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Zusammenfassung

Roboter kennen eine immer greGere Bandbreite von Aufgaben immer unabh€ngiger ausfehren. Dafer wird es zu-
nehmend wichtig, dass sie ihre Umgebung wahrnehmen kennen. Taktile Sensoren sind besonders hilfreich feor Mani-
pulationsaufgaben, da Erkundungs- und Manipulationsbewegungen gleichzeitig ausgefshrt werden kennen. Sie sind
besonders netzlich, um Objekte und Materialien wieder zu erkennen und sie entsprechend ihrer Eigenschaften zu be-
handeln. In dieser Arbeit verwenden wir den BioTac ®nger, einen multimodalen, taktilen Sensor. Dieser ist an einem
PA10 Roboterarm montiert und kann Temperatur, Verformung seiner elastischen Haut und Druck messen.

Wir vergleichen verschiedene Ans€tze, um Objekte anhand ihrer Ober €cheneigenschaften wieder zu erkennen. Der
Roboter hat Erkundungsbewegungen an 49 Objekten ausgeferht, die aus verschiedenen Materialien gemacht sind.
Anhand dieses Datensatzes vergleichen wir unterschiedliche Methoden, um Eigenschaften der Objekte zu bestimmen,
die sich auf die verschiedenen Sensoren des Fingers beziehen. Fer die Wiedererkennung der Objekte verwenden wir
verschiedene <berwachte Klassi®zierungsmethoden, wie beispielsweise Support Vector Machines oder Random Fo-
rests. Aulerdem kombinieren wir die Informationen aus verschiedenen Erkundungsbewegungen, um eine genauere
Beschreibung der Objekte zu erhalten. Des Weiteren erw€gen wir, ob die Objekteigenschaften genegend Informatio-
nen enthalten, um auch andere Objekte desselben Materials zuordnen zu kennen. Fer diese Frage haben verwenden
wir sowohl sberwachte als auch nichteberwachte Klassi®zierungsverfahren. Wir suchen auch nach der bestmeglichen
Kombination von Erkundungsbewegungen und Methoden zur Eigenschaftsbestimmung und Klassi®zierung. Auf diese
Weise erreichen wir eine korrekte Klassi®kation von 97.55% der Testobjekte.

Abstract

Perceiving their environment becomes more and more important for robots that can perform a large variety of tasks
independently. Tactile sensors are especially helpful for manipulation tasks, because exploration and manipulation
movements complement each other. They are especially useful to identify and recognize objects and materials and
handle them due to their properties. In this work we use the BioTac ®nger, a multimodal, tactile sensor. It is mounted
on a PA10 robot arm and measures temperature, ®ngertip deformation and pressure.

We compare di erent approaches to recognize objects considering their surface properties. The robot performed
exploration movements on 49 objects belonging to di erent material classes. We compare various methods to determine
meaningful features from the collected raw data. These are taking di erent sensor signals into account. For the object
recognition, we use di erent common supervised classi®cation methods such as Random Forests or Support Vector
Machines. In addition, we consider combining information gained from di erent exploratory movements. We also
determine wether the features provide sul!cient information to describe materials appropriately. For this classi®cation
task we use both supervised and unsupervised methods. Furthermore, we consider the combination of the proposed
exploration, feature calculation and classi®cation methods and compare their performance. This way we reach a
classi®cation accuracy of 97.55%.
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1 Introduction

In our modern world, robots become more and more important as support in every possible situation. Due to technical
advances, they do no longer only help out in clearly de®ned industrial processes, but they also have arrived in our
everyday lives. Robots can be found in uncertain, continually changing environments. Additionally, the variety of
tasks one robot can perform increases and so does the complexity of these tasks. These processes become too complex
to be controlled manually. For this reason robots need to become more and more autonomous in gaining information
about their environment and deciding for performing actions based on this information. That is why diserent kinds

of sensing technologies become important. So far, mostly visual sensors are used. These can be helpful for scene
recognition, object detection, segmentation [1] or identi®cation of a position depending on the environment. But they
also have limits: Important parts of a scene can be occluded and certain features can be di€cult to discern from a
distance or a speci®c angle.

