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Abstract—A Brain-Computer Interface (BCI) is used to enable
communication between humans and machines by decoding
elicited brain activity patterns. However, these patterns have
been found to vary across subjects or even for the same
subject across sessions. Such problems render the performance
of a BCI highly specific to subjects, requiring expensive and
time-consuming individual calibration sessions to adapt BCI
systems to new subjects. This work tackles the aforementioned
problem in a Bayesian multi-task learning (MTL) framework
to transfer common knowledge across subjects and sessions
for the adaptation of a BCI to new subjects. In particular,
a recent framework that is able to exploit the structure of
multi-channel Electroencephalography (EEG), is extended by a
Bayesian hierarchical logistic regression decoder for probabilistic
binary classification. The derived model is able to explicitly
learn spatial and spectral features, therefore making it further
applicable for identification, analysis and evaluation of paradigm
characteristics without relying on expert knowledge. An offline
experiment with the new decoder shows a significant improve-
ment in performance on calibration-free decoding compared to
previous MTL approaches for rule adaptation and uninformed
models while also outperforming them as soon as subject-specific
data becomes available. We further demonstrate the ability of the
model to identify relevant topographies along with signal band-
power features that agree with neurophysiological properties of
a common sensorimotor rhythm paradigm.

I. INTRODUCTION

Second only to brain signal acquisition, the decoding of
subject intention is fundamental to the practice of practical
brain-computer interfaces (BCIs). However, state-of-the-art
BCIs suffer from high performance variations between sub-
jects and even across sessions within the same subject [1], [2].
A calibration session with the subject prior to actual BCI usage
is therefore necessary, which poses a major hindrance to out-
of-the-box applications. On top of that, machine learning based
decoders have to deal with rather few data points gained from
the calibration phase, making them prone to overfitting and
requiring very low dimensional feature spaces. Only a hand
full of carefully selected features using expert knowledge of
the paradigm are usually used to train decoders that generalize
well to upcoming sessions [3]–[6].

Approaches to solve the problem of such performance
variations in the past years have been dominated by domain

adaptation techniques. These techniques use data acquired
from different subjects and sessions to train decoders on
invariant feature spaces, most commonly by preprocessing
signals with common spatial patterns [7]–[9]. While domain
adaptation is able to drastically reduced calibration time for
new subjects and sessions with only slight performance losses,
subject-specific variations are modeled exclusively by a fixed
feature space. This makes it difficult to adapt BCIs to new
subjects when calibration data becomes available. A more
natural approach to this problem is given by rule adaptation
techniques, which encode variations directly into the decision
rule of decoding models.

Recent work in this area includes data fusion methods [10]
and a Bayesian multi-task learning (MTL) framework first
proposed by Alamgir et al. [11]. Jayaram et al. generalized the
framework to a Bayesian hierarchy with a novel feature space
to decompose EEG structure into a spatial and a frequency
[12] or time domain component [13]. This approach did not
only enable the authors to transfer knowledge between subject
and sessions, but also further reduce the need for expert
knowledge through simultaneous inference of topographic and
broad-band features of the paradigm. The resulting framework
produced reliable decoders (classification accuracies above
70%) for new subjects based on a sensorimotor rhythm (SMR)
paradigm without or few calibration trials while outperforming
models trained solely from pooled or subject-specific data
when calibration data was available.

This work extends the MTL framework for transfer learning
by a more suitable assumption on binary dependent variables
with a probabilistic model for two-class classification. Ex-
ploiting EEG structure for dimensionality reduction yields a
bilinear logistic regression model that is able to learn relevant
topographic and band-specific features instead of relying on a
small set of manually selected features.

The rest of this paper is structured as follows. Section
II introduces the notation used throughout this work and
derives a logistic regression model within a Bayesian MTL
framework from previous work. The model is extended for
bilinear feature decomposition (FD) to exploit multi-channel
EEG structure and the final learning algorithm is presented.
After describing the SMR based experimental setup used to978-1-5090-1897-0/16/$31.00 c©2016 European Union



evaluate the models, Section III shows that the derived model
outperforms comparable models in calibration free decoding as
well as in subject-adaptation. Section IV concludes this work
with a short summary and future work.

II. METHODS

A. Notation

Throughout this paper we denote scalars with lower case,
vectors with bold lowercase, matrices with uppercase and sets
with calligraphic uppercase letters. We regard the decoding
problem for each subject or session as an individual task
on binary dependent variables and denote the data set of m
tasks with T =

{
D(t)

}m
t=1

. Each task data set D(t) ∈ T is
formalized with

D(t) =
{(
x
(t)
i , y

(t)
i

)}nt

i=1
⊂ Rd × {C1, C2} (1)

consisting of nt data points with d-dimensional feature vectors
extracted from EEG signals and corresponding class label C1

or C2 representing one of two brain conditions of interest.
In case of FD, each feature vector x ∈ Rd is replaced by
the corresponding feature matrix X ∈ Rk×d that organizes d
band-power features from k channels. Matrix calculus follows
denominator-layout notation.

B. Multi-task Logistic Regression

A popular method for simple binary classification using
probabilistic predictions is to pass the linear model through
the logistic sigmoid activation. The hypothesis model is then
given by

h(x;w) =
(
1 + exp

(
wTx

))−1 ∈ ]0, 1[ (2)

where x ∈ Rd is an input feature and w ∈ Rd is the parameter
vector of the model family. The output of (2) can be interpreted
as the probability p (C1 | x) = h(x;w) to observe condition
C1 in brain state x. Likewise, the probability to observe C2

in state x is given by the complementary event p (C2 | x) =
1− h(x).

