal
and each component of Ψ can be computed separately. How-
ever, the proposed algorithm is also quite efficient even for
coupled dimensions. Sparse solvers typically scale linearly
with the number of nonzero entries. As this number is pro-
portional to the number of output dimensions in our case,
the overall scaling of our algorithm is linear in the number
of output dimensions. It also scales sub-quadratically with
the number of discretization points, see Section 4.5. Since
the number of discretization points grows exponentially with
the number of input dimensions, our approach is limited to a
small number of input dimensions. However, for many prob-
lems in computer graphics, this is not a problem, since usu-
ally the input dimension is low.

3.3. Operations on the output manifold

Our algorithm requires only three operations from the em-
bedded output manifold N: (1) Projection of any point in
the embedding space onto the manifold. (2) Projection onto
the tangent space at any point of N. (3) Computation of the
geodesic distance and its derivative between any two points
of the manifold N.

The implementation of these operations depends largely
on the way the manifold N is represented. For many mani-
folds and their standard embeddings these steps are straight-
forward. For N = S2 ⊂ R3, x,y ∈ R3, it is ProjectOnN(x) =
x/�x�, the projection onto the tangent space Px

t = 1− xx
T

xT x
,

the geodesic distance d2(x,y) = acos( x
T

y

�x��y� )2, and its

derivative ∇xd2(x,y) = 2Px
t

x−y

�x−y�
�

d2(x,y).

Rotations respectively orientations as members of SO3
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(a) (b) (c) (d)

method: linear spline linear spline + Proj. Harmonic energy Eells energy
target space: angles R3 S2 S2

Figure 2: The interval [0,1] is mapped onto the unit sphere S2 in 3D. Green markers show the given data points yi ∈ S2, respective training
times xi ∈ [0,1] are given as numbers close-by. Red markers indicate Ψ(xi) for the approximating spline Ψ : [0,1]→ S2. Yellow dots mark the
Ψ-images of equally spaced points in [0,1].

can be isometrically embedded in R9 as orthonormal 3× 3
matrices. The induced distance is the absolute value of the
rotation angle. Different object specific metrics implement-
ing a non-trivial inertia tensor are proposed in [HP04] and
can be dealt with similarly. The three operations are in this
case: (1) The closest orthonormal matrix to any 3× 3 ma-
trix can be found via the polar decomposition. (2) the tan-
gent space of a point O of the Lie group SO3 is given by
{OJ |J ∈ Θ} where Θ are the skew-symmetric matrices. (3)
the geodesic distance between O1 and O2 is given as the
Frobenius norm of the matrix logarithm log(O1O

T
2 ).

We also experimented with surfaces in R3, which were
given as densely sampled meshes. One approach would be
to convert this discrete representation into a continuous dif-
ferentiable one, e.g. by fitting an implicit surface descrip-
tion [OBA∗03, MSO04]. However, we resorted to a much
simpler scheme that worked well for densely sampled sur-
faces. We extract surface normals for each vertex, and iden-
tify the manifold close to a point x with the tangent plane of
the closest vertex to x. Projection onto N and normal extrac-
tion can then be done efficiently using fast nearest-neighbor
search. In order to determine geodesics, we first compute the
shortest path on the given mesh using Dijkstra’s algorithm.
With this as initialization, we then compute a harmonic map-
ping (9) from [0,1] to the surface fixing the end points to the
points for which the geodesic distances should be computed.
This can be done with an implementation almost identical to
the one described above, just replacing second order deriva-
tives with first order expressions. It is known that minimiz-
ers of the harmonic energy are geodesics [ES64]. Note that
small geodesic distance in N implies also small Euclidean
distance in Rp. In many of the examples below, we worked
with high weights C for the distance terms in (3), such that
already after one iteration of the optimization algorithm the
points were close with respect to the geodesic distance in N.
From then on, we worked directly with the computationally
cheaper Euclidean distance since the distances and gradients
are in this case almost identical.