Tactile sensing can be used to ®ll some of these gaps and collect additional information, because the approach diserent.
While cameras can operate without any movements, touch is an interactive sense and exploratory movements have
to be made. That is why tactile sensing is naturally helpful for all sorts of manipulation tasks. Both exploration and
manipulation can be executed with the same devices. Properties determined by tactile sensing match the information
needed for manipulation.

Tactile information can be useful in a large variety of tasks. It can be used to localize objects or to determine their
shape and texture information. This way objects can be identi®ed or it can be determined what kind of manipulation
would be suitable. Some parts of these properties can be generalized and objects can be classi®ed depending on their
material or function and objects can be treated in an appropriate way for this class .

As our world is designed by human beings for human beings, many manipulation tasks require human-like interaction
and tactile sensing. The BioTac is a ®nger-sized sensing device, which provides some of the human sensing abilities. It
can measure temperature, vibrations and forces applied to its skin. In this work we want to determine the possibilities
and boundaries of the BioTac regarding the recognition of objects and their materials.

1.1 Related Work

Previous studies show the large variety of tasks robots are able to perform using tactile sensing. Romano et al. [2]
demonstrated grasping of objects with a gripper with pressure arrays on its ®ngertips. By evaluating the pressure
sensor data, the minimal force was determined which is necessary such that the object neither slips nor becomes
damaged. Chitta et al. [3] used a gripper with 22 individual capacity sensor cells on each ®nger to determine the
amount of liquid in beverage containers. To achieve this, they grasped the container and rolled it from side to side.
Pape et al. [4] used reinforcement learning to let a robot learn tactile exoploration skills autonomously. This robot is
able e.g. to ®nd out wether it moves without contact or taps on a surface.

We want to concentrate on the classi®cation of objects. On the one hand, this can be achieved by detecting features of
the object's shape, such as edges [5]. On the other hand, their dieerent surface structures can be exploited. We focus
on the latter approach. In the past, diserent methods to measure these surface features have been proposed. Dallaire
et al. [6] used a turntable with a three-axis accelerometer to distinguish between 28 disks made of diserent materials.
A similar sensor built into an arti®cial ®ngernail was used by Sinapov et al. [7] to discriminate objects via ®ve diserent
exploratory scratching movements. The BioTac ®nger is a multimodal sensor other researchers have already achieved
satisfying results with. Fishel and Loeb [8] were able to distinguish between 117 textures with a 95.4% success rate
using the BioTac. They provided an active learning method to choose between 36 dicerent sliding movements with
variation in speed and force.

Apart from sliding there are other stereotypical exploratory procedures human beings perform, such as static contact
or enclosing an object[9]. Chu et al. [10] focused on testing those ®nger movements regarding the object's surface
structure, like applying pressure on an object. They did not only recognize ojects, but also used the collected data
to learn and recognize labels describing human sensations when touching the object. Lepora et al. [11] proposed an
active perception approach that controls the sensor movements. The process decides for the exploratory movement
that most improves the knowledge about the examined object.

There are many dieerent approaches on how to gain meaningful features from collected raw data. It is possible to
distinguish objects with simple spatial features, as provided by Xu et al. [12]. They were able to classify 10 objects
with three features regarding temperature, compliance and texture of the object's surface. Tanaka et al. [13] simply
use the mean value over time for each sensor. More speci®c information can be determined with feature calculations
regarding temporal changes of features and explicit ®ts to the expected changes of each sensor signal [10].



2 Experimental Setup

In this section, we explain our experiments in a detailed way. First of all, we point out the hardware setup and the way
the objects are presented to the ®nger. Then, we describe the movements the ®nger performs to capture the objects.
Finally, we present the objects we examine and the criteria for choosing them.

2.1 Hardware

We used SynTouch's BioTac, a ®ngertip-sized, multimodal, tactile sensor. It consists of a ridgid core envelopped by
an elastic skin, which is ®lled with an incompressible conductive “uid. Both the skin's surface structure, which is
similar to a ®ngerprint and its elasticity imitate a human ®ngertip.There are no further sensors or other electrical
components placed in the skin. That is why the sensor is very robust and force up to 50N can be applied. The BioTac
provides 3 sensor modalities:

When the elastic skin deforms because of pressure appliance, 19 electrodes attached to the core measure the changes
of impedance due to the coductive "uid. As the BioTac's core temperature is approximately 10 C higher than room
temperature, heat "ow into a touched object can be measured by the thermistor. The pressure transducer measures
vibrations when the BioTac slides over a surface [8] [14].

