
HAL Id: hal-01273409
https://hal.archives-ouvertes.fr/hal-01273409

Submitted on 12 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning soft task priorities for control of redundant
robots

Valerio Modugno, Gerard Neumann, Elmar Rueckert, Giuseppe Oriolo, Jan
Peters, Serena Ivaldi

To cite this version:
Valerio Modugno, Gerard Neumann, Elmar Rueckert, Giuseppe Oriolo, Jan Peters, et al.. Learning
soft task priorities for control of redundant robots. IEEE International Conference on Robotics and
Automation (ICRA 2016), May 2016, Stockholm, Sweden. <hal-01273409>

https://hal.archives-ouvertes.fr/hal-01273409
https://hal.archives-ouvertes.fr


Learning soft task priorities for control of redundant robots

Valerio Modugno1,4, Gerard Neumann2, Elmar Rueckert2, Giuseppe Oriolo1, Jan Peters2,3, Serena Ivaldi2,4

Abstract— One of the key problems in planning and control
of redundant robots is the fast generation of controls when
multiple tasks and constraints need to be satisfied. In the
literature, this problem is classically solved by multi-task
prioritized approaches, where the priority of each task is
determined by a weight function, describing the task strict/soft
priority. In this paper, we propose to leverage machine learning
techniques to learn the temporal profiles of the task priorities,
represented as parametrized weight functions: we automatically
determine their parameters through a stochastic optimization
procedure. We show the effectiveness of the proposed method
on a simulated 7 DOF Kuka LWR and both a simulated and
a real Kinova Jaco arm. We compare the performance of
our approach to a state-of-the-art method based on soft task
prioritization, where the task weights are typically hand-tuned.

I. INTRODUCTION

Exploiting the redundancy in robotic systems to simul-
taneously fulfil a set of tasks is a classical problem for
complex manipulators and humanoid robots [1], [2]. Several
controllers have been proposed in the literature, where the
tasks combination is determined by the relative importance
of the tasks, expressed by the task priorities. There are two
main approaches for prioritized multi-task controllers. The
first is based on strict task priorities, where a hierarchical
ordering of the tasks is defined: critical tasks (or tasks that
are considered as more important) are fulfilled with higher
priorities, and the low-priority tasks are solved in the null-
space of the higher priority tasks [3], [4]. The second is based
on soft task priorities, where the solution is typically given
by a combination of weighted tasks [5]. The importance or
“soft priority” of each individual task is represented by a
scalar weight function, which evolves in time depending on
the sequencing of the robot actions. By tuning the time-
dependent vector of scalar weights, the global robot motion
can be optimized. In simulation studies, it was shown that
adapting these weights may result in a seamless transition
between tasks (i.e., reaching for an object, staying close to
a resting posture and avoiding an obstacle), as well as in
continuous task sequencing [6].

When complex robots, such as humanoids, need to per-
form manipulations while fulfilling many tasks and con-
straints (e.g., tracking a desired trajectory, avoiding obstacles,

*This paper was supported by the FP7 EU projects CoDyCo (No. 600716
ICT 2011.2.1 Cognitive Systems and Robotics).

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale,
Sapienza Universita di Roma, via Ariosto 25, 00185 Roma, Italy.
modugno@diag.uniroma1.it

2 Intelligent Autonomous Systems Lab., TU Darmstadt, Germany.
3 Max Planck Institute for Intelligent Systems.
4 Inria, Villers-lès-Nancy, F-54600, France; CNRS, Loria, UMR n.7503

and Université de Lorraine, Loria, UMR n.7503, Vandoeuvre-lès-Nancy, F-
54500, France. serena.ivaldi@inria.fr

0 5 10 15 20−0.2

0

0.2

0.4

0.6

0.8

1
α1
α2
α3

0 5 10 15 20−0.2

0

0.2

0.4

0.6

0.8

1
α1
α2
α3

task 1

task 2

task 3
posture

goal

pose 

obstacle

learning

manual tuning

better fitness/performance

task priorities

Fig. 1. The Jaco arm must reach a goal behind a wall (obstacle) while
fulfilling a pose task on joint 4 and a full posture task. The initial sequencing
of task priorities is not efficient. Our method allows the automatic learning
of the temporal profiles of the task priorities from scratch.

