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Abstract. We present a model-free reinforcement learning method for
partially observable Markov decision problems. Our method estimates
a likelihood gradient by sampling directly in parameter space, which
leads to lower variance gradient estimates than those obtained by policy
gradient methods such as REINFORCE. For several complex control
tasks, including robust standing with a humanoid robot, we show that
our method outperforms well-known algorithms from the fields of policy
gradients, finite difference methods and population based heuristics. We
also provide a detailed analysis of the differences between our method
and the other algorithms.

1 Introduction

Policy gradient methods, so called because they search in policy space without
using value estimation, are among the most effective optimisation strategies for
complex, high dimensional reinforcement learning tasks [1,2,3,4]. However, a
significant problem with policy gradient algorithms such as REINFORCE [5],
is that the high variance in their gradient estimates leads to slow convergence.
Various approaches have been proposed to reduce this variance [6,7,2,8].

In what follows we introduce an alternative method, called policy gradients
with parameter-based exploration (PGPE), which replaces the search in policy
space with a direct search in model parameter space. As with REINFORCE, the
search is carried out by generating history samples, and using these to estimate
the likelihood gradient with respect to the parameters. The advantage of PGPE
is that a single parameter sample can be used to generate an entire action-
state history, in contrast with policy gradient methods, where an action sample
is drawn from the policy on every time step. This provides PGPE with lower
variance history samples, and correspondingly lower variance gradient estimates.
In addition, since PGPE estimates the parameter gradient directly, it can be used
to train non-differentiable controllers.

The PGPE algorithm is derived in detail in Section 2. In Section 3, we test
PGPE on three control experiments, and compare its performance with RE-
INFORCE, evolution strategies (ES) [9], simultaneous perturbation stochastic
adaptation (SPSA) [10], and natural actor critic (NAC) [4]. In Section 4 we
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analyse the relationship between PGPE and the other algorithms. In particular
we carry out a range of experiments where we iteratively modify each of RE-
INFORCE, SPSA and ES in such a way that they become more like PGPE,
and evaluate the corresponding improvement in performance. Conclusions and
directions for future work are presented in Section 5.

2 The Policy Gradients with Parameter-Based
Exploration Method

In what follows we derive the PGPE algorithm from the general framework of
episodic reinforcement learning in a Markovian environment. In doing so we
highlight the differences between PGPE and policy gradient methods such as
REINFORCE, and discuss why these differences lead to more accurate parameter
gradient estimates.

Consider an agent interacting with an environment. Denote the state of envi-
ronment at time t as st and the action at time t as at. Because we are interested
in continuous state and action spaces (usually required for control tasks), we rep-
resent both at and st with real valued vectors. We assume that the environment
is Markovian, i.e. that the current state-action pair defines a probability distri-
bution over the possible next states st+1 ∼ p(st+1|st, at). We further assume
that the actions depend stochastically on the current state and some real valued
vector θ of agent parameters: at ∼ p(at|st, θ). Lastly, we assume that each state-
action pair produces a scalar reward rt(at, st). We refer to a length T sequence of
state-action pairs produced by an agent as a history h = [s1:T , a1:T ] (elsewhere
in the literature such sequences are referred to as trajectories or roll-outs).

Given the above formulation we can associate a cumulative reward r with
each history h by summing over the rewards at each time step: r(h) =

∑T
t=1 rt.

In this setting, the goal of reinforcement learning is to find the parameters θ
that maximize the agent’s expected reward:

J(θ) =
∫

H
p(h|θ)r(h)dh (1)

An obvious way to maximise J is to use ∇θJ to carry out gradient ascent.
Noting that the reward for a particular history is independent of θ, and using
the standard identity ∇xy(x) = y(x)∇x log x, we can write

∇θJ(θ) =
∫

H
p(h|θ)∇θ log p(h|θ)r(h)dh (2)

Since the environment is Markovian, and since the states are conditionally in-
dependent of the parameters given the agent’s choice of actions, we can write
p(h|θ) = p(s1)ΠT

t=1p(st+1|st, at)p(at|st, θ). Substituting this into Eq. (2) gives

∇θJ(θ) =
∫

H
p(h|θ)

T∑

t=1

∇θp(at|st, θ)r(h)dh (3)
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Clearly, integrating over the entire space of histories is unfeasible, and we there-
fore resort to sampling methods:

∇θJ(θ) ≈ 1
N

N∑

i=1

T∑

t=1

∇θp(ai
t|si

t, θ)r(h
i) (4)

where the histories hi are chosen according to p(hi|θ). The question then be-
comes one of how to model p(at|st, θ). In policy gradient methods such as
REINFORCE, the parameters θ are used to determine a probabilistic policy
πθ(at|st) = p(at|st, θ). A typical policy model would be a parametric function
approximator whose outputs define the probabilities of taking different actions.
In this case the histories can be sampled by choosing an action at each time step
according to the policy distribution, and the final gradient can be calculated by
differentiating the policy with respect to the parameters. However, the problem
is that sampling from the policy on every time step leads to an excessively high
variance in the sample over histories, and therefore in the estimated gradient.

