
Marc P. Deisenroth, Carl E. Rasmussen, and Jan Peters:

Model-Based Reinforcement Learning with
Continuous States and Actions

in Proceedings of the 16th European Symposium on
Artificial Neural Networks (ESANN 2008),

pages 19–24, Bruges, Belgium, April 2008.

Model-Based Reinforcement Learning with
Continuous States and Actions

Marc P. Deisenroth1∗, Carl E. Rasmussen1,2, and Jan Peters2

1- University of Cambridge - Department of Engineering
Trumpington Street, Cambridge CB2 1PZ - UK

{mpd37|cer54}@cam.ac.uk
2- Max Planck Institute for Biological Cybernetics

Spemannstraße 38, 72070 Tübingen - Germany
jan.peters@tuebingen.mpg.de

Abstract.

Finding an optimal policy in a reinforcement learning (RL) framework with
continuous state and action spaces is challenging. Approximate solutions
are often inevitable. GPDP is an approximate dynamic programming algo-
rithm based on Gaussian process (GP) models for the value functions. In
this paper, we extend GPDP to the case of unknown transition dynamics.
After building a GP model for the transition dynamics, we apply GPDP
to this model and determine a continuous-valued policy in the entire state
space. We apply the resulting controller to the underpowered pendulum
swing up. Moreover, we compare our results on this RL task to a nearly
optimal discrete DP solution in a fully known environment.

1 Introduction

In reinforcement learning (RL) an agent must learn good decision policies based
on observations or trial-and-error interactions with a dynamic environment. Dy-
namic programming (DP) is a common methodology for achieving this task
by solving the Bellman equation, which characterizes properties of the value
function. Usually, standard table-based algorithms for discrete setups do not
straightforwardly apply to continuous state and action domains. Function ap-
proximators can generalize the value function to continuous-valued state spaces,
but usually they are limited to discrete action domains [1]. In case of non-
probabilistic, parametric function approximation we are restricted to a fixed
class of functions and might run into problems in case of noisy data. A state-of-
the-art nonparametric Bayesian regression method is provided by the Gaussian
process (GP) framework [2]. Model-based policy iteration in continuous state
and action spaces based on value function evaluation using GPs is presented
in [3]. In [4], model-free policy iteration is proposed within the GP framework
to perform both policy evaluation and policy improvement. Gaussian process
dynamic programming (GPDP) is a model-based dynamic programming algo-
rithm for fully known dynamics in which the value functions are modeled by
GPs [5].

∗
M. P. Deisenroth is supported by the German Research Foundation (DFG) through grant

RA 1030/1.

In this paper, we extend GPDP to the case of unknown deterministic dynam-
ics by using a learned system model. Moreover, we compare the performance of
the resulting policy to the policy of a benchmark controller using exact dynamics.

2 Reinforcement Learning with Unknown Dynamics

Uncertainty is a key property of RL. Modeling uncertain functions properly
is an extremely hard problem in general. GP regression is a powerful Bayesian
method to model latent functions without being restricted to a specific paramet-
ric function class, such as polynomials. Thus, throughout this paper, we model
latent functions by means of GPs that generalize latent functions from a small,
finite training set to the entire continuous-valued space. Moreover, confidence
intervals are provided.

We consider the undiscounted finite-horizon RL problem of finding a policy
π∗ that minimizes the long-term loss gterm(xN) +

�N−1
k=0 g(xk,uk) where k in-

dexes discrete time. Here, g is the immediate loss that depends on the state
x ∈ IRnx and a chosen control action u = π(x) ∈ IRnu . A state-dependent
terminal loss is denoted by gterm.

Example: Setup
Throughout this paper, we use the underpowered pendulum swing up as running exam-

ple. Initially the pendulum is hanging down. The goal is to swing the pendulum up and

to balance it in the inverted position. This task has previously been considered a hard

problem [6]. We assume pendulum dynamics following the ODE

ϕ̈(t) =
−µϕ̇(t) + mgl sin(ϕ(t)) + u(t)

ml2
(1)

where µ = 0.05 kg m2/s is the coefficient of friction. The applied torque is restricted to

u ∈ [−5, 5] Nm. The characteristic pendulum frequency is approximately 2 s. Angle and

angular velocity are denoted by ϕ and ϕ̇ and given in rad and rad/s, respectively. The

system can be influenced by applying a force u any 200ms. The pendulum dynamics (1) are

discretized in time with 200ms between two samples. The immediate loss g is g(xk, uk) =
xT

k diag([1, 0.2])xk + 0.1 u2
k, the optimization horizon is 2 s.