controlling the interaction forces), the strict task priorities
approaches typically require a priori a definition of the task
hierarchy. For instance, Sentis and Khatib [7] defined three
levels of hard priorities i.e., constraints of utter importance
(such as contacts, near-body objects, joint-limits and self-
collisions), operational tasks demands (i.e., manipulation
and locomotion) and adaptable postures (i.e., the residual
motion). However, in many contexts, it is difficult to organize
the tasks in a stack and pre-define their relative importance
in forms of priorities. When priorities are strict, a higher-
priority task can completely block lower-priority tasks, which
can result in movements that are not satisfactory for the robot
mission (i.e., its “global” task). Another issue concerns the
occurrence of discontinuities in the control law due to sudden
changes in the prioritization [8].

Soft task priorities provide an appealing alternative so-
lution. However, the simultaneous execution of different
elementary tasks with variable soft priorities can lead to
incompatibilities that might generate undesired movements
or prevent the execution of some tasks. These issues are
well explained in [9], where the authors modulate the task
weights based on the movement variance to handle incompat-
ibilities during online execution. Finally, when the number
of tasks increases, for example in whole-body control of
humanoid robots, and some tasks related to safety (e.g.,
balance) are given high priority, it is generally difficult to
define suitable task activations. In this case the priorities
and their transitions are manually tuned by expert users [10]
or defined before-hand [11]. Among the methods based on



soft priorities, recently Liu et al. [6] proposed a generalized
projector (GHC) that handles strict and non-strict priorities
with smooth transitions when tasks priorities are swapped.
Despite the elegant framework, their controller needs again
a lot of manual tuning. The evolution of the tasks priorities
in time, the timing and the tasks transitions need to be
designed by hand. While this approach could still be easy
for few tasks and simple robotic arms, it quickly becomes
unfeasible for complex robots such as humanoids performing
whole-body movements that usually require a dozen of tasks
and constraints (e.g., control balance, posture, end-effectors,
stabilize head gaze, prevent slipping, control the interaction
forces etc.). With the increasing abilities of humanoid robots,
the number of tasks increases, together with their weights or
priorities: their manual tuning through a sequence of complex
manipulations becomes a major bottleneck.

In this paper, we propose a framework that addresses
the issue of automatically optimising the task priorities by
means of a learning algorithm. The proposed concept of
learning the soft priorities can be applied to existing multi-
task frameworks, such as the GHC [10]. However, we use
here a simpler controller based on a regularized version
of the Unified Framework for Robot Control (UF) [13]
proposed by Peters et al. In our framework, the task weight
functions are parametrized functional approximators that
can be automatically learned by state-of-the-art stochastic
optimization algorithms. The temporal profiles of the task
weights can be learned by optimizing a given fitness function,
used to evaluate the performance of candidate task priorities.
In contrast to many cost functions used in whole-body
optimisation frameworks, here we do not require the fitness
to be a linear or quadratic function.

We show the effectiveness of our approach on both a
simulated and a real 6 degrees of freedom (DOF) Kinova
Jaco arm, on a goal reaching problem with several elemen-
tary tasks. Furthermore, we compare the performance of our
controller with the state-of-the-art method GHC proposed by
Liu et al. [10] on a simulated 7 DOF Kuka LWR arm.

The paper is organized as follows. Section II presents
the proposed approach, describing the structure of the con-
trollers, the task weight functions and the learning procedure.
We present the experimental results in Section III, draw
conclusions and discuss future work in Section IV.

II. METHODS

Let us consider a “global task” or a “mission” for a
redundant robot: for example, to reach a goal point behind
a wall while avoiding an obstacle. The overall movement
can be entirely planned by exploring all the possible joint
configurations, or it can be generated by a combination of
a set of controllers solving simpler elementary tasks (for
example: control the end-effector, control the pose of a
particular link, etc.). We assume that the set of elementary
tasks is known, and that each task can be executed by a given
torque controller. The global movement can be evaluated by
a fitness function φ that can be used as a measure of the
ability of the robot to fulfil its mission. Our method aims

elementary 
tasks

task weight functions
(soft priorities)

joints 
torques

robot

joints positions
& velocities

updated parameters of the task weight functions

stochastic 
optimization

"global" robot
mission

performance

fitness

task

task

...