PGPE addresses the variance problem by replacing the probabilistic policy
with a probability distribution over the parameters themselves, that is

p(at|st, ρ) =
∫

Θ
p(θ|ρ)δFθ(st),at

dθ, (5)

where ρ are the hyperparameters determining the distribution over the parame-
ters θ, Fθ(st) is the (deterministic) action chosen by the model with parameters
θ in state st, and δ is the usual Dirac delta function. The advantage of this
approach is that, because the actions are deterministic, an entire history can
be generated using a single sample from the parameters, thereby reducing the
variance in the gradient estimate. As an added benefit the gradient is estimated
directly by sampling the parameters, which allows the use of non-differentiable
controllers. The expected reward with hyperparameters ρ is:

J(ρ) =
∫

Θ

∫

H
p(h, θ|ρ)r(h)dhdθ (6)

Differentiating this with respect to ρ and applying the log trick as before we get:

∇ρJ(ρ) =
∫

Θ

∫

H
p(h, θ|ρ)∇ρ log p(h, θ|ρ)r(h)dhdθ (7)

Noting that h is conditionally independent of ρ given θ, we have p(h, θ|ρ) =
p(h|θ)p(θ|ρ) and therefore ∇ρ log p(h, θ|ρ) = ∇ρp(θ|ρ). Substituting this into
Eq. (6) we get

∇ρJ(ρ) =
∫

Θ

∫

H
p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)r(h)dhdθ (8)

Again we approximate the above by sampling, this time by first choosing θ from
p(θ|ρ), then running the agent to generate h from p(h|θ). In what follows we
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assume that ρ consists of a set of means µi and standard deviations σi that
determine an independent normal distribution for each parameter θi in θ . Note
that more complex forms for the dependency of θ on ρ could be used, at the
expense of higher computational cost. Some rearrangement gives the following
forms for the derivative of log p(θ|ρ) with respect to µi and σi:

∇µi log p(θ|ρ) =
(θi − µi)

σ2
i

∇σi log p(θ) =
(θi − µi)2 − σ2

i

σ3
i

(9)

Following Williams [5], we update each σi and µi in the direction of the gradient
using a step size αi = ασ2

i , where α is a constant. Also following Williams
we subtract a baseline b from the reward r for each history. This gives us the
following hyperparameter update rules:

∆µi = α(r − b)(θi − µi) ∆σi = α(r − b)
(θi − µi)2 − σ2

i

σi
(10)

A possible objection to PGPE is that parameter space is generally higher dimen-
sional than action space, and therefore has higher sampling complexity. However,
recent results [11] indicate that this drawback was overestimated in the past. In
this paper we present experiments where PGPE successfully trains a controller
with more than 1000 parameters. Another issue is that PGPE, at least in its
present form, is explicitly episodic, since the parameter sampling is carried out
once per history. This contrasts with policy gradient methods, which can be
applied to infinite horizon settings as long as frequent rewards can be computed.

3 Experiments

In this section we compare PGPE with SPSA, REINFORCE, NAC and ES, on
three simulated control scenarios. These scenarios allow us to model problems
of similar complexity to today’s real-life RL problems [12,2].

In all experiments involving evolution strategies (ES) we used a local mutation
operator. We did not examine correlated mutation and CMA-ES because both
mutation operators add n(n − 1) strategy parameters to the genome. Since we
have more than 1000 parameters for the largest controller, this would lead to a
prohibitive memory cost. In addition, the local mutation operator is more similar
to the perturbations in PGPE, making it easier to compare the algorithms. All
plots show the average results of 40 independent runs.

3.1 Pole Balancing

The first scenario is the standard pole balancing benchmark [11]. In this task the
agent’s goal is to maximize the length of time a movable cart can balance a pole
upright in the center of a track. The agent’s inputs are the angle and angular
velocity of the pole and the position and velocity of the cart. The agent is repre-
sented by a linear controller with four inputs and one output. The simulation is
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Fig. 1. PGPE compared to ES, SPSA,
REINFORCE and NAC on the pole bal-
ancing benchmark

Fig. 2. PGPE compared to ES, SPSA and
REINFORCE on the walking task

updated 50 times a second. The initial position of the cart and angle of the pole
are chosen randomly. Figure 1 shows the performance of the various methods on
the pole balancing task. All algorithms quickly learned to balance the pole, and
all but SPSA eventually learned to do so in the center of the track. PGPE was
both the fastest to learn and the most effective algorithm on this benchmark.