2.1 Learning System Dynamics

In the considered RL setup we assume a priori unknown deterministic system
dynamics. If possible, it seems worth estimating a dynamics model since, intu-
itively, model-based methods make better use of available information [1]. In
the first step, we attempt to model the system based on observations of sampled
trajectories. We consider discrete-time systems of the form xk+1 = f(xk,uk) .
We use a Gaussian process model, the dynamics GP, to model the dynamics
and write f ∼ GPf . For each output dimension of f the GP model is fully
specified by its mean and covariance functions revealing prior beliefs about the
latent function [2]. For any new input (x∗,u∗) the predictive distribution of
f(x∗,u∗) conditioned on the training data is Gaussian with mean vector µ∗
and covariance matrix Σ∗. The posterior GP reveals the remaining uncertainty

Algorithm 1 GPDP using system model GPf

1: input: GPf ,X ,U
2: V ∗

N (X) = gterm(X) � terminal loss
3: V ∗

N (·) ∼ GPv � GP model for V ∗
N

4: for k = N − 1 to 0 do � DP recursion (in time)
5: for all xi ∈ X do � for all states
6: Qk(xi,U) = g(xi,U) + E[V ∗

k+1(xk+1)|xi,U ,GPf]
7: Qk(xi, ·) ∼ GPq � GP model for Q
8: π∗k(xi) ∈ arg minu Qk(xi,u)
9: V ∗

k (xi) = Qk

�
xi, π∗k(xi)

�

10: end for
11: V ∗

k (·) ∼ GPv � GP model for V ∗
k

12: end for
13: return π∗0(X) � return set of optimal actions

about the underlying latent function f . In the limit of infinite data this uncer-
tainty tends to zero and the GP model converges to the deterministic system,
such that GPf = f .

Example: Learning the pendulum dynamics
In case of the underpowered pendulum swing up, the standard deviation of the model is

smaller than 0.03 for 400 training examples. More training points increase the confidence.

The absolute error between the underlying dynamics f and the mean of the GP model GPf

is smaller than 0.04.

2.2 Application of Gaussian Process Dynamic Programming

Using the dynamics GP to describe the latent system dynamics f , we apply
GPDP to derive optimal actions based on finite training sets X of states and
U of actions. The elements of the training sets are randomly distributed within
their domains. GPDP generalizes dynamic programming to continuous state
and action domains. A sketch of GPDP is given in Algorithm 1. We model both
latent functions V ∗ and Q by means of Gaussian processes. For each x ∈ X we
use independent GP models for Q(x, ·) rather than modeling Q(· , ·) in joint
state-action space. This idea is largely based on two observations. First, a good
model of Q in joint state-action space requires substantially more training points
and makes standard GP models computationally very expensive. Second, the
Q-function can be discontinuous in x, as well as in u direction. We eliminate one
possible source of discontinuity by treating Q(xi, ·) and Q(xj , ·) as independent.

To determine the Q-value in line 6 of the GPDP algorithm, we have to solve
an integral of the form

E[V ∗(f(x,u))|x,u] =
� �

V ∗(f(x,u))p(f(x,u)|x,u)p(V ∗)dfdV ∗ (2)

where both the system function f and the value function V ∗ are modeled by
GPf and GPv, respectively. Therefore, the value of the integral is a random

variable. The GP model of V ∗ with squared exponential (SE) covariance function
and the Gaussian predictive distribution p(f(x,u)|x,u), provided by the system
model, allow us to determine a distribution of the uncertain integral value (2) by
applying the Bayesian Monte Carlo method [7]. We have to integrate over both
sources of uncertainty the model uncertainty of GPf and the uncertainty about
V ∗. However, if the model uncertainty of GPf tends to zero (many data), the
integrand of (2) tends to V ∗(f(x,u))p(V ∗), and the distribution of (2) equals
the distribution of V ∗. In this case, E[V ∗(f(x,u))] = mv(mf (x,u)).

2.3 Determination of a Closed-Loop Policy

We extend the policy from a finite training set to the entire state space as
follows. The actions π∗0(X) of the training set X returned by GPDP are regarded
as (uncertain) measurements of an underlying optimal policy. We attempt to
model the latent optimal policy by means of a GP. Depending on the loss function
and the system dynamics, the choice of an appropriate covariance function is
extremely difficult. We approach the problem from a different direction: In
applications of control algorithms to real underpowered robots, smoothness of
actions is desired to protect the actuators. Thus, we assume that a close-to-
optimal policy for an underpowered system is at least piecewise smooth. Possible
discontinuities appear at boundaries of a manifold where the sign of the control
signal changes.

With this assumption we attempt to model the latent policy π∗ with two
Gaussian processes. One GP is trained only on the subset π∗+(X) ⊂ π∗0(X) of
positive actions, the other GP on the remaining set denoted by π∗−(X). Please
note that we know the values π∗0(X) from the GPDP algorithm. Both GP models
play the role of local experts in the region of their training sets. We assume that
the latent policy is locally smooth. Thus, we use the SE covariance function
in GPπ+ and GPπ− , respectively. It remains to predict the class for new query
points. This problem is solved by a binary classifier. We greedily choose the
GP with higher posterior class probability to predict the optimal action for any
state. The classifier plays a similar role as the gating network in a mixture-of-
experts setting [8]. Finally, we obtain a combined GP model GPπ of an optimal
policy in a continuous-valued part of the state space that models discontinuities
along the boundaries of a manifold.

