August 2, 2018

Advanced Robotics tadr’osa

To appear in Advanced Robotics
Vol. XX, No. XX, XX 20XX, 1-17

FULL PAPER

Hierarchical Reinforcement Learning of Multiple Grasping Strategies with
Human Instructions

T. Osa®®*, Jan Peters®?, and G. Neumann®

@ University of Tokyo, Tokyo, Japan; *RIKEN, Tokyo, Japan; ¢ Technische Universitit Darmstadt,
Darmstadt, Germany; * Maz-Planck Institute, Tibingen, Germany; € University of Lincoln, Lincoln, UK

(Received month 20XX, Accepted month 20XX)

Grasping is an essential component for robotic manipulation and has been investigated for decades.
Prior work on grasping often assumes that a sufficient amount of training data is available for learning
and planning robotic grasps. However, constructing such an exhaustive training dataset is very chal-
lenging in practice, and it is desirable that a robotic system can autonomously learn and improves its
grasping strategy. Although recent work has presented autonomous data collection through trial and
error, such methods are often limited to a single grasp type, e.g., vertical pinch grasp. To address these
issues, we present a hierarchical policy search approach for learning multiple grasping strategies. To
leverage human knowledge, multiple grasping strategies are initialized with human demonstrations.
In addition, a database of grasping motions and point clouds of objects is also autonomously built
upon a set of grasps given by a user. The problem of selecting the grasp location and grasp policy is
formulated as a bandit problem in our framework. We applied our reinforcement learning to grasping
both rigid and deformable objects. The experimental results show that our framework autonomously
learns and improves its performance through trial and error and can grasp previously unseen objects
with a high accuracy.

Keywords: hierarchical reinforcement learning; grasping; point clouds; active learning

1. Introduction

Grasping is an essential motion for robotic manipulation, which has been investigated for
decades [1, 2]. Many approaches for robotic grasping are data driven and can leverage a dataset
of grasping motions and objects. Prior work on data-driven grasping methods often assumes that
the sufficient amount of training data is available for learning and planning robotic grasps. For
instance, geometry-based methods such as [3, 4] require thousands of example grasps. However,
since constructing such exhaustive training datasets is very challenging in practice, it is desirable
that a robotic system autonomously learns and improves its grasping strategy. Recent work has
presented autonomous data collection through trial and error [5, 6]. However, such methods are
often limited to a single grasp type, e.g., vertical pinch grasps. Since grasping various objects re-
quires multiple grasp types in practice [7], it is necessary to develop a method for autonomously
learning multiple grasping policies for different grasp types.

When we learn multiple grasp types, it is essential to learn how to grasp objects with specific
grasp types and how to select grasp types according to given objects. In addition, since an
object often has multiple potential grasp locations, it is also necessary to learn how to select the
grasp locations among multiple options. In this work, we address such autonomous learning of

*Corresponding author. Email: osa@mfg.t.u-tokyo.ac.jp

August 2, 2018

Advanced Robotics tadr’osa

multiple grasp types. We propose reinforcement learning of a hierarchical policy where lower-
level policies learn how to grasp given locations with specific grasp types and an upper-level
policy learns how to select the grasp type and location. We address the selection of the grasp
type and location using an active learning approach. Our approach learns to grasp objects with
multiple grasp types and autonomously improves the grasping performance through trial and
error. This paper consolidates our recent work on reinforcement learning of robotic grasping. In
our prior study in [8], we presented our preliminary work on reinforcement learning for multiple
grasping types. We present a rigorous description of our approach in this paper, including a
collision cost for grasping selection, which was not presented in our previous study. While our
previous study reported only results of grasping rigid objects based on analytical scores, this
paper also presents results of learning to grasp a deformable object from human evaluations.
Grasping a deformable object is a challenging task for the template-based approach because
the deformation of an object is often hard to model and predict. Since the deformation of the
object often leads to slip of the object, grasping deformable objects requires different grasping
strategies from that for rigid objects. The experimental results show that our system can adjust
the grasping strategy for rigid objects to a deformable object through trial and error on a real
robot.

The remainder of this paper is structured as follows. The next section describes related work
on grasping and policy search. We present our reinforcement learning method in Section 3. The
experimental results are presented in Section 4. After we discuss our results and future work in
Section 5, we conclude this paper in Section 6.

2. Related Work

Our work is closely related to two domains: grasping in robotics and policy search in machine
learning. We first describe prior work related to robotic grasping and we subsequently discuss
prior work related to policy search.

2.1 Grasping

Although early studies on data-driven grasping utilize a library of 3D object models [3], recent
work demonstrates that grasp planning based on point clouds or RGB-D images can be applied
to various objects without solid 3D models [4, 9-13]. However, the performance of the existing
methods often significantly depends on the quality of the training dataset of grasping motions and
objects. For example, a method in [4] computes Height Accumulated Features (HAF) and detects
the grasp locations. This method performs well even in scenarios with multiple objects. However,
it requires a training dataset with thousands of grasps. The work by Lenz et al. shows that the
potential grasp locations can be detected using a convolutional neural network (CNN) [10]. This
method also requires large amount of data to train the CNN. In addition, many methods are
merely based on the geometric properties of objects and do not consider the physical interaction
with objects. For example, Kopicki et al. proposed to a method for determining where to grasp
based on the density of the object point cloud [9]. Although this method does not require a huge
amount of the training data, it does not incorporate the quality of the resulting grasp motion.
To address the issue of data collection in grasp learning, reinforcement learning has been
employed in recent work. The study in [5] showed the feasibility of autonomously collecting a
dataset with thousands of grasps and training a CNN to predict grasp locations as rectangles in
a 2D image. Likewise, the study in [6] presented a method for learning the hand-eye coordination
for grasping. A vision-based feedback control is learned with a CNN and a dataset of grasping
motion and images are constructed autonomously in [6]. Since these methods utilize the results
of the executed grasps in order to predict the grasp probability, the physical interaction between
objects and a robotic hand is implicitly incorporated. However, the methods in [5, 6] are limited

August 2, 2018

Advanced Robotics tadr’osa

to specific grasp types, e.g., a vertical precision grasp. In addition, these methods rely on 2D
image inputs lacking depth information. However, the use of depth information and learning
multiple grasp types are essential to achieve dexterous manipulations.