The collected data consists of 5 types of tactile signals:

19 electrode impedancesel 19

low-frequency “uid pressure Py

high-frequency "uid vibrations Py

temperature Tpc

temperature changes Txc

This results in a total of 23 data channels. The P, channel is sampled at 2200 Hz, the others at 100 Hz.






(b) The robot's end e ector's right-hand coordi-
nate system.

We choose a di erent starting position for each movement execution. On the one hand, we want to ensure the same
conditions for each temperature measurement and avoid in uences from former contact. On the other hand, we want
to avoid over®tting and create more robust datasets capturing most of each surface's variations.

2.3 Objects

The objects we chose to analyse have to ful®Il several requirements to ensure similar conditions for the data collection
of each object: First of all, each object has to stand on a table without any further support. Further, they all needed
to have a straight surface to simplify the interaction with the sensor. The object's surface has to be greater than 15
x 15 cm to ensure permanent contact with the BioTac ®nger during data collection and to allow some variation in
the position of the measurements. The surfaces should not have any additional structures that vary from the typical
objects material's structure. As the BioTac's silicone skin can be damaged easily, objects with sharp edges had to
be avoided. Furthermore, the objects should belong to one of the following material classes: wood, ceramic, stone,
plastic, sponge, paper, metal or fabric. We found 5 objects with di erent characteristics for each class, which satis®ed
all the conditions. The objects' features also vary in terms of thermal conductivity, texture roughness and compliance.
Additionally, we chose 9 objects that do not belong to any of the classes or which have very speci®c surface properties.
This results in a set of 49 objects, which is shown in Figure 4. Most of them are household items or can be found in
the garden.






3 Data Evaluation

In this secion we describe how we convert collected raw datasets into speci®c features. Furthermore, we explain the
classi®cation methods we used.

3.1 Data Processing

We extract the BioTac data for each sensor from the transmitted SL-data®les for each timestep and create seperate
datasets for every executed movement, every object and every iteration of this measurement. We then extracted data
for time intervals speci®c for every movement. This way, we avoided noisy sensor signals due to contact establishment in
the beginning of each movement. This is especially important for sliding movements (see Figure 5), because the elastic
skin is pushed to the opposite direction of the current movement. This is the case after a ®rst contact establishment
as well as after a direction change.

bit 3240

3220
3200
3180
3160 /

3140

3120
3100
3080

0 05 1 15 2 25 3 35 4 4,
time in seconds

Figure 5: Electrode data samples for a slide movement on the blue plastic box.

Our measurements took place in a time period of three days. During this time, the environment changed, which
results in shifts in the measured data (Figure ?? ). For this reason we subtract the mean of the ®rst 50 timesteps from
channel to avoid big shifts.

3.2 Feature Calculation

In order to create features for each collected data sample we chose 7 di erent ways to extract features from the raw
data. This collection of feature calculation methods allows us to compare their performance in the classi®cation of the
objects they represent. The ®rst two feature calculation methods are special methods designed for the BioTac sensors.
The third and fourth method use unmanipulated raw data and the last three use only one of the 3 sensor modalities
each.

F,: Simple BioTac features
Xu et. al [12]£rovide oge simple feature per sensor modality:

. jointangle
+ f;:log E1g

t f,:10g var Pacritered

I+

f3 . 17A(:

As we only had access to the BioTac data, we were not able to use the angle and we took only the electrode
data for f; instead.

F,: Temporal BioTac features
Chu et al. [10] suggest a more complex featureset, which also takes the signal changes over time into credit.
1. Py features:

= fi maximum Ppe

I+

fo: mean Py

I+

f3: Smooth Py data with a Hanning window and determine the greatest change in the signal over
time



2. Pyc features: Convert the data into an energy spectral density (ESD)

+ f,: area under the ESD curve

I+
—n

5. weighted average over ESD

I+
—

5. spectral variance

I+
—

7. spectral skewness

I+
—

;. spectral kurtosis

3. Tpc and T, features:

I+

fg: area under the T,c curve

I+

fg: time constant of an exponential ®t of Tpc over time.
4. Electrode features:

*+ fiqg Ty Use Principal Component Analysis (PCA) and ®t ®fth order polynomials to the ®rst two
principal components. The features are the polynomial coe cients.