Example: Policy learning
The model of an optimal policy for the underpowered pendulum swing up is given in

Figure 1. The black crosses and white circles mark the training sets π+(X) and π−(X),
respectively. Discontinuities at the boundaries of the diagonal band (upper left to lower

right corner) represent states where maximum applicable torque is just not strong enough

to bring the pendulum to the inverted position. The decision of the controller is to use

torque in opposite direction, to exploit the dynamics of the pendulum, and to bring it to

the goal state from the other side.

Especially in real systems where actions have to be smooth to protect actua-
tors, the suggested method seems reasonable and applicable. Moreover, it seems
more general compared to directly learning the policy from training data with a

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

angle in rad

an
g.

ve
l.

in
 ra

d/
s

−6

−4

−2

0

2

4

6

Fig. 1: Optimal policy modeled by switching between two GPs, any of which is
trained on different subsets (white circles and black crosses) of optimal actions
π∗0(X) returned by GPDP.

single GP and a problem-specific covariance function. Correct problem-specific
covariance functions may perform better. However, a lot of expert knowledge is
needed in case of possibly nonsmooth predicted policies.

GPDP scales in O(|X ||U|3 + |X |3) per time step: A GP model for Q(x, ·)
for all x ∈ X and one GP model for the V -function are used. Standard DP
scales in O(|XDP|

2|UDP|) with substantially bigger sets UDP,XDP. A strength
of GPDP is that in case of stochastic dynamics the corresponding RL problem
can be solved with no additional computational and memory requirements. In
general, the benchmark controller is no longer applicable because of enormous
memory demand if a full transition matrix has to be stored. Another point to
be mentioned is that the sets X , U in GPDP can be time-variant. They just
serve as training points for the GP models generalizing the value functions to
continuous-valued domains.

Example: Performance
We simulate the time-discretized pendulum for 5 s. We consider a benchmark controller

based on exact DP in discretized state and action spaces with 7.5 × 107
states in joint

state-action space as almost optimal. Figure 2 shows the results of applying both con-

trollers. The dashed blue lines represent the optimal solution of the DP controller with

fully known dynamics. The solid green lines are the solution of the GPDP controller based

on learned dynamics. The upper panels describe trajectories of angle ϕ and angular velocity

ϕ̇, respectively. Applied control actions are given in the lower panel where the error bars in

the GPDP solution describe the confidence when applying the corresponding control action

(twice standard deviation). The state trajectories (upper panels) almost coincide, and the

chosen control actions differ slightly. In the considered example, GPDP based on learned

dynamics causes 1.66% more cumulative loss over 5 s.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0
2

time in s

an
gl

e

GPDP
DP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
2
4

time in s

an
g.

ve
l.

GPDP
DP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0
5

time in s

ct
rl.

GPDP
DP

Fig. 2: Trajectories of angle, angular velocity and applied actions for discretized
DP and continuous GPDP. The trajectories almost coincide although GPDP
uses learned dynamics.

3 Summary

In this paper, we extended a Gaussian process dynamic programming algorithm
to the case of unknown deterministic dynamics. We assumed that the system
can be modeled by means of a Gaussian process. For this setting, we obtained a
closed-loop policy for continuous-valued state and action domains. We showed
that in the case of the underpowered pendulum swing up, the policy based on
learned system model performs almost as well as a computationally expensive
optimal controller.

References

[1] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Sci-

entific, Belmont, MA, USA, 1996.

[2] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, Cambridge, MA, USA, 2006.

[3] Carl E. Rasmussen and Malte Kuss. Gaussian Processes in Reinforcement Learning. In

Advances in Neural Information Processing Systems 16, pp. 751–759, June 2004.

[4] Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement Learning with Gaussian Pro-

cesses. In 22nd International Conference on Machine Learning, pp. 201–208, August 2005.

[5] Marc P. Deisenroth, Jan Peters, and Carl E. Rasmussen. Approximate Dynamic Program-

ming with Gaussian Processes. In 27th American Control Conference, June 2008.

[6] Christopher G. Atkeson and Stefan Schaal. Robot Learning from Demonstration. In 14th
International Conference on Machine Learning, pp. 12–20, July 1997.

[7] Carl E. Rasmussen and Zoubin Ghahramani. Bayesian Monte Carlo. In Advances in Neural
Information Processing Systems 15, pp. 489–496, 2003.

[8] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive

Mixtures of Local Experts. Neural Computation, 3:79–87, 1991.