4. Experiments

4.1. Interpolation on the Sphere and on SO3

We consider the approximation of a curve on the sphere
S2 ⊆ R3 with 6 data points, see Figure 2. Before discussing
manifold-valued splines, we present some naive approaches,
highlighting the difficulties of the problem. A first idea
could be to parameterize the surface of the sphere using
spherical coordinates, and to interpolate the coordinates of
the data points using linear splines (For visualization pur-
poses we use linear splines corresponding to first order dif-
ferential energies here). This is computationally attractive
since the coordinates form a linear space, and the splines
can be computed using basis function expansions. How-
ever, as shown in Figure 2(a), no path can go through the
parametrization boundary −π,π, and the geometry is heav-
ily distorted by the non-linear parametrization mapping from
S2 to (−π,π)× (0,π). Alternatively, shown in Figure 2(b),
one could first compute a linear spline in R3 and then project
it onto the sphere. While the trajectory can now surround the
sphere, the metric is still distorted. The yellow points are
equally spaced in the input, however, close to the red arrows
they are not equally spaced in the output.

Manifold adapted approaches are much better suited. In
Figure 2(c), the harmonic energy (9) is used in the objec-
tive (3), instead of the Eells energy. Note that that the yellow
points are now equally spaced between any two data points,
up to small distortions resulting from the 2D visualization.
However, since the minimizers of the harmonic energy are
piecewise geodesic [MLH06], the curve is not differentiable.
It also does not extend outside of the first/last marker. Us-
ing the Eells energy both these problems are avoided, see
Figure 2(d). The curves are smooth and they extrapolate lin-
early, or more precisely geodesically.

Similar effects are demonstrated in the video of this pa-
per showing an interpolation from S1 to SO3 visualized as
the periodic rotation of a teapot. We use an embedding of
SO3 into R3×3 opposed to the quaternion based approach
of [BCGH92] which is otherwise very similar.
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(f ) using standard controller (resolvced motion rate controller)

(g) using proposed controller
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Figure 3: (a) Example system: Mitsubishi PA-10 with three planar DoFs where two have no joint limits (the others are locked). (b) Many
postures of a three link arm in two dimensions yield the same tip position. (c) Some training postures. (d) The inner most angle of the arm
generalized to the unit square in task space, R2. Angle−π corresponds to dark blue, π to dark red, training points are marked as black crosses.
(e) The desired task space trajectory (red) is followed by both the resolved motion rate controller [SHV06] (blue) and our controller (green).
The reachable space is yellow. (f,g) Postures during the trajectory. (h) Inner and outer angle plotted over time. The gray areas show the region
of the training values for the current x position (right hand side positive angles, left hand side negative ones).

4.2. Learning of Task-Space Tracking

Consider a skeleton based model in animation. As a running
example we use a model of a robot arm, see Figure 3 (a).
Most movement tasks are not defined through the model’s
joint angles q ∈ Sn

1 = S1× · · ·×S1 but rather by the motion
of an end-effector x ∈ Rm, the fingertip. Thus, task-space
planning and control requires the inverse kinematic mapping
of the task onto the joint space.

Most interesting models are redundant n > m, i.e. there
is a whole set of joint angles which all put the finger tip at
the same location. Some of these will look natural, others
won’t. A controller that just focuses on keeping the end ef-
fector on the desired trajectory may thus lead to rather unde-
sirable postures. In practice it may be quite hard to specify
all (soft) constraints for a high-dimensional system explic-
itly, and it may be much easier to specify a number of exam-
ple postures. We therefore propose to generate joint-space
trajectories that stay close to previously observed postures.

Typically, redundancy resolution is achieved by pulling
the robot towards a rest posture as implemented for exam-
ple in the 3DSMax HI controller. Learning of postures has
been proposed by [GMHP04] who use Gaussian process re-
gression. However, since some joints can rotate by 360◦ our
manifold-valued thin-plate splines are much better suited for
such a situation.

Formally, we assume that we are given a desired path
xd(t) ∈ Rm of the finger tip. At time t, we aim at determin-
ing δq in the model’s joint angles q ∈ Sn

1 such that the new
posture q+δq with tip position x(q+δq) is close to the de-
sired position xd(t) and at the same time is similar to train-
ing postures in this region of task space. For generalising
locally preferred postures q1, ..,qk at positions x1, ..,xk to
all reachable positions in task space, we use our generalized
thin-plate splines to learn a mapping qpred : Rm → Sn

1. We
then choose δq such that it solves the optimization problem

min δq �x(q+δq)−x−δxd −κ[xd(t)−x]�2 (7)

+λ1 �δq�2 +λ2d2
S3

1
(q+δq,qpred(x)).