5. robot features:

I+

fo3: mean of the aperture gripper distance

I+

fo4: minimum of the aperture gripper distance

I+

fo5: range of the gripper's vertical position

As we only had access to the BioTac data, we did not use fo3  f,s.

F;: Raw Data
We concatenate the values for all 23 data channels over time to produce one single vector, where every sensor
signal at every timestep is a feature.

F,: Raw Data Means
We calgulate the mean of each signal channel over time, which results in a total of 23 features.
f,= 1 N signal,

Fs: pressure data
Dallaire et al.[6] used these feature calculations for a Micro Electro-Mechanical Systems (MEMS) accelerometer:
We calculated the features for the P, signal.

I+

fi: variance

: skewness

I+
—
)

. kurtosis

I+
—
w

: ®fth moment

I+
—
IS

: sum of the variation over time

I+
—
o

I+
—
o

- number of times 20 uniformly separated thresholds are crossed

I+
—
3

: sum of higher half of amplitude spectrum

Fs: electrode data
The electrode data is ®ltered by a ®rst-order Butterworth ®lter and then we calculate the Euclidean Norm to
combing all signals lgto a single signal:
=2
f(ty=  'signal

= f;: mean of f(t)

I+

f,: variance of f(t)

Chitta et al. [3] designed these features for tactile sensor cells directly attached to a gripper.

F,: temperature data

Based on our experience with the former mentioned feature calculations we developped a set of features con-
sidering only temperature data mainly for the static contact movement. Distinguishing values for the analog
derivative of temperature ( Toc) can be seen after about 6 seconds of contact (Figure 6a). After an initial pike
the temperature signal (Tpc) remains nealy constant. We take the mean for both T,c and Ty value for the
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remaining 9 seconds. Another distinguishing feature for the T, signal is the change after the initial peak, which
we examine in f;.

I+

fi= Tac

+

*+ f,: mean of Ty

I+

f3 : mean of Tpc

To avoid numerical problems, we normalize each feature calculation.
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Figure 6: Temperature signals over time for static contac on the metal box and on the beige sponge.

In the following chapters, the features calculation methods will be referred to as F1-F7 in the same order we used
in this paragraph.
We also had to reduce the dimensionality for some featuresets, because some classi®cation methods (e.g. Naive
Bayes) can only be used with more samples per class than feature dimensionality per sample. We did so applying
Principal Component Analysis (PCA) [15]. In Figure 7 we show the results of the feature reduction for each feature set.



The class-conditional probabilities can be modeled with a Gaussian distribution function [16].

) 1 1 xoq?
p(Xjo) = P, e? i 2

Support Vector Machines:

A support vector machine is a distribution-free, discriminative model. It attemps to ®nd a single decision boun-
dary that maximizes the (SVM) margin between the classes. The class®cation margin is de®ned as the sum of
the distances of the closest samples of each class, called support vectors. The most simple form is a linear SVM.
If data samples are not linearly separable, they can be mapped into high-dimensional feature spaces, where they
are seperable. A SVM model can do so e ciently with the so called kernel trick. This way, the classi®cation is
reduced to a quadratic programming problem. [17]

N
f(x) = iK(xi,x)+ b ®3)
=1
i is the weight associated with support vector x; and b is a constant o!set. In order to deal with overlapping
classes, it is possible to use the Soft Margin method that allows some data points to be missclassi®ed. This
is done introducing a slack variable , which describes the distance from the margin boundary for each data
sample and is penalized with a constant value C.

We use a linear SVM and a radial basis SVM [6] with a kernel that takes the form:
€ S
K(xi,xj) = exp Xi X (4)

where is the radius. For this SVM, we also used the soft margin method. In order to identify optimal
parameters for the kernel function and the penalty for missclassi®ed samples, we executed a grid search [18].

Random Forest:

A random forest is a set of binary decision trees. These trees are independently trained classi®ers. A decision
tree's inner nodes represent splitting conditions. The thresholds for these conditions are set when the tree is
trained. The leaves contain probabilities for the training samples to reach this node. Based on the decisions
on each node, a test sample can traverse the tree and the probablity distributions in the leaf assigns the
most probable label. With dilerent random feature subsets for the training of each tree, randomization can be
achieved. A classi®cation result is the average classi®cation of all trees in the forest. [19] We trained 100 trees
with a maximal depth of 3 nodes.