. . . 

controller

learning

Fig. 2. Overview of the proposed method. The controller consists of
a weighted combination of elementary tasks, where the weight functions
represent the soft task priorities. An outer learning loop enables the
optimization of the task weights parameters.

at automatically learning the task priorities (or task weight
functions) to maximize the robot performance.

An overview of the proposed approach is illustrated in Fig.
2. In Section II-A we describe the controller ui for each ele-
mentary task: a regularized version of the Unified Framework
[13]. In Section II-B we describe the multi-task controller
with learned task priorities. In Section II-C we describe the
parametrized task weight functions αi used by our multi-
task controller, and discuss the parameters optimization. As
a learning algorithm, we propose the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [14], a derivative-
free stochastic optimization algorithm, in view of its good
exploration properties and ease of use.

A. Controller for a single elementary task

We hereby describe the torque controller for the i-th ele-
mentary task. To simplify the controller design, we decided
to adopt the Unified Framework (UF) [13]. We consider the
well-known rigid-body dynamics of a robot with n DOF, i.e.,

M(q)q̈+ f(q, q̇) = ui(q, q̇), (1)

where q, q̇, q̈ ∈ Rn are, respectively, the joints positions,
velocities and accelerations, M(q) ∈Rn×n is the generalized
inertia matrix, f(q, q̇) ∈Rn accounts for Coriolis, centrifugal
and gravitational forces and ui(q, q̇) ∈ Rn is the vector of
the commanded torques of the i-th task. Using the same
notation as in [13], we describe the task as a constraint,
given by hi(q, q̇, t) = 0 , where hi ∈ Rm is at least a twice
differentiable function, where m is the task dimension. By
differentiating the constraint with respect to time, we obtain:

Ai(q, q̇, t)q̈ = bi(q, q̇, t), (2)

where Ai(q, q̇, t) is a known m×n matrix and bi(q, q̇, t) is a
m× 1 vector. For example, given a simple tracking control
task with hi(q, q̇, t) = q−qdes, where qdes corresponds to a
desired trajectory. By computing the second order derivative
in t we obtain q̈= q̈des, where b= q̈des and Ai = I (with I the
identity matrix). Applying Gauss’s principle, it is possible to
derive a controller that fulfils the constraints by minimizing
the cost function ζi(t) = u>i Ni(t)ui, where Ni(t) is a positive
semidefinite matrix. The optimization problem is defined by

u∗i = argmin
ui

ζi(t) = argmin
ui

[u>i Ni(t)ui] , (3)



subject to Eq. 1 and 2. The solution to this optimization
problem is given by

ui = N−
1
2

i (AiM−1N−
1
2

i )#(bi +AiM−1f), (4)

where (·)# is the Moore-Penrose pseudoinverse and the

upper script in N−
1
2

i denotes the inverse of the matrix
square root. Controllers derived from UF are sensitive to
kinematic singularities, due to the matrix inversion [15]. To
overcome this problem, we reformulate the UF controller in
a regularized fashion, as classically done at the kinematic
level, for instance in [16]. The objective function of UF
can be reformulated in such a way that the solutions of
the optimization problem naturally exhibit a damped least
squares structure (at the price of a loss of precision in
the execution of the elementary task). Given the dynamical
model of the robot (Eq. 1) and the constraint that describes
the task (Eq. 2), we define the regularized optimal control
problem:

argmin
ui

ζi(t) = argmin
ui

[
(Aiq̈−bi)

2 +u>i
Ni(t)

λi
ui

]
, (5)

where λi is the regularizing factor with a l2-weighted norm
for the regularization term. In the simplest case, λi can be a
manually-tuned constant value, or automatically determined
by more sophisticated methods, as done in [17], based on
the smallest singular value of the matrix to invert. To derive
the closed form solution of the optimization problem, we
substitute q̈ in Eq. 5 with the expression obtained by solving
the dynamical constraint for q̈. The resulting closed form
solution of the controller for a single elementary task is then:

ui = N−1
i M̃i

>
(Iλ
−1
i +M̃iN−1

i M̃i
>
)−1(bi +M̃if) , (6)

with M̃i = AiM−1.