2.2 Hierarchical Policy Search

Policy search is a subset of reinforcement learning [14]. Instead of directly working on the state-
action space, policy search explores a solution in a parameterized space. Methods for learning
a policy that generates different parameters according to a task context is often referred to as
contextual policy search [14]. In grasp learning, we learn a policy that generates grasping motion
according to a given grasp location, which is considered the context of the task. Thus, selecting
a grasp location among several options in grasp learning is equivalent to selecting a context in
the contextual policy search setting. Contextual policy search with active context selection is
investigated as active contextual policy search in [15]. However, this active contextual policy
search has not been extended to learning a hierarchical policy.

Interests on methods for learning a hierarchical policy has been increasing [16-19]. The goal
of hierarchical policy search is to learn a hierarchical policy where multiple lower-level policies
represent different strategies and an upper-level policy selects the appropriate lower-level policy
from the multiple options. For instance, Daniel et al. have developed the hierarchical relative en-
tropy policy search (HIREPS) algorithm for learning a hierarchical policy through reinforcement
learning [19]. HIREPS learns a hierarchical policy through the EM-like procedure based on rela-
tive entropy policy search (REPS) [20]. Likewise, the option-actor critic proposed in [16] learns
a hierarchical policy using an extended version of actor-critic [21]. Prior work on hierarchical
reinforcement learning indicates that learning multiple option policies improves the robustness
of the policy [19] and that exploitation of the hierarchical policy structure exponentially re-
duces the search space [22]. However, these methods do not incorporate an active selection of
the context as it is needed for grasping. The study by Kroemer et al. proposed to formulate the
selection of grasp locations as a bandit problem [23]. This study shows that a grasping policy can
be efficiently learned by actively selecting the grasp location in order to deal with the trade off
between maximizing the information gain and maximizing the expected grasp quality. However,
reinforcement learning of a hierarchical grasping policy is not addressed in [23] and the method
in [23] does not generalize its grasping policy to unknown objects.

In this work, we formulate the active selection of both the grasp location and the grasp type
as a bandit problem. In contrast with prior work, our approach has the following important
properties: 1) learning of multiple grasp types, 2) autonomous construction of a grasp database
through trial and error, and 3) planning grasping motions based on point clouds, and 4) an
active selection of the grasp type and location. To the best of our knowledge, prior work has not
developed a grasp learning method that has all of these properties.

3. Hierarchical Reinforcement Learning for Grasping

We describe our grasp learning framework in this section. After describing the overview of our
learning method, we explain the details of each component.

3.1 Overview of the Proposed Method

In the scenario of grasp learning using point clouds of objects, the goal is to learn a policy
that plans the grasping motion based on a given point cloud. By following the formulation of
contextual policy search, this problem can be formulated as

(0|P) = argmng[R(H,77)|7r(9]77),73], (1)

August 2, 2018

Advanced Robotics tadr’osa

Q Point cloud of a new object

Learning for ‘! e Demonstration -J? Create a IN Update policy |, | Learn grasp score Find potential grasp locations
grasp type 1 : of grasp type 1 contact database [7] - ll (0 ‘ s) R~GP1(8,5) for each grasp type
— i S = {51, 8N,y 87,85}
N I
Learning for { Create a N Update policy | | Learn grasp score Evaluate the grasp types

U

and locations
MR(ngv 5)7 UR(TI'?, 5)

R T

grasp type g

r »
contact database ng(g‘s) R~ GPy(0,s)

Learning for - Create a N Update policy | | Learn grasp score Select the grasp type
rasp type G| |- dam - tact database "] a and location
grasp typ e contact database) (0‘8) R~ GPs(8,s) i [g, 8] = stsmax (s,)
J 9.8
EAN - [-
Update the dataset and C] Execute the grasp with the type ¢* and location s* /1J Learning fmj
the policy for grasp type g* Record the score of the executed grasp N grasp selection

Figure 1. Overview of the algorithm. First, the grasping policy is initialized, and the dataset of contact
information is created based on human demonstration. The individual lower-level policy m; is learned for
each grasp type. The grasp quality R is approximated with Gaussian Processes (GPs). GPs are used to
evaluate each combination of grasp type and location. When the point cloud of a new object is given,
potential grasp locations are estimated using the grasp dataset. Subsequently, the upper-level policy m,
selects the grasp type and location. After every grasp execution, the grasping policy and the dataset are
updated. m{ = m;(0]s, g) in this figure.

where P is a point cloud of the given object, m(0|P) is a policy that generates a grasping motion
parameter 6 and R(0,P) is the return, which represents the quality of the grasp. In this work,
we assume that a contact between a robotic hand and an object can be represented by a set of
contact points. However, directly working on point clouds as contexts is not feasible due to the
high dimensionality of point clouds. To make this problem tractable, we extract potential grasp
locations from the given point cloud and compute local features s; for each of these locations.
Using these local features, the grasp learning problem can be reduced to

m(0|S) = arng?X]E[R(B,S)|7T(O|S),S], (2)

where S is a finite set of feature vectors s; of potential grasp locations in the given point cloud.
For example, s can be a position of the centroid of the point cloud or a vector normal to the
surface. We consider a hierarchical policy where lower-level policies 7; learn how to grasp objects
with a specific grasp type and an upper-level policy 7, learns how to select the grasp type and
where to grasp. Therefore, our hierarchical grasping policy is given by

w(0S) =D mu(s, 9lS)m(8]s. 9), (3)

s?g

where ¢ is the index of the grasp type. Note that our upper-level policy m, is deterministic. To
learn this hierarchical policy, we divide the problem of grasp learning into four steps:

(1) Find the potential grasp locations. Given a point cloud of a target object and the
database of the contact information of successful grasps, we find local subsets of the point
cloud that represent potential grasping locations, i.e.,

P = {P1,-, Pn} (4)

where P/ is the ith subset of the point cloud that represents a potential grasp location.
(2) Select the grasp type and location. Given a set of grasping policies G = {7, ...,7rlG}

that represents multiple grasp types and subsets of point clouds {Pj, ..., Py } that represent

potential grasping locations, we select a grasp type and a grasp location. For this purpose,