We

Figure 8: Structure of a random tree with a depth of three.

also use an unsupervised clustering method:

K-means Clustering:
The goal of k-means clustering is to partition the data into k clusters, where each data point belongs to the
cluster with the nearest mean. Therefore the following formula has to be minimized:

X
J = Xj i (5)
i=1xj2G
where C are the clusters, ; is the mean for all elements belonging to a cluster and k is the number of clusters.
This can be obtained with iterative re®nement by an expectation-maximization (EM) algorithm: During the
expectation step, new means are calculated for each cluster depending on the assigned data points. In the
maximization step, every data point is assigned to the cluster with the nearest mean[16].

We have used the python machine learning library scikit-learn [20] for random forest and clustering methods and the
SVM library libSVM [21]. Feature calculations are implemented in MATLAB.




4 Results

We have collected data for three diserent datasets, which vary in terms of objects and executed movements. We also
tested dieerent amounts of feature calculation and classi®cation methods.

The pilot study was a small experiment testing the experimental setup and more generally the whole classi®cation
process. Our main experiment repeated this experiment with small adjustments regarding the data collection process
and a larger set of objects, movements, feature calculations and classi®cation methods. The third experiment serves
to evaluate the potential of two more ®nger movements.

4.1 Pilot Study

Our ®rst dataset consists of measurements for a subset of ®ve objects (Figure 9), which have signi®cantly dieerent
features regarding compliance, texture roughness and thermal conductivity. We executed one sliding movement (back-
ward) with a velocity of 3 cm/s for each object ten times and we used the force torque sensor to determine wether
contact between the ®nger and an object was established.



4.2.1 Object Classi®cation

After manipulating the data and calculating feature values to represent each dataset with all seven proposed calcula-
tion methods, we execute the following procedure for each possible combination of feature calculation and movement:
First, we randomly choose one test sample for each object. The remaining nine featuresets are used as training samp-
les. This results in 49 test samples and 441 training samples. Then, we apply each classi®cation method on the created
data sets. We repeat this split procedure 100 times and calculate mean and variance for each result. This way, we
obtain an average overall classi®cation accuracy of 50.97%

In Figure 11, we display the average results for each feature calculation method. We observe that F4, the raw data
means, produces an accuracy of 73.83%, which is more than ten percent higher than the next best method F2, the
temporal feature calculation, with 62.43% followed by F3, the raw data and F7, the temperature features. The simple
BioTac features, pressure features and vibration features obtain classi®cation accuracies of less than 50%.
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Figure 11: Classi®cation accuracy for each feature calculation method, averaged over all movements and classi®cation
methods, with 9 training samples per object.

In Figure 12 it can be seen that F4 obtains not only the highest accuracy results on average, but also when we look
at each movement separately. We observe similar results for each classi®cation method in Figure 13. Taking a closer
look to Figure 12, it is striking that for all feature calculation methods exept for raw data (F4) and temperature data
(F7) the most meaningful features are produced when applied to the static contact datasets.

For the comparison of the classi®cation methods (Figure 13), it is noticable that the most performant methods are
Naive Bayes and the linear SVM. Only for F5 the random forest method achieves with 31.63% slightly better results
than Naive Bayes with 28.71%. The linear SVM obtains the highest classi®cation accuracy for F2 and F3, whose
dimensionality had to be reduced the most drastically to meet the conctraints the classi®cation algorithms impose
(see table 7).

To reduce the dimensionality of our data analysis, we proceed with a smaller dataset: We choose the best feature
calculation method F4 and the two best classi®cation methods Naive Bayes and linear SVM for further evaluation.
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Figure 15: Classi®cation accuracy for each movement with feature calculation F4, classi®cation methods Naive Bayes
and linear SVM and 9 training samples per object.
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Figure 16: Classi®cation accuracy for each movement combination with an increasing number of movements, feature
calculation F4, classi®cation methods Naive Bayes and linear SVM and 9 training samples per object.
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Figure 18: Classi®cation accuracy for each of the 23 sensor signals averaged over all movements, with classi®cation
method linear SVM and 9 training samples per object.
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Figure 20: Classi®cation accuracy for each of the 23 sensor signals for static contact, with classi®cation method linear
SVM and 9 training samples per object.