Firstly, this cost tries to keep the finger tip on the desired
trajectory with a feedback term with gain κ. Secondly, we
prefer small steps δq, and lastly try to minimise the distance
between q + δq and suitably generalised training examples
qpred. The trade-off between the different objectives is con-
trolled by the weighting coefficients λ1 and λ2. Taking the
derivative of (7) with respect to δq and equating to zero we
arrive at the following control law,

δq = (JJ
T )−1

J
T
�

λ1
�
δxd −κ[xd(t)−x]

�
(8)

+λ2∇d2
S3

1
(q+δq,qpred(x))

�
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(a) original in R2 (b) thin-plate to R3 + proj. (c) harmonic S2 (d) thin-plate to S2

Figure 4: The Lena image (a) is used to visualize a mapping from the unit square in R2 to the unit sphere S2 in R3. Green markers show the
given data point pairs, red stars on S2 denote positions of the input markers in R2 mapped to the sphere by the approximating spline.

Target: R3 + Proj. surface manifold R3 + Proj. surface manifold

Figure 5: Thin-plate splines mapping a regular grid in R2 (yellow points) onto a face manifold in R3. Green and red markers as in Figure 4.

where J is the forward kinematic Jacobian J(q) = ∂x

∂q
(q).

The presented method is evaluated on the three link (n =
3) arm model, see Figure 3 (a). For better visualization we
chose a planar configuration (m = 2). Many postures q yield
the same end effector location x, see Figure 3(b). Training
postures in Figure 3(c) are bent to the right for points x right
of the base, to the left otherwise. From 15 examples (black
crosses in Figure 3(d)) we learn the function qpred(x); its
first component is color coded in Figure 3(d). Note the direct
transition from −π to π would be impossible with normal
thin-plate splines, since they are not aware of the fact that π
and −π actually encode the same angle. While the standard
resolved motion rate controller [NCM∗05,SHV06] (λ2 = 0)
results in intuitively quite unnatural poses (red boxes in Fig-
ure 3(f,g)) despite a null-space term, ours stays close to the
more natural training set. Also, when plotting the middle and
outer angles — for which the training data imply a kind of
soft constraints, see gray areas in Figure 3(h) — our con-
troller consistently stays closer while full-filling the task to
follow xd(t) equally well as the default approach, see Fig-
ure 3(e).

The above example is also visualized in the video of this
paper, where we compare against two alternatives. The re-
solved motion rate controller [SHV06] (red) has no pre-
ferred posture, the 3DSMAX HI inverse kinematics con-
troller (blue) has a single one. In contrast, our approach
(green) features location dependent preferred postures as

learned from a set of training examples. While it performs
similar to the 3DSMAX controller in the right half of the
task space, it smoothly adapts to the reverse curvature of the
arm when entering the left half of task space.

4.3. Geometric Modelling

Here, we experiment with mappings from [0,1]2 ∈ R2 to
smooth surfaces in 3D. Such smooth mappings generated
from few data points are useful for many geometric mod-
elling tasks such as surface parametrization, remeshing, or
texture mapping.

In parametrization, one typically computes mappings
from the surface to R2, see [SPR06] for an overview. How-
ever, there are also many applications where the inverse
mapping is required. For this case, one could try to invert
the forward mapping, but this may be costly and the es-
timated forward mapping need not even be invertible. Al-
ternatively, one could directly estimate the inverse mapping
from the R2 domain onto the manifold using our manifold-
valued thin-plate splines. Similarly, one could use a regular
grid mapped onto the surface of an object, to reorganize the
mesh according to a 2D coordinate system. Such mappings
should minimizes a reasonable measure of distortion. The
Eells energy can be seen as such a measure of distortion. It
follows from Proposition 2.21 in [EL83], see also [HSS08],
that mappings have zero Eells energy if and only if they
are totally geodesic, which means that geodesics in M are
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mapped to geodesics in N. Every distortion free mapping is
totally geodesic. The converse is generally not true but to-
gether with enough training points one can find among all
possible totally geodesic mappings the one which is distor-
tion free. Therefore for a given interpolation problem we can
see the Eells energy as a measure of the deviation from a
distortion free mapping. This is in contrast to the harmonic
energy where totally geodesic maps are local extrema of the
harmonic energy, but the value of the energy is zero if and
only if the map is constant, that is M is mapped to a sin-
gle point in N. Therefore the Eells energy is a much better
measure of distortion than the harmonic energy.