B. Controller for multiple elementary tasks with soft task
priorities

With reference to the scheme of Fig. 2, we consider a num-
ber nt of elementary tasks, that can be combined by the robot
to accomplish a given “global” mission. The solution of the i-
th task is provided by the torque controller ui described in the
previous section. Each task is modulated by a task priority
or task weight function αi(t). The ensemble {αi(t)}i=1,...,nt

constitutes the activation policy that determines the overall
robot movement. The robot controller is therefore given by

u(q, q̇, t) =
nt

∑
i=1

αi(t)ui(q, q̇) , (7)

where t is the time, and q and q̇ are the robot joint positions
and velocities. The task priorities αi(t) are scalar functions
and their time profile can be optimized. We automatically
tune the task priorities with a learning algorithm. We seek
the best task weight functions that maximize a defined
performance measure, or fitness, evaluating the execution
of the global task. As finding the optimal functions α∗i (t)
is an intractable problem, we turn the functional optimiza-
tion problem into a numerical optimization problem by

representing the task priorities with parametrized functional
approximators, αi(t) → α̂i(πππ i, t), where πππ i is the set of
parameters that shape the temporal profile of the i-th task
weight function. The controller then becomes:

u(q, q̇, t) =
nt

∑
i=1

α̂i(πππ i, t)ui(q, q̇) (8)

Finding the optimal task priorities consists therefore in find-
ing the optimal parameters πππ∗i , which can be done applying
a learning method to maximize the fitness φ .

C. Learning the task priorities

We model the task priorities by a weighted sum of
normalized Radial Basis Functions (RBF):

α̂i(πππ i, t) = S
(

∑
nr
k=1 πikψk(µk,σk, t)
∑

nr
k=1 ψk(µk,σk, t)

)
, (9)

where ψk(µk,σk, t) = exp
(
−1/2[(t−µk)/σk]

2
)
, with

(µk,σk) being mean and variance of the basis functions, nr
is the number of RBFs and πππ i = (πi1, . . . ,πinr) is the set of
parameters of each task priority. S(·) is a sigmoid function
that squashes the output to the range [0,1]. When the task
priority is 1, the task is fully activated; when its value is 0,
the task is not active.

In our method, learning the task priorities is implemented
by learning the free parameters πππ i of the weight functions
(Eq. 9). We optimize the parameters with respect to a known
fitness function φ = φ(qt=1,...,T ,ut=1,...,T , t), given T time
steps. φ describes the performance of the controller in fulfill-
ing its global mission. The fitness function could be a simple
measure of success in case of goal reaching, the time duration
of a movement, the energy consumption etc. More criteria for
optimizing robot motions in optimal control frameworks are
reported in [18]. If the fitness function φ is differentiable with
respect to the controls and the parameters (which requires
the function approximators to be differentiable as well with
respect to the controls [17]), then gradient methods can
be used. If the fitness is not differentiable with respect to
the parameters, then a derivative-free method can be used.
Thus, derivative-free methods are appealing, since they do
not constrain the design of the fitness function. Furthermore,
recent results showed that it is possible to achieve very fast
performances in trial-and-error learning with derivative-free
methods [19].

As optimization algorithm, we use CMA-ES [14], which is
a stochastic derivative-free optimization strategy that is suit-
able for non-linear and non-convex objective functions. This
method belongs to the class of evolutionary algorithms. At
each iteration of the algorithm, new candidate solutions are
generated from a population of candidates through stochastic
sampling. The fitness function is then used to evaluate the
candidates. In our case, each candidate is a possible set
of parameters for the task priorities x = {πππ1, . . . ,πππnt} (Eq.
9). At each iteration of the algorithm (called generation),
a new population of candidates is generated by sampling
a multivariate normal distribution N (m,ΩΩΩ), where m and



ΩΩΩ represent respectively mean and covariance of the dis-
tribution. A fitness value is computed for each candidate
in the current population and, according to the fitness,
only the most promising candidates are kept to update the
search distribution. Given the nc candidates {x1, . . . ,xnc},
the algorithm selects the nb < nc best ones according to
their ordered fitness values {x̂1, . . . , x̂nb}. It uses the selected
candidates to compute the mean of the sampling distribution
at the next iteration: m(new) = ∑

nb
i=1 ωix̂i, with ∑

nb
i=1 ωi = 1.