4.2.4 Materials

We take a closer look at the accuracy rates for each object in order to determine the possible reasons for missclassi-
®cations. The confusion matrix (Figure 21) shows that most missclassi®cations happen, when an object is mixed up
with another one made of the same material. Especially the materials fabric, ceramic and wood are in question.

The same missclass®ciations can be seen, when we classify the objects of each material class separately. The nine
objects that do not belong to any material class are left out. The results are displayed in Figure 22. It is shown that
the former mentioned materials obtain the lowest classi®cation accuracies. This observation suggests, that the objects
belonging to these classes have a low in-class variance.The objects made of paper, sponge or plastic are perfectly
distinguishable with nine training samples per object.

We also classify the objects of each material class separately. To get our training and validation data set, we proceed
as before, but label all objects made from the same material identically. The results shown in Figure 23 correspond
to our previous observations. Those materials, whose objects are the most di cult to distinguish, such as wood or
ceramics, achieve the highest material classi®cation accuracies. But a low in-class variance is no requirement for high
material accuracy as the material class sponge shows. The features objects are easy to distinguish (perfect results for
the in-class classi®cation), but they diler even more from other objects' features.
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Figure 22: Classi®cation accuracy for objects of each material class separately with concatenation of all movements,
feature calculation F4, classi®cation method linear SVM and an increasing number of training samples per
object.
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Figure 23: Classi®cation accuracy for each material with concatenation of all movements, feature calculation F4,
classi®cation method linear SVM and an increasing number of training samples per object.

Furthermore, we determine to which material class each object is assigned by classi®cation. Therefore we use all

40 data sets belonging to one of the material classes as training samples. Subsequently, we choose one object's data
as training set. (If this object belongs to the 40 former mentioned objects, its data is removed from the training set.)
This way, we perform a classi®cation of each object. The results can be seen in Figure 24.
The resulting class sponge contains all objects we assigned to this class and few other objects. In contrast, the paper
class has more false positives than objects actually made of paper. The ceramics class that achieved good results in
the last section has now an accuracy of 58%. The objects that do not belong to any material class, are mostly assigned
to the material wood.
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Considering these results, it occurs that our manually assigned material labels do not correspond to the similarity
of objects according to the provided features. This leads us to unsupervised clustering.




4.3 Additional Movements

In order to compare more exploratory movements, we collected a smaller dataset of 5 objects, which can be seen in
Figure 26 and added the two movements roll and rotate.

—backward

—forward

—left
—nmotionless

—roll

Figure 27: Classi®cation accuracy for each object, with concatenation of all movements, feature calculation F4, clas-
si®cation method linear SVM and an increasing nhumber of training samples per object.

20



5 Conclusion and Future Work

To summarize, we examined 49 objects with four dieerent methods of classi®cation and each of those classi®cation
methods was tested with seven dieerent feature calculation methods. it is noticable that the feature calculations espe-
cially designed for the BioTac sensor seem to perform more poorly than the method which uses the mean calculation
directly based on the raw data for the chosen materials. It occurs that the mean method describes the features of
dieerent objects best to distinguish them during the classi®cation process.

The feature ranking shows that the BioTac Sensor is very sensitive to noise. Furthermore, the rotation movements
achieved better results than the other movements and should be repeated on a larger testset. Both results suggest
that a re®nement of the measurement process is necessary in the future.

To look further, on the one hand the feature calculation could be extended with additional measures to capture
more information about the examined object. On the other hand the limitations of classi®cation based on the provided
feature information could be reached when separating dieerent objects of similar material. Moreover, our material
classi®cation results suggest that the sensor modalities thermal conductivity, texture roughness and compliance are
not su€cient to distinguish between materials.

For further evaluation of the methods' su€ciency they have to be applied on a speci®c task. This way, they can be
adapted to special needs in order to increase the classi®cation performance.

For better usability, the classi®cation process should be provided in real time. In that way further information can
be used to directly support manipulation tasks. For the same reason, autonomous selection of exploratory movements
depending on manipulation tasks is eligible.