In Figure 4 we compare different approaches for splines
from R2 to surfaces in R3 more closely. In Figure 4(b),
we first compute thin-plate splines in R3, which yields a
plane cutting through the given 4 markers in this case. We
then project the plane onto the sphere. Observe the ex-
treme fish-eye distortion resulting from projection. In Fig-
ure 4(c), we show results for variational splines using the
harmonic energy. This approach is commonly used in ge-
ometric modelling, e.g., [ZRS05], although mostly target-
ing linear spaces. However, the mapped image does not fill
the convex hull of the training points. This is why the har-
monic energy is traditionally only used for input domains
without boundary, or when the output boundary can be fixed
a priori. [ZRS05] discusses a method to avoid this behav-
ior, but one could alternatively use our proposed manifold-
valued thin-plate splines, see Figure 4(d). Since the Eells
energy does not try to minimize the distances between the
points, but the variation of distances, it is much less prone to
contraction of the image. Furthermore, our generalized thin-
plate splines extrapolate nicely out of the convex hull of the
marker points.
Similar effects are observed in Figure 5 showing a thin-plate
spline from R2 to a face manifold guided by 30 markers.
These were placed on feature points of the face such as eyes
and mouth, their input position in R2 was determined by pro-
jecting the 3D points onto the surface of a vertical cylinder
through the head. A more complex output manifold taken
from the Stanford 3D Scanning Repository is used in Fig-
ure 1.

4.4. Color Interpolation

Another potential field of application for manifold-valued
splines is color processing, since perceptually colors have a
circular structure [She80]. This property is used in the HSV
color space, where H, the hue value, is a circular variable.

For smoothing color values over an image, it makes sense
to take into account the presence of edges. Edges can be in-
cluded via a non-uniform metric in the input space. A one
pixel distance could be termed large, if it crosses an edge,
and small otherwise. This way our smoothing spline which
varies slowly in units measured by the metric could express
sharp changes over edges, whereas it would vary slowly

within objects. A derivation and implementation hints are
given in the Appendix D.

The effects are demonstrated in Figure 6, where we aim at
coloring a black and white image of a circle (a). We interpo-
late given H color values (b) over the image, fixing the S and
V channel values to 1. A uniform metric (c) misses to take
into account the shape of the circle. We then compute the
norm of the (a)-image gradients in (d), a simple edge detec-
tion scheme. Using these values as multiplier in the metric,
we arrive at an interpolation that is much better suited to the
image structure (e).

The same technique is used for image compression in Fig-
ure 7. The compression consists of the following steps: first,
we transform the RGB image into HSV color space. We
sample randomly 500 pixels of H values, corresponding to
2−3% of all values. We also store the S and V components
for the whole image. During decompression we interpolate
the H channel of the image using manifold-valued thin-plate
splines. The mapping Ψ : R2 → S1 is learned using an edge-
adapted metric as above, where the edges are extracted from
the stored S and V channel. The HSV color image is finally
transformed back to normal RGB values. Some experimen-
tal results are summarized below. RGB values range from 0
to 1, the error is the RGB root mean squared error over the
whole image.

Horse Flower
Image size 135 x 200 133 x 100
Error interpol. in R 0.029 0.144
Error interpol. in S1 0.028 0.042

While the overall compression rate and quality is certainly
not state-of-the-art in well-developed image compression,
the example may nevertheless show that manifold-valued
thin-plate splines are able to capture important regularities
in natural datasets such as color images. It might be possible
to include such knowledge into a more sophisticated state-
of-the-art compression scheme in the future.