August 2, 2018

Advanced Robotics tadr’osa

we compute a local feature vector s; for each local point cloud P/,
Pl s; for i =0,...,N. (5)
We approximate the return function with a Gaussian Process
R~ GP(0,s) (6)

as a function of the motion parameter 8 and the point cloud feature s. Using this approx-
imation, we can compute E[R]s, g] and its variance for each combination of the grasping
policy m; and the feature s. The upper-level policy m, selects the grasping policy and the
location based on an objective function U, i.e.,

Tyt [8%, g7 = arg jnax Ul(s,g), (7)

where S is a set of features of possible grasp locations. The objective function U needs
to deal with the trade-off between maximizing the expected return and maximizing the
information gain, which is often referred to as the “exploration-exploitation trade-off.” In
this work, we employ upper confidence bounds (UCB) as the objective function.

(3) Perform the selected grasp. The grasping motion is planned and performed using the
selected grasp type and grasp location by drawing the motion parameter from the selected
lower-level policy, i.e.,

0 ~ m(0|s*, g"). (8)

The motion parameter could be the final configuration for grasping or parameters of a
parametric trajectory representation such as Dynamic Movement Primitives [24]. The re-
sult of the grasp execution is evaluated and stored in a database D = {(R;,0i,s},9})}.
The local point cloud P’ that represents the selected grasp location is also stored in the
database.

(4) Update the grasping policy. Using the data obtained from the new grasp execution, we
update the grasping policy and the database of the contact information. This policy update
is formulated as a contextual policy search problem, which we describe in Section 3.4.

Our framework is summarized in Fig. 1. By repeating steps (1)-(4), the grasping policy and the
database of grasping motions and contact information improve through trial and error. In the
following sections, we describe the details of each step.

3.2 Finding Potential Grasp Locations

Given a point cloud of a target object, our framework firstly finds potential grasp locations, which
are often referred to as “grasp affordances” [11]. For this purpose, our framework constructs a
database of the contact information of successful grasps through trial and error. This database of
contact information consists of local point clouds of contact surface of each finger for successful
grasps. Given a point cloud of a target object, the system searches for local regions that are
similar to the contact region stored in the successful grasp database Deontact. In this process, we
use the Iterative Closest Points (ICP) algorithm [25], which finds a homogeneous transformation
H;cp, that minimizes the distance between two point clouds.

When a point cloud of a target object Piarget is given, the system randomly samples a subset
of the point cloud of the target object P; C Piarget. Subsequently, ICP is performed between
P; and each contact region in our dataset C; € Deontact- ICP returns the residual distance dicp,
between P; and C;. Using the result of ICP with the smallest residual distance d , we can find

icp?

August 2, 2018 Advanced Robotics tadr’osa

Algorithm 1 Finding potential grasp locations

Initialization: Store contact regions in M successful grasps Deontact = {C1,---,Car}
Input: number of the grasp candidates IV, point cloud of the target object Prarget
fori=1:N do
Randomly choose a subset of the point cloud of the new object P; C Prarget
for j=1: M do
Perform ICP algorithm between P; and C; € Deontact-
d. . Hi | =ICP(P;,C;)

icp’ *Ticp
end for

. g

Compute j* = argmin; dj_,
Find a point cloud Pgynq,
Compute the features of the estimated contact region, P!

grasp
end for

in the neighborhood of HY, Cj- from Prarget
— S;

the point cloud subset that is similar to the contact region in the dataset. The point cloud of the
potential contact region Pgrasp can be estimated as a point cloud in the neighborhood of ch*pCj*
from Prarget- Fig. 2 shows examples of the contact regions in the dataset and the behavior of
ICP. As our experimental result show, this local search enables to find potential grasp locations
even if the given point cloud does not exactly fit with the samples in the database. The process
of estimating potential grasp locations is summarized in the Algorithm 1. Multiple potential
grasp locations can be found by repeating this local search for different subsets of Piarger. In
our experiments, we performed ICP with 30 point clouds uniformly chosen from the contact
database and the 5 subsets of the object point clouds to avoid too heavy computational cost.
Therefore, ICP is performed 150 times for one grasp plan, which takes 40-60 seconds.

Separate datasets of successful grasps are
maintained for different grasp types, and
this process is performed for each grasp
type. Our method does not require the en-
tire point cloud of the target object because
it searches for local features of the point
cloud. This property is useful for grasp
planning in real systems in which complete
point clouds of objects are not available.

Figure 2. (a) and (b):Point cloud of object with con-

The database of the successful grasps is ini- tact points. Blue points represent the point cloud of
tialized with demonstrated grasps and up- the object P. Red points represent contact points.
dated through trial and error in our frame- Green points represent the neighbors of the con-

tact points C. (¢)Example of the result of ICP. Blue,
green, red, and yellow points represent a partial point
cloud P; of a given object, the contact part C; from

work. Therefore, the performance of find-
ing potential grasp locations also improves

autonomously.)) o the dataset of successful grasps, the result of ICP al-
In order to (?btaln a concise descrlptlop gorithm Hj. C;, and the estimated grasp part Pyrasp,
of the local point cloud Pgrasp at the esti- respectively.

mated grasp location, we compute the cen-
ter of the contact points and the normal vector at the center of the contact points for each finger

as
T _ 1l 1 F F

s = [xcenterv NMcenters - - - s Lcenter» ncenter]? (9)

where !, ... is the center of the contact region of the i*! finger, nl_ .. is the normal vector at

the center of the contact region of the i finger, and F is the number of fingers of the hand.
This local description of contact points s is used as a context for contextual policy search of
the lower-level policies 7riq . Although we used this local description of point clouds, our method
is not limited to a specific description. Other descriptions of point clouds such as principal

August 2, 2018

Advanced Robotics tadr’osa

curvatures [26] can be also used in our framework.