Then the covariance matrix is updated as:
ΩΩΩ

(new) = (1− c1− c2)ΩΩΩ+ c1 pΩ p>
Ω
+ c2 ∑

nb
i=1 ωiyi (yi)

>

with yi = (x̂i−m), c1 and c2 two predefined parameters
(see [14] for more details). The symbol pΩ is a term
measuring the correlation among successive generations. The
covariance is related to the exploration rate of the algorithm,
a scalar value between [0,1] and the only parameter of the
algorithm that needs to be tuned. This version of CMA-ES
does not support constrained optimization, which means that
the optimized solutions that are not physically feasible on
the real robot must be dropped and the learning algorithm
restarted. In the follow-up of this work, we will use a version
that supports constraints [20].

III. EXPERIMENTS

In this section we discuss our experiments on learning the
task priorities. We start showing on a simulated Kinova Jaco
arm that the our learning method improves the performance
of the movement in terms of fitness values, over existing
task priorities that have been manually tuned. We also show
that the optimized trajectories are robust with respect to the
initialization of the learning process. We compare on a real
Jaco arm some typical learned policies with the manually
tuned one, showing that our method improves the real robot
motion. Finally, we compare on a simulated Kuka LWR
the performance of our method with the state-of-art GHC
controller [6] . We show that our method is not only better
in terms of performance, but also computationally 10 times
faster.

A. Learning the task priorities for the Kinova Jaco arm

The setting for the first experiment is shown in Figure 1.
The Kinova Jaco arm (6 DOF), starting from its zero
configuration, must reach a desired position behind a wall
with its end-effector. The goal position is difficult to reach,
and the robot kinematics is such that it is not straightforward
to manually design a trajectory that does not collide with the
obstacle and brings the hand to the goal.

There are 3 given elementary tasks. The first is about
reaching the Cartesian position p∗ =[0, -0.63, 0.7] with
the end-effector (goal). The second is about reaching the
Cartesian pose [-0.31, -0.47, 0.58] with the 4th link. The
third is about keeping the joint configuration [120, 116, 90,
0, 0, 0] (degrees).We design the following fitness function
φ ∈ [−1,0]:

φ(q1,...,T ,u1,...,T ) =−
1
2

(
∑

T
i ‖pi−p∗‖

εmax
+

∑
T
i ‖ui‖2

2
umax

)

where T is the number of control steps (the task
duration is 20 seconds, and we control at 10ms),
pi describes the end-effector position at time i and
p∗ is the goal position, ‖ · ‖2

2 is the square of the
`2 norm and ε−1

max and u−1
max are two scaling factors.

Fig. 3. Average fitness value for the task
priorities learned with our method, for
the 3-tasks experiment with the simulated
Jaco arm. The horizontal line indicates
the fitness of the manually tuned solu-
tion. The mean and standard deviation
of the fitness for the learned policies is
computed over 100 restarts of CMA-ES,
each with 80 generations and random
initialization of the parameters. We only
retained the fitness for the experiments
that provided solutions satisfying the real
robot constraints.

The first term of φ

penalizes the cumulated
distance from the
goal that enforces a
minimum time transfer
trajectory for the robot
arm, while the second
term penalizes the
global control effort.
To ensure that the
generated controls
are feasible for the
real Jaco robot, we
set the fitness to -1
whenever the generated
policy violates one of
the robot constraints:
a collision with the
environment, joints
position ranges and
maximum joint torques.
This ad-hoc solution is
also a consequence of
the learning algorithm.

Fig. 3 shows the average fitness value computed over the
eleven optimized trajectories satisfying the constraints,
found on 100 restarts of CMA-ES.