3.2 FlexCube Walking Task

The second scenario was a mass-particle system with 8 particles. The particles
are modelled as point masses on the vertices of a cube, with every particle
connected to every other by a spring (see Fig. 3). We refer to this scenario
as the FlexCube framework. Though relatively simple, FlexCube can be used to
perform sophisticated tasks with continuous state and action spaces. In this case
the task is to make the cube “walk” — that is, to maximize the distance of its
center of gravity from the starting point.

The agent can control the desired lengths of the 12 edge springs. Its inputs are
the 12 current edge spring lengths, the 12 previous desired edge spring lengths
(fed back from its own output at the last time step) and the 8 floor contact
sensors in the vertices. The agent is represented by a Jordan network [13] with
32 inputs, 10 hidden units and 12 output units. Figure 2 shows the results on
the walking task. All the algorithms learn to move the FlexCube. However, for
reasons that are unclear to the authors, ES is only able to do so very slowly.
PGPE substantially outperforms the other methods, both in learning speed and
final reward. For a detailed view of the solutions in the walking task please refer
to the video on http://www.pybrain.org/videos/icann08/.

3.3 Biped Robot Standing Task

The task in this scenario was to keep a simulated biped robot standing while
perturbed by external forces. The simulation, based on the biped robot
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Fig. 3. The real Johnnie robot (left),
its simulation (center) and the FlexCube
(right)

Fig. 4. PGPE compared to ES, SPSA
and REINFORCE on the robust standing
benchmark

Johnnie [14] was implemented using the Open Dynamics Engine. The lengths
and masses of the body parts, the location of the connection points, and the
range of allowed angles and torques in the joints were matched with those of
the original robot. Due to the difficulty of accurately simulating the robot’s feet,
the friction between them and the ground was approximated with Coulomb fric-
tion. The framework has 11 degrees of freedom and a 41 dimensional observation
vector (11 angles, 11 angular velocities, 11 forces, 2 pressure sensors in feet, 3
degrees of orientation and 3 degrees of acceleration in the head). The controller
was a Jordan network [13] with 41 inputs, 20 hidden units and 11 output units.

The aim of the task is to maximize the height of the robot’s head, up to
the limit of standing completely upright. The robot is continually perturbed by
random forces (see Figure 5) that would knock it over if it did not react.

As can be seen from the results in Fig. 4, the task was relatively easy,
and all the methods were able to quickly achieve a high reward. REINFORCE
learned especially quickly, and outperformed PGPE in the early stages of learn-
ing. However PGPE overtook it after about 500 training episodes. Figure 5
shows a typical scenario of the robust standing task with a reward outcome
of 279. For more detailed views of the solution please refer to the video on
http://www.pybrain.org/videos/icann08/.

3.4 Discussion

One general observation from our experiments was that the longer the episodes,
the more PGPE outperformed policy gradient methods. This is not surprising,
since the variance of the REINFORCE gradient estimates increases with the
number of action samples. However it is an important benefit, given that most
interesting real-world problems require much longer episodes than our experi-
ments [1,2,12].
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Fig. 5. From left to right, a typical solution which worked well in the robust standing
task is shown: 1. Initial posture. 2. Stable posture. 3. Perturbation. 4. - 7. Backsteps
right, left, right, left. 8. Stable posture regained.

4 Relationship to Other Algorithms

In this section we quantify the differences between PGPE and SPSA, ES and
REINFORCE, and assess the impact of these differences on performance. Start-
ing with each of other algorithms we incrementally alter them so that their
behaviour (and performance) becomes closer to that of PGPE. In the case of
SPSA we end up an algorithm identical to PGPE; for the other methods the
transformed algorithm is similar, but still inferior, to PGPE.

4.1 From SPSA to PGPE

Two changes are required to transform SPSA into PGPE. First the uniform
sampling of perturbations is replaced by Gaussian sampling, (with the finite dif-
ferences gradient correspondingly replaced by the likelihood gradient). Second,
the variances of the perturbations are turned into free parameters and trained
with the rest of the model (initially the Gaussian sampling is carried out with
fixed variance, just as the range of uniform sampling is fixed in SPSA). Figure 6
shows the performance of the three variants of SPSA on the walking task. Note
that the final variant is identical to PGPE (solid line). For this task the main
improvement comes from the switch to Gaussian sampling and the likelihood
gradient (circles). Adding adaptive variances actually gives slightly slower learn-
ing at first, although the two converge later on. The original parameter update
rule for SPSA is:

θi(t + 1) = θi(t) − α
y+ − y−

2ε
(11)

with y+ = r(θ +∆θ) and y− = r(θ −∆θ), where r(θ) is the evaluation function
and ∆θ is drawn from a Bernoulli distribution scaled by the time dependent step
size ε(t), i.e. ∆θi(t) = ε(t) · rand[−1, 1] In addition, a set of metaparameters is
used to help SPSA converge. ε decays according to ε(t) = ε(0)

tγ with 0 < γ < 1.
Similarly, α decreases over time, with α = a/(t + A)E for some fixed a, A and
E [10]. The choice of initial parameters ε(0), γ, a, A and E is critical to the
performance of SPSA. To switch from uniform to Gaussian sampling we simply
modify the perturbation function to ∆θi(t) = N (0, ε(t)). We then follow the
derivation of the likelihood gradient outlined in Section 2, to obtain the same
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Fig. 6. Three variants of SPSA on the
FlexCube walking task: the original al-
gorithm (SPSARaw), the algorithm with
normally distributed sampling and likeli-
hood gradient (SPSALikeGrad), and with
adaptive variance (SPSALocExp)

Fig. 7. Three variants of ES on the Flex-
Cube walking task: the original algorithm
(ESRaw), derandomized ES (ESDeRan-
dom) and gradient following (ESBaseG-
rad). PGPE is shown for reference.

parameter update rule as used for PGPE (Eq. (10)). The correspondence with
PGPE becomes exact when we calculate the gradient of the expected reward
with respect to the sampling variance, giving us the standard deviation update
rule stated in Eq. (10). As well as improved performance, the above modifica-
tions greatly reduce the number of free parameters in the algorithm. The SPSA
metaparameters are now condensed to: a step size αµ for updating the param-
eters, a step size ασ for updating the standard deviations of the perturbations,
and an initial value standard deviation σinit. Furthermore, we found that the
parameters αµ = 0.2, ασ = 0.1 and σinit = 2.0 worked very well for a wide
variety of tasks.

4.2 From ES to PGPE

We now examine the effect of two modifications that largely bridge the gap be-
tween ES and PGPE. First we switch from standard ES to derandomized ES [15],
which somewhat resembles the gradient based variance updates found in PGPE.
We then change from using population based search to following a likelihood
gradient. The results are plotted in Figure 7. As can be seen, both modifica-
tions bring significant improvements, although neither can match PGPE. While
ES performs well initially, it is slow to converge to good optima. This is partly
because, as well as having stochastic mutations, ES has stochastic updates to
the standard deviations of the mutations, and the coupling of these two stochas-
tic processes slows down convergence. Derandomized ES alleviates that problem
by using instead a deterministic standard deviation update rule, based on the
change in parameters between the parent and child. Tracking a population has
advantages in the early phase of search, when broad, relatively undirected ex-
ploration is desirable. This is particularly true for the multimodal fitness spaces
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Fig. 8. REINFORCE on the pole balancing task, with various frequencies of action
perturbation. PGPE is shown for reference.

typical of realistic control tasks. However in later phases convergence is usually
more efficient with gradient based methods. Applying the likelihood gradient,
the ES parameter update rule becomes:

∆θi = α
M∑

m=1

(rm − b)(ym,i − θi), (12)

where M is the number of samples and ym,i is parameter i of sample m.

4.3 From REINFORCE to PGPE

We previously asserted that the lower variance of PGPE’s gradient estimates
is partly due to the fact that PGPE requires only one parameter sample per
history, whereas REINFORCE requires samples every time step. This suggests
that reducing the frequency of REINFORCE perturbations should improve its
gradient estimates, thereby bringing it closer to PGPE. Fig. 8 shows the per-
formance of episodic REINFORCE with a perturbation probability of 1, 0.5,
0.25, and 0.125 per time step. In general, performance improved with decreas-
ing perturbation probability. However the difference between 0.25 and 0.125 is
negligible. This is because reducing the number of perturbations constrains the
range of exploration at the same time as it reduces the variance of the gradient,
leading to a saturation point beyond which performance does not increase. Note
that the above trade off does not exist for PGPE, because a single perturbation
of the parameters can lead to a large change in behaviour.

5 Conclusion and Future Work

We have introduced PGPE, a novel algorithm for episodic reinforcement learn-
ing based on a gradient based search through model parameter space. We de-
rived the PGPE equations from the basic principle of reward maximization, and
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explained why they lead to lower variance gradient estimates than those ob-
tained by policy gradient methods. We compared PGPE to a range of stochastic
optimisation algorithms on three control tasks, and found that it gave supe-
rior performance in every case. Lastly we provided a detailed analysis of the
relationship between PGPE and the other algorithms. One direction for future
work would be to establish whether Williams’ local convergence proofs for RE-
INFORCE can be generalised to PGPE. Another would be to combine PGPE
with recent improvements in policy gradient methods, such as natural gradients
and base-line approximation [4].
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