3.3 Learning to Select the Grasp Type and the Grasp Location

In our framework, the goal of the upper-level policy is to learn how to select the optimal grasp
type and grasp location for a given object. For this purpose, we consider the upper-level policy
given by

: *7 * = U))
Ty 87,97 arg max U(s,g)

where U(s,g) is the objective function. For grasp selection, we must consider the trade-off
between gaining more information and maximizing the expected quality of the grasp. We can
interpret the selection of the grasp type and grasp location as a variant of contextual bandit
problem in which the context is given by a target object [27]. Therefore, we use an acquisition
function based on upper confidence bounds (UCB) [28], which has been shown to perform well
in practice. The learner selects the grasp type and location by maximizing the objective function

U(s,g) = E[R"|n], s] + Bor(r], s), (10)
where 7} = m(0]s,g), or(n],s9) is the variance of predicting E[R*|n},s] and 3 is a positive
constant that controls the exploration-exploitation trade-off. We heuristically set § = 1.0 in
our experiment. When f is higher, it may require more iteration until convergence but it will
encourage the exploration and avoid converging to local optima. The property of 5 for UCB is
discussed in [29].

For evaluating the expected grasp quality E[R]ng, s], we approximate the grasp quality R of
the ¢g*" grasp type with a GP as a function of the grasp motion parameters @ and the grasp
location features s, i.e.,

R(8,5) ~ GP,4 (m(2),k (2, 2)) (11)
where z = [0, 5] . We use a squared exponential covariance function

Iz — =]

k (i, 2) = of exp <_ 212) + 0702,z (12)

where [is the bandwidth of the kernel, O']% is the function variance and o2 is the noise variance.
The hyperparameters of GP models [0121, l,02] are optimized after every rollout by maximizing
the marginal log likelihood [30]. Assuming zero mean prior, i.e., m(z) = 0, the joint distribution
of the quality measure Ry.x of the training set and the quality measure of a test data point R*

is Gaussian, i.e.,
g K k
[Rl;gv} ~N (o | (13)
R k, k(z*,2z")

where K is the Gram matrix and R, is a column vector that contains returns of rollouts of
the g'® grasp type as RY., = [R{, -, R%]". In our framework, we employ a stochastic policy
for generating the grasp motion parameters, which is represented by a Guassian distribution
7 (0]s) ~ N(u9(s),X9(s)). In order to estimate E[R|n}, s] using GPs, we can assume that a

August 2, 2018

Advanced Robotics tadr’osa

Algorithm 2 Learning Multiple Grasp Types
Input: point cloud of the object Prarget, number of grasp location candidates IV,
number of grasp types G
Initialization: Initialize policies and GP models based on demonstrations
repeat
forg=1:G do

Find grasp location candidates Piarget — {Pprasps - - - » Prvasp
Compute feature vectors of grasp location candidates S9 = {s7,..., s?\,}

for every grasp location candidate s9 € §9 do
Compute E[R*|n], s9] and o(n}, s9) using (16) and (17)

end for
end for
Select the grasp type and location using the acquisition function in (10)
Execute grasp with the grasp parameter 8 ~ m;(0|s*, g*)
Update the GP model for the ¢**" grasp type
Update the policy for the g**® grasp type with a policy search method

until grasping learned

query data point z* for the GP is drawn from a Gaussian distribution

(14)

2~ N (py.,X,) where p, = [ugs(s)] DIES [290(3) 8] :

Strictly speaking, this Gaussian distribution is singular. To estimate the expected return for
grasp type g when given a context s, we need to compute the integral over z*, i.e.,

(R g, Bar) = / p(R'|2, D)p(z")dz", (15)

where D represents the dataset of motion parameters, contexts, and resulting returns. The studies
in [31-33] show that this marginal distribution can be approximated by a Gaussian distribution
with mean pgr and variance o

pr(rf,s9) =E[R"|n],s') = q' B (16)

on(rf,8%) = ky (2",2) — ky K kg +Tr |[K (koky Q)| +Tr[887(@Q~qa")] (17)
where 8 = K ;1R9, and the vector ¢ and the matrix @ are given by

. = exp (_%(l‘l’z* —2z) (A +3.-) (- _zj)) (18)
J |2z*A_1 4 I|1/2 ’

Qi = exp (—% [(I'l’z* - Zd)T(% + Ez*)_l(lizl* —zq) + (2; — Zj)T(QA)(Zi - Zj)]) 7 (19>
|23, A7 + I|1/2

where zg = %(zZ + z;), and A is a diagonal matrix with A = [?I. We learn this GP model for
each grasp type. The learned GP models are used to evaluate the use of the lower-level policy
m; with the grasp location described by s.

Algorithm 2 summarizes the procedure for learning to select the grasp type and location. As
with many reinforcement learning algorithms, the iteration can be stopped when the improve-
ment of the performance is converged or when the sufficiently good performance is achieved.

August 2, 2018

Advanced Robotics tadr’osa

3.4 Learning the Policy for the Desired Grasp Type

In order to learn the lower-level policies m;(0|s, g) that generate the grasping motion parameter
vector O for a given context, we use the episodic version of the contextual relative entropy policy
search (REPS) algorithm [14, 20]. It is worth noting that our framework is not limited to specific
policy search methods, although we implement our grasp learning system with REPS. In policy
search, a policy is updated in order to maximize the expected return. However, if the “difference”
between the old and updated policies in the policy update step is too large, the exploration in
the policy space can be unstable. To address this issue, REPS constrains the differences between
the updated and old policies, and it is guaranteed that REPS achieves the local update. The
theoretical property is discussed in [14, 19]. Policy search without this property might end up
with a policy very different from the initial policy, which is not preferable because the resulting
behavior is not predictable. In our framework, each lower-level policy is initialized by human
demonstrations, and REPS finds a locally optimal policy that is associated with the grasp type
indicated by human demonstrations.