Fig. 4. Mean and variance of the Cartesian trajectory of the end-effector
and the joints torques of the simulated Jaco arm, generated by learned task
priorities over 100 trials of the 3-tasks experiment (see text in Section III-
B). Even starting from random initialization of the task weight parameters,
the learning process is eventually able to produce similar optimized motions
of the robot that fulfil its ‘global’ task.

B. Robustness of the learning process

Different profiles of the task priorities can yield similar
movements of the robot. It is however important to show
that the learning process is able to optimize the task priorities
in a robust way, that is providing similar optimal solutions.
We therefore execute N=100 replicates of the experiment in
Section III-A, with a simulated Jaco arm and three tasks. In
each experiment, CMA-ES runs for 100 generations with
an exploration rate of 0.5. The parameters are randomly



Manual Tuning Learning

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

ta
sk

p
ri
or
it
ie
s

 

 

α
1

α
2

α
3

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

ta
sk

p
ri
or
it
ie
s

 

 

α
1
 

α
2
 

α
3
 

(a) The task priorities evolving in time.

0 5 10 15 20
0

2

4

6

8

time [s]

ta
sk

er
ro
r

 

 

task 1

task 2

task 3

0 5 10 15 20
0

2

4

6

8

time [s]

ta
sk

er
ro
r

 

 

task 1 c1

task 2 ’’

task 3 ’’

task 1 c2

task 2 ’’

task 3 ’’

(b) The task errors.

0 5 10 15 20

−0.5

0

0.5

1

time [s]

ca
rt
es
ia
n
p
os
it
io
n
[m

]

 

 

X

Y

Z

0 5 10 15 20

−0.5

0

0.5

1

time [s]

ca
rt
es
ia
n
p
os
it
io
n
[m

]

 

 

X 

Y 

Z 

(c) The end-effector trajectory in the Cartesian space.

0 5 10 15 20
−50

0

50

100

150

200

time [s]

jo
in
ts

p
os
it
io
n
[d
eg
]

 

 

q
1

q
2

q
3

q
4

q
5

q
6

0 5 10 15 20
−50

0

50

100

150

200

time [s]

jo
in
ts

p
os
it
io
n
[d
eg
]

 

 

q
1

q
2

q
3

q
4

q
5

q
6

(d) The joints trajectories.

0 5 10 15 20
−10

0

10

20

30

time [s]

jo
in
t
to
rq
u
es

[N
m
]

 

 

U
1

U
2

U
3

U
4

U
5

U
6

0 5 10 15 20
−10

0

10

20

30

time [s]

jo
in
t
to
rq
u
es

[N
m
]

 

 U
1

U
2

U
3

U
4

U
5

U
6

(e) The measured joints torques (estimated by the motor currents).

0 10 20 30 40
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

generations

fi
tn
e
ss

 

 

fixed init 

random init

manual tuning

(f) The fitness values.

Fig. 5. Comparison between a manually tuned (left side) and two typical
learned (right side) policies for the 3-tasks experiment performed with the
real Kinova Jaco arm. On the right, a solid line corresponds to a policy
optimized starting from a fixed/known initial value of the priorities (fixed
init), in this case the priorities found by manual tuning; the dashed line
corresponds to a policy optimized starting from random values (random
init). The final fitness values are: −0.1431 (manual tuning), −0.0585 (fixed
init) and −0.0644 (random init).

initialized. We compute the average and standard deviation
of the solutions that satisfy the robot and task constraints.
Figure 4 shows the average end-effector trajectory in the
Cartesian space and the corresponding joint torques. Despite
the redundancy of the robot and the one of the task priorities,
the final robot movements are smooth and quite consistent
with each other. Their average fitness is −0.0874±0.0213.
Overall, this result indicates that learning the soft task
priorities starting from scratch (i.e., where an initial guess for
the activation of the task priorities in time is not available)
is a viable and robust option for generating the motion of
redundant robots.