4.5. Performance

Some run-times for our naive Matlab implementation on
a dual core 2.2 GHz notebook are given below. For the
Lena problem, Figure 4, the run-time for one optimization
step empirically scaled like O(d1.3) with the number of dis-
cretization points d, an average of 3.5 optimization steps
were needed. Significant speed-ups and memory savings
could be achieved with an adaptive discretization scheme as
is often used in finite element methods.

line Lena Lena Lena flower
# discret. points 105 118 726 2.7k 14k
Time [s] 0.14 0.21 2.1 13 122

The discretization error of Ψ for different spacings h be-
tween discretization points reduced like O(h1.7) in the Lena
example, when compared to results for a very fine discretiza-
tion that was assumed to be identical with the continuous
solution.
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(a) Original (b) Marker data (c) TPS uniform metric (d) Metric (e) TPS adapted metric
Figure 6: Image (A) is colored by interpolating the colors in (B) in HSV color space, the H channel is modelled as S1. (C)
shows results for the Eells energy with a uniform metric. However, we can extract edges from the original image (A) and use
them as a scalar metric (D). The Eells interpolation then does not interpolate across edges (E), as the metric implies a large
distance between the inner and the outer area of the circle.

Original Interpolation in R Interpolation in S1

Figure 7: The original images (left) are compressed via a HSV space method. During compression we randomly discard 98%
of the H channel of the original images (left column right), but we keep the full S and V information. At decompression time,
we interpolate the H values either using normal splines from the image pixels to [0,1] ∈R (middle column), or the Eells energy
for splines targeting the circle S1 (right column). We obtain the H images shown in the right columns. When combining the
interpolated H channels with the additionally stored S and V channels we obtain the images shown to the left of the H images.

5. Conclusion

We have presented a generalization of thin-plate splines to
manifold-valued output with a wide range of applications in
computer graphics and elsewhere. In this paper we have fo-
cused on Euclidean input manifolds. However, the theoret-
ical framework can be easily extended to general maps be-
tween Riemannian manifolds e.g. in order to compute dense
point correspondences between two faces or other objects.

Appendix A: Derivation of the Eells energy

Let M be our m-dimensional input manifold and N the n-
dimensional output manifold. Both are Riemannian mani-
folds with metric g in M and h in N. We will use abstract
index notation, i.e., the tensor type is indicated by the po-
sition of “abstract” indices. They should not be mixed up
with the indices for the components. A twice covariant ten-
sor h is written as hab and the coordinate representation is
hab = hµν dxµ

a ⊗ dxν
b. In general, we use Greek letters for

components (α,β,γ for components of M and µ,ν,ρ for com-
ponents in N) and Latin ones for abstract indices (a, b, c for
indices in M and r, s, t in N).

The differential dφr
a : TxM → Tφ(x)N of a mapping φ :

M → N evaluated at x is given as

dφr
a(x) =

∂φµ

∂xα dxα
a

���
x
⊗ ∂r

∂yµ

���
φ(x)

= M∇aφµ
���
x
⊗ ∂r

∂yµ

���
φ(x)

,

where xα and yµ are coordinates in M and N and M∇ is the
covariant derivative of M. The differential dφr

a measures the
change of the output φ(x) ∈ N as one varies x in the input
manifold M. This object can be used to define the most sim-
ple differential energy, the so called harmonic energy,

Sharmonic(φ) =
�

M
�dφ�2

T∗x M⊗Tφ(x)N dV (x)

=
�

M
gαβ(x)hµν(φ(x))

∂φµ

∂xα
∂φν

∂xβ dV (x), (9)

where dV =
√

detgdx is the natural volume element of M.
For standard multivariate regression, that is M = Rm and
N = R, the harmonic energy reduces to the energy functional
of linear splines S(φ) =

�
Rd �∇φ�2 dx. It is well-known that

using this energy functional for interpolation/approximation
leads to piecewise linear solutions. For curves on manifolds
it leads to piecewise geodesic solutions, see [MLH06].

The problem with the definition of higher-order differen-
tials of mappings between manifolds is that the first order
differential dφ “lives” in the cotangent and tangent space,
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T∗x M and Tφ(x)N, of two different manifolds. Thus we can-
not simply use the connection M∇ of M. The solution is
to “pull-back” the connection N∇ of N for the covariant
derivatives of elements in Tφ(x)N. The pull-back connection
∇� : TxM⊗Tφ(x)N → Tφ(x)N is defined as

∇� ∂
∂xα

∂r

∂yµ :=N ∇φ∗ ∂
∂xα

∂r

∂yµ =
∂φν

∂xα
NΓ

ρ
νµ

∂µ

∂yρ ,

where NΓω
νµ are the Christoffel-symbols of N.