REPS employs the KL divergence to quantify the difference between the updated and old
policies in its policy update. The policy update using contextual REPS is formulated as a
constraint optimization problem:

max / 16 (s) / (6] (6, 5)d0ds (20)
s.t. e > /us(s)KL (m(0]s)||q(8]s)) ds, /ﬂ(@\s)ds =1. (21)

For details, please refer to the original study and its extensions [20, 34]. Contextual REPS models
a policy as a Gaussian distribution

(6]s) = N(¢(s) w, Zo)

with a mean vector pg = ¢(s)"w that is linear in the context features ¢(s). Since robotic
grasping is a complex task, we require a policy that is non-linear in the original context s.
Therefore, we use a squared exponential feature, which is defined by M context samples s/
randomly selected from our dataset, i.e., the i*" dimension of ¢ is given by

0i(s8) = exp <—; (s{ — s)T Ay (s{ — s)) , (22)

where Ay is a diagonal matrix that defines the bandwidth for each element of the context vector
s. In our grasping framework, s is the local features of a point cloud, including the centroid
of the point cloud and a vector normal to the surface approximated from the point cloud. We
heuristically set the number of RBF basis function as 20, the bandwidth as 0.1, and € = 0.1. We
chose these values based on prior work such as [19]. This nonlinear feature function ¢(s) allows
us to learn a policy that is nonlinear to the original context.

3.5 FExtension with Additional Metrics for Grasp Selection

In practice, we can often analytically evaluate a metric of the motion quality before the actual
execution. For example, methods for analytically computing the cost of colliding with objects
have been developed in the field of trajectory optimization [35, 36]. Although we can learn
and estimate the expected return for selecting the grasp type and grasp location using the
method described in Section 3.3, we can reduce the learning costs by incorporating such an
analytically computable metric. In our framework, we can incorporate additional metrics for the

August 2, 2018

Advanced Robotics tadr’osa

grasp selection by extending the objective function in (10) as
UCOl(S, g) = E[R*|7Tlg, S} + ,BO'R(ﬂ'Zq, Sg) — Cadd(T), (23)

where c,q4(7) is the additional cost which we would like to incorporate, and 7 is the trajectory
to reach the grasp position.

In this work, we employed the cost of colliding with objects cons(7) proposed in [36] as
Cadd(T) = Cobs(T). We denote by w the index of the body point and by @, (t) the position
of the body point u in task space at time ¢t. The obstacle cost cops(7T) can be computed as

conlr) = | 1 [@ Hjtmu@)H du dt, (24)

where B is a set of body points which comprise the robot body, and the local collision cost
function c¢(ax,,) is defined as

0, if d(x,,) > e,
c(@u) = { 3:(d(@a) — €)%, 10 < d(zy) <, (25)
d(z,) + 3¢, if d(z,) <0,

where € is a constant that scales the margin, and d(x,) represents a signed distance between the
body point u and the nearest obstacle. d(x,) is negative when the body point is inside obstacles,
and zero at the boundary. By considering the collision cost, we can select a grasp location which
has less risk of colliding with objects in a given environment. Although we employed the collision
cost as the additional metric in our experiments, other metric can be used when available.

4. Experimental Results

We evaluated the performance of our grasp learning framework in simulation and on a real robot
platform using rigid and deformable objects.

4.1 Simulations

We first evaluate the learning performance
of our framework in simulation. The sys-
tem learned three grasp types with a five-
finger hand: precision grasp, power grasp,

and medium wrap [7]. In order to initial- Figure 3. Objects used to learn multiple grasp types:
ize the grasping policy, a human operator objects 1 and 2 were used for precision grasps, objects
specified the control parameters to demon- 3 and 4 were used for power grasps, and objects 5 and

strate each grasp type. For each grasp type, 6 were used for medium-wrap grasps.

12 demonstrations were used to initialize the policy. After initializing the grasping policy,the

system learned to generalize the control parameters for given objects in different positions. Dur-

ing the learning phase, point clouds of objects were provided to the system, and the system

autonomously chose the grasp type and location and executed the grasp using the motion pa-

rameters 6. The grasping policy was updated after every grasp execution. We used the model of

KUKA Light Weight Robot and DLR/HIT II Hand as a robotic manipulator in the simulation.
The motion parameter @ of the lower-level policies was defined as

0= [mgraspy Lvia, Qgrasp]’ (26)

10

August 2, 2018

Advanced Robotics tadr’osa

5
=100 5
g 5 4
Q €
® 75t/ E_j 3
g .0 2
50 =]
3 —REPS*UCB| | T 1
+- REPSHEPS 5
@’ 25 -~ RWR+UCB 50
O . - - RWR+EPS 5
0 100 200 300 400 0 100 200 300 400
Number of rollouts Number of rollouts

() (b) (c)

Figure 4. Performance in simulation. (a) Grasps performed in simulation. (b) Improvement in grasp
success rate. (¢) Improvement in grasp quality estimation.

where xgrasp is the grasp position of the end-effector in task space, @i, is the via point of
the end-effector in task space, and g4, 1S & quaternion that represents the orientation of
the end-effector in the grasp position. The detailed motions were planned by interpolating the
initial robot configuration, pre-grasp configuration, and the grasp configuration with the spline
interpolation. The finger configuration was initialized using the human demonstration, and was
not included in the motion parameter for the learning phase. We used the contact information
of the thumb and index finger of the hand as a context s. Therefore, the context vector s had
12 dimensions.

The grasp quality R for each rollout is computed based on the force-closure condition and L'
grasp quality measure [37-39] as

R = c1Q + c20Fc, (27)

where @ is the L' grasp quality measure, and épc is equal to 1 when the grasp is force-closure
and is equal to zero otherwise. The variables ¢; and co are positive constants.

We compared Reward-Weighted-Regression (RWR) algorithm [40] with REPS in learning
lower-level policies in the proposed framework. RWR is a policy search method that performs
well for real robot tasks, however, it does not constrain the KL divergence in the policy update.
Therefore, a comparison between REPS and RWR indicates how the KL bound in the policy
update influences the proposed framework. With regard to the upper-level policy, we compared
e-greedy policy with UCB [21]. We set e = 0.05 for the e-greedy policy. We used six objects shown
in Fig. 3. Objects 1 and 2 were used to demonstrate precision grasps, objects 3 and 4 were used to
demonstrate power grasps, and objects 5 and 6 were used to demonstrate medium-wrap grasps.
In the learning phase, test objects were randomly selected from these objects. These objects were
designed such that the system can grasp them with only one of the three grasp types. Therefore,
it was expected that grasping fails when the system chose the wrong grasp type.