C. Experiment on the real Kinova Jaco arm

We compare in Fig. 5 the effect of three different task
prioritizations on the real Jaco arm. In the left column, we
show the robot movement generated by task priorities that
were manually tuned by an expert user of the Kinova arm;
on the right column, we show two typical robot movements
generated by learned task priorities, which were optimized
with CMA-ES starting from a known initial value (the
manually tuned task weight functions) and a random value.
We set the exploration rate in CMA-ES to 0.5 and perform
40 generations. Learning the priorities has a beneficial effect
on the smoothness of the trajectories, which becomes evident
when comparing the plots of the end-effector (Fig. 5c), joints
positions (Fig. 5d) and torques (Fig. 5e) and the task errors
(Fig. 5b). We evaluate the fitness using the commanded joint
torques ui and the kinematics and dynamics model of the
Jaco arm to compute pi. The fitness value for the manually
tuned task priorities is −0.1431. The fitness values for the
two optimized solutions are better: −0.0585 and −0.0644
initializing the parameters with fixed and random values
respectively. Overall, this experiment illustrates that learning
the task priorities improves the real robot motion with respect
to an existing manually tuned solution.

D. Comparison with the state-of-the-art GHC

In this experiment we compare the performance of the task
priorities learning applied to our method and to the state-of-
the-art multi-task controller GHC [6].

In the GHC, each task is associated to a null space
projector of the extended Jacobian that contains the analytical
description of all the task objectives. Soft task prioritization
is achieved because the null space projector depends on a
set of manually designed weight functions ranging from 0
to 1, that control if each task is fully or partially projected
in the null spaces of the other tasks with higher priority.
The controller is the solution to a quadratic optimal control
problem subject to the robot and task constraints – see [6].
The soft task priorities are introduced as a further constraints,
formulated by q̈ = ∑

nt
i=1 Pi(ΛΛΛi)q̈

′
i , where Pi(·) is the null

space projector associated to the i-th task, ΛΛΛi is a matrix
that depends on the task priorities, q̈′i are intermediate joint
accelerations associated to each task and q̈ are the joints
accelerations. To enable the comparison with our method,



Fig. 6. Comparison between our method and the GHC modified to learn
the task priorities with CMA-ES. The plot shows the mean and the standard
deviation of the fitness in R = 20 trials of the experiment with the simulated
KUKA LWR arm (see Section III-D). For both controllers, the learning is
initialized with random parameters. Our method shows a faster convergence
and better optimization of the fitness. The average fitness is is −0.0373±
0.0320 for our method and −0.0735± 0.0946 for the GHC+learning. The
two distributions are statistically different (p < 0.01 with the K-S test).

we parametrized the task priority matrix ΛΛΛi for each task i
in the same way as described in Section II-B.

We compare the two methods on a reaching task with a
simulated 7 DOF Kuka LWR, which was originally used in
[6]. In this scenario, the robot must reach a goal point be-
neath a rectangular surface parallel to the ground (z= 0.25m),
without collision. The are 2 elementary tasks. The first is
about reaching the Cartesian position p∗ =[0.6, 0, 0.15] with
the end-effector (goal). The second is about keeping the joint
configuration [0, 90, 0, -90, 0, 90, 0] (degrees). We design
the following fitness function φ ∈ [−1,0]:

φ(q1,...,T ,u1,...,T )=−
1
2

(
∑

T
i ‖pi−p∗‖

εmax
+

max(‖ui=1,...,T‖∞)

umax

)
where ‖ ·‖∞ is the infinity norm. We set the fitness to −1 in
case of collision. We run 20 experiments from random initial
parameters for both methods, with an exploration rate of 0.1
for CMA-ES and 80 generations.

Our method generated solutions that satisfy the collision
constraint in 90% of the cases, while the GHC succeeded
only in 75%. Figure 6 shows the mean and standard deviation
of the fitness: our method is faster in convergence and
improves the final optimized fitness. The average fitness at
the end of the learning process is −0.0373±0.0320 for our
method and −0.0735± 0.0946 for the GHC+learning. The
two distributions of the fitness are statistically different (p =
0.0073 < 0.01, obtained with the two-sample Kolmogorov-
Smirnov test). Our method is also 10 times faster in terms of
computational time: on a standard i7 machine, the average
time for the optimization process to find a solution with 80
generations (average over 20 trials) is 3.7×103 ± 2.4×102

seconds for our method and 3.9×104 ± 2.2×103 seconds
for the GHC+learning approach.