With this definition, we have a notion of the derivative of
a vector field on N with respect to a variation in M, where M
and N are connected via φ. The covariant derivatives of the
differential dφr

a of φ : M → N can thus be defined as

∇�bdφr
a := M∇b

M∇aφµ⊗ ∂r

∂yµ + M∇aφµ⊗∇�b
∂r

∂yµ

=
� ∂2φµ

∂xβ∂xα −
∂φµ

∂xγ
MΓ

γ
βα +

∂φρ

∂xα
∂φν

∂xβ
NΓ

µ
νρ

�
(10)

dxβ
b ⊗dxα

a ⊗
∂r

∂yµ .

Up to here the presented notions can be found in [EL83].

Equivalent to the the thin-plate spline case, we now use
the inner product in T∗x M⊗T∗x M⊗Tφ(x)N, yielding the Eells
energy,

SEells(φ) =
�

M

��∇�bdφr
a
��2

T∗x M⊗T∗x M⊗Tφ(x)N
dV (x)

=
�

M
gacgb f hrs∇�bdφr

a∇�ddφs
cdV (x). (11)

Appendix B: Variation of the Eells energy

Variation of the Eells energy provides us with necessary con-
ditions for a minimizer and most importantly with boundary
conditions for M.

Theorem 1 Let φ(t,x) : (−ε,ε)×M → N be a variation of
the mapping φ = φ(0,x) and W r = ∂

∂t φr
t
��
t=0 the variational

vector field at t = 0. The variation of the Eells energy is given
as,

d
dt

SEells(φt)
���
t=0

=2
�

M
gab gcd hrs W r

�
∇�c∇�a∇�bdφs

d +RN
uvw

s dφw
a dφu

c ∇�bdφv
d

�
dV

+2
�

∂M
hrs gab Nd

�
∇�aW r∇�ddφs

b−W r ∇�a∇�bdφs
d

�
dṼ

where dṼ is the volume element of the boundary ∂M and
RN

serb is the curvature tensor of N.

A necessary condition for a minimizer of the Eells en-
ergy is d

dt SEells(φt)
���
t=0

= 0 for all vector fields W . A set of
boundary conditions which achieves that the boundary terms
vanish are

Na∇�adφr
b = 0, Ncgab∇�a∇�bdφr

c = 0. (12)

The proof is basically build on the two following Lemmas
(proofs can be found in [HSS08]). The first one is a general-
ization of the Green’s theorem for the pull-back connection
and the second one computes the commutator of the deriva-
tive with respect to the variation and the pull-back connec-
tion.

Lemma 1 Let R ∈ ⊗p+1T∗M⊗φ−1T N and S ∈ ⊗pT∗M⊗
φ−1T N, where φ−1T N is the bundle of Tφ(x), x ∈ M. Then
with ∇� being the pull-back connection,

�

M

�
R,∇�S

�
=

�

∂M
�R,N⊗S�−

�

M

�
traceg∇�R,S

�
,

where N is the covector associated to the normal vector of
M and the trace is taken with respect to the first two indices.

Lemma 2 Let φ(t,x) : (−ε,ε)×M → N be a variation of the
mapping φ = φ(0,x). Then

∂
∂t
∇�adφr

b =∇�a∇�b
∂φr

∂t
+RN

suv
r dφs

a
dφu

dt
dφv

b. (13)