Simulation results show that our method is able to learn and improve policies for multiple
grasp types through trial and error. Fig. 4(a) shows grasps performed in simulation. In the
simulation, a grasping is considered successful when the force closure condition is satisfied. The
collision cost is not used in the upper-level policy in the results shown in Fig. 4. The grasp success
rate improved through trials from 67.5% at the beginning to 94.1% after 400 trials of grasping
(Fig. 4(b)). In addition, the estimation of the grasp quality with GPs improved through trials
as shown in Fig. 4(c). The comparison between REPS+EPS and RWR+EPS shows that the
KL bound in the policy update leads to better solutions. The differences between REPS+UCB
and RWR+UCB and between REPS+EPS and RWRAEPS are statistically significant at the
5% level. The comparison between UCB and the e-greedy implied that UCB can deal with the
exploration-exploitation trade-off better than the e-greedy policy in the proposed framework,
although the differences between RWR+UCB and RWR+EPS and between REPS+UCB and
REPS+EPS were not statistically significant.

11

August 2, 2018

Advanced Robotics tadr’osa

=100 1 .E
> 4 _—]
2. B i |

) &
® 75¢ B
8 c
3 50 —o REPS+UCB+COLL| | &
? - REPS+EPS+COLL | | =
g o5/ -+ REPS+UCB o
&5 --+- REPS+EPS <

0 ‘ ‘ ‘] ‘ ‘ ‘ ‘
0 100 200 300 400 0 100 200 300 400
Number of rollouts Number of rollouts

(a) (b)

Figure 5. The effect of the collision cost. The performance of the system using the collision cost is
shown by "REPS+UCB+COLL” and "REPS+EPS+COLL”. (a) Improvement in grasp success rate.
(b) Improvement in grasp quality estimation. By using the collision cost in the upper-level policy, a
higher success rate can be achieved.

Figure 7. Objects used in the experiment. We used a set of objects such that multiple grasp types were necessary to grasp
them.

The effect of the collision cost embedded in the upper-level policy is shown in Fig. 5. By using
the collision cost in the upper-level policy, the system achieved a success rate of 98.0% while a
success rate was 94.1% without the collision cost. If the collision cost is not explicitly used in
the upper-level policy, the system needs to implicitly learn the effect of collisions, which results
in slower learning.

4.2 Transfer to a Real Robot with Unseen Objects

We tested whether our learned model can
be transferred to a real robotic system.
The grasping policy was learned through
400 grasp executions in the simulation de-
scribed in Section 4.1. We used 10 differ- Point clouds from Kinect ~ Ferform ICP with contact parts in - Estimate a potential
ent objects as shown in Fig. 7 for the real el e duet g

robot evaluation. For each object, grasps
were tested five times by changing the ob-
ject position and orientation. The positions
of a test object were roughly placed at four
corners and a center of a square with 20 Figure 6. Examples of the process of finding local features

ide. Wi id d th . that are similar to stored successful grasps. In the middle fig-
¢in on a side. e consldered that a gasping ures, the green dots represent the contact part in the dataset of

was successful when the Object was lifted successful grasps, and the red dots represent the result of ICP.

. In the right figures, the green dots represent the estimated
up .and held for 2 seconds. KUKA nght contact region of the thumb, and the orange dots represent
Welght Robot and DLR/HIT II Hand were the estimated contact region of the index finger.

used for this experiment. The arm and fingers of the robot were controlled using impedance
control.

The results of the experiment are summarized in Table 1. The success rate was 90%, and the
performed grasps are shown in Figure 8. Figure 6 shows the process for finding potential grasping
regions. As shown, the potential grasp locations were estimated with partial point clouds of given

12

August 2, 2018

Advanced Robotics tadr’osa

Figure 8. Grasps performed in the experiment. The robot chose the appropriate grasp types and successfully executed the
grasps using the given point clouds.

Figure 9. The deformable object used in the experiment. Left: A picture of the slippery and deformable plastic bag of
cables used in the experiment in Section 4.3. Middle and right: A point cloud of the object from two different points of
view. The point clouds were captured from a single fixed point of view using a Kinect sensor. As shown in the right figure,
the backside of the object is not visible.

objects, and the system estimated the contact location for each finger. In addition, as shown in
Figures 3 and 7, the shapes of the objects are different from ones used in simulations. Hence,
these results show that the our approach can work well with partial point clouds of unseen
objects in a real robotic system.

4.3 Grasp Refinement for Deformable Objects using Human FEvaluation

When grasping a slippery and deformable object, collision between the hand and the object is
often negligible, while collision is problematic when grasping a rigid object. On the other hand,
the object needs to be grasped firmly such that the object is held stably in the hand. Therefore,
grasping deformable objects often requires a grasping strategy different from the one for rigid
objects.

In this experiment, we trained a grasping policy in simulation using rigid objects and subse-
quently fine-tuned using a real robot and a deformable object. We used a slippery and deformable
plastic bag of cables, which is shown in Figure 9, as a target object. In the additional training us-
ing a real robot, we used a binary return based on the evaluation from a human operator instead
of analytically computing a grasping quality. The force closure condition is hard to compute in
a real robotic system since it is challenging to measure the contact position and the contact
force. When the human operator considered a given grasp successful, a constant positive value
was given as a return to the system. Otherwise, the return given to the system was zero. if we
close the fingers tightly enough, we can avoid the slipping and the grasping rate would be much
higher. However, since we were interested in the reduction of the slipping in this experiment, we
did not close the finger so tightly.

The experimental results show that our grasping system can learn a policy for grasping a
deformable object through trial and error using human evaluations. Figure 10 illustrates our
results. In the beginning of learning, the system planned to grasp the top of the object, which

Table 1. Performance of grasping rigid objects with a real robotic system. The object numbers correspond to the numbers
in Fig. 8. The grasping policy learned in simulation was successfully transfered to a real robotic system.