With these improvements another application is classi®cation in cluttered scenes to dicerentiate between objects.
With more exploratory movements it is also possible to create a spatial map of those objects. This allows us to assign
meaningful labels to parts of the scene.

All these improvements have the potential to support a large variety of manipulation tasks and allow robots to interact
with their environment more autonomously.

21



Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[20]

Marianna Madry, Liefeng Bo, Danica Kragic, and Dieter Fox. St-hmp: Unsupervised spatio-temporal feature
learning for tactile data. IEEE International Conference on Robotics and Automation (ICRA), 2014.

Joseph M Romano, Kaijen Hsiao, Genter Niemeyer, Sachin Chitta, and Katherine J Kuchenbecker. Human-
inspired robotic grasp control with tactile sensing. Robotics, IEEE Transactions on, 27(6):1067+1079, 2011.

S. Chitta, J. Sturm, M. Piccoli, and W. Burgard. Tactile sensing for mobile manipulation. Robotics, IEEE
Transactions on, 27(3):558+568, June 2011.

Leo Pape, Calogero M Oddo, Marco Controzzi, Christian Cipriani, Alexander F€rster, Maria C Carrozza, and
Jergen Schmidhuber. Learning tactile skills through curious exploration. Frontiers in neurorobotics, 6, 2012.

Pierre Payeur, Codrin Pasca, A-M Cretu, and Emil M Petriu. Intelligent haptic sensor system for robotic
manipulation. Instrumentation and Measurement, IEEE Transactions on, 54(4):1583+1592, 2005.

Patrick Dallaire, Philippe Giguere, Daniel ,mond, and Brahim Chaib-Draa. Autonomous tactile perception:
A combined improved sensing and bayesian nonparametric approach. Robotics and Autonomous Systems,
62(4):422+435, 2014.

Jivko Sinapov, Vladimir Sukhoy, Ritika Sahai, and Alexander Stoytchev. Vibrotactile recognition and categori-
zation of surfaces by a humanoid robot. Robotics, IEEE Transactions on, 27(3):488+497, 2011.

Jeremy A Fishel and Gerald E Loeb. Bayesian exploration for intelligent identi®cation of textures. Frontiers in
neurorobotics, 6, 2012.

Susan J Lederman and Roberta L Klatzky. Hand movements: A window into haptic object recognition. Cognitive
psychology, 19(3):342+368, 1987.

V. Chu, | McMahon, L. Riano, C.G. McDonald, Qin He, J. Martinez Perez-Tejada, M. Arrigo, N. Fitter, J.C.
Nappo, T. Darrell, and K.J. Kuchenbecker. Using robotic exploratory procedures to learn the meaning of haptic
adjectives. |IEEE International Conference on Robotics and Automation (ICRA), pages 3048+3055, May 2013.

Nathan F Lepora, Uriel Martinez-Hernandez, and Tony J Prescott. Active touch for robust perception under
position uncertainty. IEEE International Conference on Robotics and Automation (ICRA), pages 3020+3025,
2013.

Danfei Xu, Gerald E Loeb, and Jeremy A Fishel. Tactile identi®cation of objects using bayesian exploration.
IEEE International Conference on Robotics and Automation (ICRA), pages 3056+3061, 2013.

Daisuke Tanaka, Takamitsu Matsubara, Kentaro Ichien, and Kenji Sugimoto. Object manifold learning with
action features for active tactile object recognition. IEEE International Conference on Intelligent Robots and
Systems (IROS), 2014.

Biotac product manual.
Christopher M Bishop et al. Pattern recognition and machine learning, volume 1. springer New York, 2006.
Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Christopher JC Burges. A tutorial on support vector machines for pattern recognition. Data mining and
knowledge discovery, 2(2):121+167, 1998.

Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to support vector classi®cation, 2003.

A Criminisi, J Shotton, and E Konukoglu. Decision forests for classi®cation, regression, density estimation,
manifold learning and semi-supervised learning. Microsoft Research Cambridge, Tech. Rep. MSRTR-2011-114,
5(6):12, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825+2830, 2011.

22



[21] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[22] Ron Kohavi and George H John. Wrappers for feature subset selection. Arti®cial intelligence, 97(1):273+324,
1997.

23