IV. CONCLUSION AND FUTURE WORK

In this paper we address an important issue for prioritized
multi-task controllers, that is the automatic and optimal
generation of task priorities through parametrized weight

functions. As a first step towards an automatically tuned
controller for redundant robots, we propose a novel frame-
work with a multi-task controller where the task priorities
can be learned via stochastic optimization. We show the
effectiveness of our approach by comparing to GHC [10], a
state-of-the-art multi-task prioritized controller. We present
several results performed on a simulated 7 DOF Kuka LWR
arm and both a simulated and a real 6 DOF Kinova Jaco
arm. Ongoing work is focused on improving the current
framework from different points of view: addressing gen-
eralization, using constraints inside the optimization, and
scaling up the method to handle robots with several DOF,
e.g., humanoid robots.

REFERENCES

[1] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators,” IJRR, vol. 6, no. 2, pp.
3–15, 1987.

[2] B. Siciliano and J.-J. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” in Int. Conf.
Advanced Robotics, 1991, pp. 1211–1216.

[3] L. Saab, O. Ramos, F. Keith, N. Mansard, P. Soueres, and J.-
Y. Fourquet, “Dynamic whole-body motion generation under rigid
contacts and other unilateral constraints,” IEEE Trans. on Robotics,
vol. 29, pp. 346–362, Jan 2013.

[4] A. Del Prete, F. Nori, G. Metta, and L. Natale, “Prioritized motion-
force control of constrained fully-actuated robots: Task space inverse
dynamics,” Robotics and Autonomous Systems, vol. 63, pp. 150–157,
Jan 2015.

[5] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,”
in ICRA, 2011, pp. 1283–1290.

[6] M. Liu, Y. Tan, and V. Padois, “Generalized hierarchical control,”
Autonomous Robots, pp. 1–15, 2015.

[7] L. Sentis and O. Khatib, “Synthesis of whole body behaviours
through hierarchical control of behavioral primitives,” Int. Journal of
Humanoid Robotics, pp. 505–518, 2005.

[8] C. Ott, A. Dietrich, and A. Albu-Schffer, “Prioritized multi-task
compliance control of redundant manipulators,” Automatica, vol. 53,
pp. 416 – 423, 2015.

[9] R. Lober, V. Padois, and O. Sigaud, “Variance modulated task priori-
tization in whole-body control,” in IROS, 2015, pp. 1–6.

[10] M. Liu, S. Hak, and V. Padois, “Generalized projector for task priority
transitions during hierarchical control,” in ICRA, 2015, pp. 768–773.

[11] S.-I. An and D. Lee, “Prioritized inverse kinematics with multiple task
definitions,” ICRA, pp. 1423–1430, 2015.

[12] J. Kober, D. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” IJRR, vol. 11, pp. 1238–1274, 2013.

[13] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal, “A uni-
fying framework for robot control with redundant dofs,” Autonomous
Robots, vol. 24, pp. 1–12, Jan 2008.

[14] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies.” Evolutionary Computation, vol. 9,
pp. 159–195, Jan 2001.

[15] S. Chiaverini, B. Siciliano, and O. Egeland, “Redundancy resolution
for the human-arm-like manipulator,” Robotics and Autonomous Sys-
tems, vol. 8(3), pp. 239–250, Jan 1991.

[16] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” J. Dyn. Sys.,
Meas., Control, vol. 108 (3), pp. 163–171, 1986.

[17] S. Ivaldi, M. Fumagalli, F. Nori, M. Baglietto, G. Metta, and
G. Sandini, “Approximate optimal control for reaching and trajectory
planning in a humanoid robot,” in IROS, 2010, pp. 1290–1296.

[18] S. Ivaldi, O. Sigaud, B. Berret, and F. Nori, “From humans to
humanoids: the optimal control framework,” Paladyn Journal of Be-
havioral Robotics, vol. 3, no. 2, pp. 75–91, 2012.

[19] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[20] D. V. Arnold and N. Hansen, “A (1+ 1)-cma-es for constrained
optimisation,” in GECCO, 2012, pp. 297–304.