Obj. No. 1 2 3 4 5 6 7 8 9 10 Avg.
Success rate | 5/5 | 4/5 | 5/5|5/5|5/5|5/5|4/5|5/5|4/5| 3/5 | 90.0 %

13

August 2, 2018

Advanced Robotics tadr’osa

100

o5}
(=}

»

B
o

i‘ I Grasping firmly

Grasp success rate [%]
S 3

0-10 11-20 21-30 3140 41-50

(a) (b)

Figure 10. Results of grasping a deformable object. The left figure in (a) shows the result of the fourth trial, and the right
figure in (a) shows the result of the 30th trial. After learning with a real robot, the deformable object was grasped firmly.

would be a good solution for a rigid object. As a result, the object often slipped from the robot
hand. After additional training with a real robot, the system learned to firmly grasp the center
of the object as shown in Figure 10(a). Although the robot hand occasionally collided with the
object when approaching, the deformable object could still be grasped due to the compliance
of the object. The grasp success rate improved from 40% in the first 10 trials to 80% in after
30 trials as shown in Figure 10(b). Although the resulting grasp success rate is not high, we
did not close the fingers tightly to observe the slipping of the object. The grasp rate would be
higher if we use a standard force control for closing fingers. Our experimental results show that
the grasping behavior can be adapted through trial and error with human evaluation in a real
robot.

5. Discussion

In hierarchical policy search, learning the upper-level and lower-level policies simultaneously is
not trivial in many cases since the behaviors of policies in different layers often influence each
other. For instance, the method in [15] learns the state value function V(s) for selecting the
context. Since the true value of V(s) is dependent on m;(0|s), the estimate of V(s) needs to be
updated when the lower-level policy m;(6|s) is updated. On the contrary, we approximate the
return function R(6, s), which is independent of the lower-level policies m;(0|s). The estimation
of the return function using GPs steadily improves as the system increases the number of data
samples. Using GPs, we can analytically approximate the expected return for each lower-level
policy and potential grasp locations. When the upper-level policy has learned to select a grasp
type for a given context, the rest of the process is a standard policy search problem since each
lower-level policy is learned independently in our framework. Thus, the policy updates of the
lower-level policies are expected to be stable. Although the independence of lower-level policies
simplifies the problem, such learning does not exploit the data obtained from different grasp
types. Transferring the policies between different grasp types may lead to a more efficient learning
method in future work. In addition, the number of the grasp types needs to be specified in our
framework. Recent studies on hierarchical reinforcement learning [19, 41] have proposed methods
for automatically optimizing the number of lower-level policies. Automatic identification of the
necessary grasp types is also interesting research direction.

With regard to finding grasp affordances, although we used the method described in Section 3.2
to find potential grasp parts in point clouds, our hierarchical learning algorithm is not limited
to specific methods for finding grasp affordances. Therefore, the alternative methods such as
[11, 13] can also be used to find grasp affordances.

Experimental results show that our framework can learn multiple grasp types and a policy to
select them according to the given objects. However, it is often necessary to select the grasp type

14

August 2, 2018

Advanced Robotics tadr’osa

and location on the basis of additional factors, such as human preferences and the tasks planned
to be performed after grasping. Although we computed the return function based on the grasp
stability in this study, our framework can be easily extended to other grasp quality metrics.
For example, learning the return function from human relative feedback using a GP in [42-44]
can also be used. In future work, such additional factors for the selection of grasp types and
locations should be considered. Likewise, although we employed the simple parameterization of
the grasping motion in this work, we can employ more sophisticated trajectory parameterization
such as DMP. For details, please refer to a survey on imitation learning such as [45].

6. Conclusions

We presented an hierarchical reinforcement learning algorithm for learning multiple grasping
strategies. In our framework, the lower-level policies learn to plan grasping motions corresponding
to individual grasp types, and the upper-level policy learns to select the grasp type and grasp
location. Our system autonomously constructs a database of grasping motions and corresponding
objects and learns the grasping policy through trial and error. The developed system was tested
with both simulation and a real robotic system. The experimental results show that our approach
can autonomously learn multiple grasp types and that the grasping policy learned in simulation
can be successfully transferred to a real robotic system. In addition, the grasping policy trained
for rigid objects in simulation can be refined to a deformable object through trial and error
using a real robot. In future work, we will extend our framework by combining the approach of
learning from human preference.

Acknowledgement

This work has received funding from the European Unions Horizon 2020 research and innova-
tion programme under grant agreement #645582 (RoMaNS). T. Osa was supported by JSPS
KAKENHI 17H00757.

References

[1] Bicchi A, Kumar V. Robotic grasping and contact: a review. In: IEEE international conference on
robotics and automation (ICRA). 2000. p. 348-353.

[2] Bohg J, Morales A, Asfour T, Kragic D. Data-driven grasp synthesis- a survey. IEEE Transactions
on Robotics. 2014 April;30(2):289-309.

[3] Goldfeder C, Allen PK. Data-driven grasping. Autonomous Robots. 2011;31:1-20.

[4] Fischinger D, Weiss A, Vincze M. Learning grasps with topographic features. International Journal
of Robotics Research. 2015;.

[5] Pinto L, Gupta A. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours.
In: Proceedings of the IEEE international conference on robotics and automation (ICRA). 2016.

[6] Levine S, Pastor P, Krizhevsky A, Quillen D. Learning hand-eye coordination for robotic grasping
with deep learning and large-scale data collection. In: Proceedings of international symposium on
experimental robotics (ISER). 2016.

[7] Cutkosky MR, Howe RD. Human grasp choice and robotic grasp analysis. In: Venkataraman ST,
Iberall T, editors. Dextrous robot hands. Springer-Verlag New York, Inc.. 1990. p. 5-31.

[8] Osa T, Peters J, Neumann G. Experiments with hierarchical reinforcement learning of multiple
grasping policies. In: Proceedings of the international symposium on experimental robotics (ISER).
2016.

[9] Kopicki M, Detry R, Adjigble M, Stolkin R, Leonardis A, Wyatt JL. One-shot learning and generation
of dexterous grasps for novel objects. International Journal of Robotics Research. 2015;35(8):959 —
976.

15

August 2, 2018

Advanced Robotics tadr’osa

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]
[20]

[21]
[22]

[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]

Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps. International Journal of Robotics
Research. 2015;34(4-5):705 — 724.

ten Pas A, Platt R. Localizing handle-like grasp affordances in 3d point clouds. In: Proceedings of
the international symposium on experimental robotics (ISER). 2014.