Proof We use the commutator from lemma 2 and obtain,

d
dt

SEells(φt) = 2
�

M
gab gcd hrs

� ∂
∂t
∇�a(dφt)r

c

�
∇�b(dφt)s

ddV

=2
�

M
gab gcd hrs∇�a∇�c

∂φr

∂t
∇�b(dφt)s

ddV

+2
�

M
gab gcd hrs RN

uvw
r (dφt)u

a
∂φv

t
∂t

(dφt)w
c ∇�b(dφt)s

d dV

One has ∇�b(dφt)s
d

���
t=0

= ∇�bdφs
d . We apply two times the

Green’s theorem of Lemma 1 and obtain
d
dt

SEells(φt)
���
t=0

= 2
�

M
gab gcd hrs∇�a∇�cW r ∇�bdφs

d dV

+2
�

M
gab gcd hrs RN

uvw
r dφu

a W v dφw
c ∇�bdφs

d dV

=2
�

∂M
Nb gcd hrs∇�cW r ∇�bdφs

d dṼ

−2
�

∂M
gab Nd hrs W r ∇�a∇�bdφs

d dṼ

+2
�

M
gab gcd hrs W r ∇�c∇�a∇�bdφs

d dV

+2
�

M
gab gcd hrs RN

uvw
r dφu

a W v dφw
c ∇�bdφs

d dV

=2
�

M
gab gcd hrs W r

�
∇�c∇�a∇�bdφs

d +RN
uvw

s dφw
a dφu

c ∇�bdφv
d

�
dV

+2
�

∂M
hrs gab Nd

�
∇�aW r∇�ddφs

b−W r ∇�a∇�bdφs
d

�
dṼ ,

where we have used in the last step Ruvws = Rwsuv.

Appendix C: From intrinsic to extrinsic representation

The expression of the Eells energy in coordinates is quite
complicated as one can see from the explicit form of∇�bdφr

a
in Eq. (10). However, the expression dramatically simplify
if N is an isometrically embedded submanifold of Rp and M
is a subset of Euclidean space Rm. We have to stress that the
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following reformulation of the energy is completely equiva-
lent to the one in Eq. (11).

Let i : N → Rp be the isometric embedding and denote
by Ψ : M → Rp the composition Ψ = i ◦ φ. Let zµ be stan-
dard Cartesian coordinates in Rp. Then the differential of Ψ
is given as dΨr

a = ∂Ψµ

∂xα dxα
a ⊗ ∂r

∂zµ . As above we can also de-
fine an pull-back connection ∇̃ : TxM⊗Tψ(x)Rp → Tψ(x)Rp

for the mapping Ψ, ∇̃ ∂
∂xα

∂r

∂zµ := Rp
∇Ψ∗ ∂

∂xα
∂r

∂zµ = 0, which
is trivial due to the flatness of the connection of Rp. Be-
cause of this property the expressions for the corresponding
covariant derivatives expression will simplify significantly.
The following theorem shows how intrinsic expressions in φ
can be expressed in terms of the extrinsic ones in Ψ.

Theorem 2 The following equivalences between intrinsic
and extrinsic objects hold,

dφr
a =dΨr

a, ∇�bdφr
a =

�
∇̃bdΨr

a
��

,

∇�c∇�bdφr
a =∇̃c

�
∇̃bdΨr

a
��−dΨs

c
NΠ

r
su

�
∇̃bdΨu

a
��

,

where � denotes the projection onto the tangent space
TΨ(x)N and NΠr

su is the second fundamental form of N. If
M is a domain in Rm we derive for the Eells energy (11) the
expression given in Eq. (1), for the corresponding boundary
conditions (12) the form (2).

The proof can be found in [HSS08]. Note that if M is a do-
main in Rm one has

∇̃bdΨr
a =

∂2Ψµ

∂xα∂xβ dxα
a ⊗dxβ

b ⊗
∂r

∂yµ .

Appendix D: Non-uniform Metric in M

Consider the metric gi j(x) = Ω(x)δi j on M. For non-constant
Ω, the Christoffel symbols MΓκ

βα in the coordinate expres-
sion of ∇�bdΨr

c in Eq. (10) do not vanish. We compute

∇�bdΨr
c =

� ∂2Ψµ

∂xβ∂xα −
∂βΩ
2Ω

∂Ψµ

∂xα −
∂αΩ
2Ω

∂Ψµ

∂xβ

+∑
γ

∂γΩ
2Ω

∂Ψµ

∂xγ

�
dxβ

b ⊗dxα
c ⊗

∂r

∂yµ .

This is a linear expression in Ψ. For implementation we
just have to change the second derivative matrices Dα,β de-
scribed in Section 3, by adding first order terms in form of
weighted combinations of Dα matrices.
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