Gualtieri M, Ten Pas A, Saenko K, Platt R. Using geometry to detect grasp poses in 3d point clouds.
In: Proceedings of the international symposium on robotics research (ISRR). 2015.

ten Pas A, Gualtieri M, Saenko K, Platt R. Grasp pose detection in point clouds. The International
Journal of Robotics Research. 2017;36(13-14):1455 — 1473.

Deisenroth MP, Neumann G, Peters J. A survey on policy search for robotics. Foundations and
Trends in Robotics. 2013;2(1-2):1-142.

Fabisch A, Metzen JH. Active contextual policy search. Journal of Machine Learning Research. 2014;
15:3371-3399.

Bacon PL, Harb J, Precup D. The option-critic architecture. In: Proceedings of the AAAT conference
on artificial intelligence (AAAT). 2017.

Florensa C, Duan Y, Abbeel P. Stochastic neural networks for hierarchical reinforcement learning.
In: Proceedings of the international conference on learning representations (ICLR). 2017.
Vezhnevets AS, Osindero S, Schaul T, Heess N, Jaderberg M, Silver D, Kavukcuoglu K. FeUdal
networks for hierarchical reinforcement learning. In: Proceedings of the international conference on
machine learning (ICML). 2017.

Daniel C, Neumann G, Kroemer O, Peters J. Hierarchical relative entropy policy search. Journal of
Machine Learning Research. 2016;17:1-50.

Peters J, Muelling K, Altun Y. Relative entropy policy search. In: Proceedings of the AA AT conference
on artificial intelligence (AAAT). 2010.

Sutton R, Barto A. Reinforcement learning: An introduction. The MIT Press. 1998.

Dietterich TG. Hierarchical reinforcement learning with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research. 2000;13:227-303.

Kroemer O, Detry R, Piater J, Peters J. Combining active learning and reactive control for robot
grasping. Robotics and Autonomous Systems. 2010;(9):1105-1116.

Tjspeert AJ, Nakanishi J, Schaal S. Learning attractor landscapes for learning motor primitives. In:
Advances in neural information processing systems (nips). 2002.

Besl PJ, McKay ND. A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 1992 Feb;14(2):239-256.

Spivak M. A comprehensive introduction to differential geometry, volume 1. Brandeis University.
1970.

Auer P, Cesa-Bianchi N, Fischer P. Finite-time analysis of the multiarmed bandit problem. Machine
Learning. 2002;47(2):235-256.

Auer P. Using confidence bounds for exploitation-exploration trade-offs. Journal Machine Learning
Research. 2003 Mar;3:397-422.

Srinivas N, Krause A, Kakade SM, Seeger M. Gaussian process optimization in the bandit setting:
no regret and experimental design. In: Proceedings of the international conference on international
conference on machine learning (ICML). 2010.

Rasmussen CE, Williams CKI. Gaussian processes for machine learning (adaptive computation and
machine learning). The MIT Press. 2005.

Girard A, Rasmussen CE, Candela JQ, Murray-Smith R. Gaussian process priors with uncertain
inputs — application to multiple-step ahead time series forecasting. In: Advances in neural information
processing systems (NIPS). 2002.

Candela JQ, Girard A. Prediction at an uncertain input for gaussian processes and relevance vector
machines — application to multiple-step ahead time-series forecasting. Danish Technical University.
2002. Tech Rep.

Deisenroth MP. Efficient reinforcement learning using gaussian processes. Phd thesis. 2010.
Kupcsik A, Deisenroth MP, Peters J, Loh AP, Vadakkepat P, Neumann G. Model-based contextual
policy search for data-efficient generalization of robot skills. Artificial Intelligence. 2014;.
Kalakrishnan M, Chitta S, Theodorou E, Pastor P, Schaal S. STOMP: Stochastic trajectory opti-
mization for motion planning. In: Proceedings of the IEEE international conference on robotics and
automation (ICRA). 2011 May. p. 4569-4574.

Zucker M, Ratliff N, Dragan A, Pivtoraiko M, Klingensmith M, Dellin C, Bagnell JA, Srinivasa
S. CHOMP: Covariant hamiltonian optimization for motion planning. The International Journal of

16

August 2, 2018

Advanced Robotics tadr’osa

Robotics Research. 2013;32:1164-1193.

Murray RM, Sastry SS, Zexiang L. A mathematical introduction to robotic manipulation. 1st ed.
Boca Raton, FL, USA: CRC Press, Inc.. 1994.

Ferrari C, Canny J. Planning optimal grasps. In: Proceedings of the IEEE international conference
on robotics and automation (ICRA). 1992 May. p. 2290-2295 vol.3.

Pokorny F, Kragic D. Classical grasp quality evaluation: New algorithms and theory. In: Proceedings
of the IEEE/RSJ international conference on intelligent robots and systems (IROS). 2013 Nov. p.
3493-3500.

Peters J, Schaal S. Reinforcement learning by reward-weighted regression for operational space con-
trol. In: Proceedings of the international conference on machine learning (ICML). 2007.

Osa T, Sugiyama M. Hierarchical policy search via return-weighted density estimation. In: Proceed-
ings of the AAAT conference on artificial intelligence (AAAT). 2018.

Daniel C, Kroemer O, Viering M, Metz J, Peters J. Active reward learning with a novel acquisition
function. Autonomous Robots. 2015;39(3):389-405.

Kupcsik A, Hsu D, Lee W. Learning dynamic robot-to-human object handover from human feedback.
In: Proceedings of international symposium on robotics research (ISRR). 2016.

Pinsler R, Akrour R, Osa T, Peters J, Neumann G. Sample and feedback efficient hierarchical
reinforcement learning from human preferences. In: Proceedings of the IEEE international conference
on robotics and automation (ICRA). 2018.

Osa T, Pajarinen J, Neumann G, Bagnell JA, Abbeel P, Peters J. An algorithmic perspective on
imitation learning. Foundations and Trends in Robotics. 2018;7(1-2):1-179.

17