Assume that we have gathered a set T as in (1). Following
the MTL framework we model each task with an individual
hypothesis from (2). Hence, we train a set of m weight vectors
W =

{
w(t)

}m
t=1

from the corresponding task data sets in
T . By representing the classes with {C1, C2} = {0, 1} and
assuming they follow a Bernoulli distribution parameterized
with our hypothesis, we can define the likelihood of all our
data (for iid feature samples) through

p (T | W) =

m∏
t=1

nt∏
i=1

Ber
(
y
(t)
i | h

(
x
(t)
i ;w(t)

))
(3)

where Ber (y | h (x,w)) = h (x,w)
y

(1− h (x,w))
1−y . We

can further state the posterior distribution over the weights
using Bayes rule

p (W | T ) =
p (T | W) p(W)

p (T )
(4)

based on the likelihood from (3), a prior distribution p(W)
and the evidence p(T ). This posterior is the entry point
for the Bayesian MTL framework, where we assume that
tasks have a common statistical distribution. In particular, we
capture common structure between related tasks in a shared
prior p(W). Statistics of p(W) can be used afterwards for
immediate decoding or improving decoders by combining
shared knowledge with subject-specific data.

We model the shared prior with a general multivariate
Gaussian density function p(w) = N (µw,Σw) parameterized
by a mean µw ∈ Rd and covariance matrix Σw ∈ Rd×d.
Hence, assuming that the task weights are iid, the prior reads

p(W) =

m∏
t=1

p
(
w(t)

)
=

m∏
t=1

N
(
w(t) | µw,Σw

)
. (5)

Plugging (3) and (5) into (4) results in a parameterized
posterior model,

p (W | T ) ∝
m∏
t=1

nt∏
i=1

Ber
(
y
(t)
i | h

(
x
(t)
i ;w(t)

))
m∏
t=1

N
(
w(t) | µw,Σw

)
.

(6)

Our goal is to maximize p (W | T ) w.r.t. the weights in W
and the prior parameters µw and Σw. Using (6) and applying
the negative logarithm yields an equivalent objective for a loss
minimization of the form

L(W,µw,Σw) =−
m∑
t=1

nt∑
i=1

Ece

(
w(t);x

(t)
i , y

(t)
i

)
+

1

2

m∑
t=1

Ω
(
w(t),µw,Σw

) (7)

where Ece is the point-wise cross-entropy error function

Ece (w;x, y) = y log h (x;w) + (1− y) log (1− h (x;w))

derived from the likelihood of the data and Ω is a regulariza-
tion term

Ω (w,µw,Σw) = (w − µw)
T

Σ−1w (w − µw) + log |Σw|

arising from the prior distribution. Notice that Ω reduces to the
same regularizer as for the Gaussian prior on the linear model
presented in [12], and so we can interpret minimization of
(7) in the same way: Ω penalizes weights that deviate too far
from the prior mean while the covariance scaling acts as an
implicit feature selector. However, the squared error in the loss
objective of the linear model switched with a more suitable
error measurement for binary classification, namely the cross-
entropy loss [14].

In order to train a shared prior across tasks, we want to
minimize (7) w.r.t. the prior parameters µw and Σw. It turns
out that L is minimized by standard Gaussian sample statistics
from the optimal weights inW , i.e. the mean is estimated with
the average over all task weights

mean(W) =
1

m

m∑
t=1

w(t) (8)



and the covariates with the sample covariance matrix or some
numerically more stable version like

cov(W;µ) =

∑m
t=1

(
w(t) − µ

) (
w(t) − µ

)T
Tr
(∑m

t=1

(
w(t) − µ

) (
w(t) − µ

)T) + εI,

(9)
where an appropriate ε > 0 ensures practicable condition
numbers on the estimate. Unfortunately, the maximum a-
posteriori (MAP) estimates for the optimal weights has to
minimize the cross-entropy term in L that has no closed form
solution. However, L is differentiable w.r.t. each individual
weight w(t) ∈ W yielding the gradient

∇L
(
w(t);µw,Σw

)
=

nt∑
i=1

(
h
(
x
(t)
i ;w(t)

)
− y(t)i

)
x
(t)
i

+ Σ−1w

(
w(t) − µw

)
.

(10)
This vector can be used in gradient based optimization proce-
dures [15], [16] to obtain optimal weight estimates given the
prior parameters. In fact, the learning procedure is a special
case of the algorithm outlined for the FD case in Fig. 1, but
without weight decomposition (see the next section).

C. Spatio-spectral Feature Decomposition

Many BCIs use expert knowledge of the paradigm to
determine relevant band power features in d frequency bands
recorded with k electrodes, making up a subset of the full
kd-dimensional feature space applicable to smaller data sets
obtained from calibration sessions. Jayaram et al. [12] pro-
posed FD as a spatio-spectral feature space for EEG that
significantly reduces the feature dimensionality from kd to
k + d. In particular, the authors assumed that the spectral
feature importance is independent from the spatial topography
of each electrode. We can state a FD model in the same way
by using a bilinear hyperplane as the decision boundary for
logstic regression

h(X;w,a) =
(
1 + exp

(
aTXw

))−1 ∈ ]0, 1[ (11)

where X ∈ Rk×d is an input feature, w ∈ Rd is the parameter
vector weighting the spectral features and a ∈ Rk is the
parameter vector weighting the spatial features.

The MTL derivation is analogous to the previously pre-
sented non-FD case, except that we have decomposed the
original weights into a spectral and a spatial part. We therefore
incorporate two Gaussian priors N (µa,Σa) and N (µw,Σw)
multiplicatively into the posterior in (6) with spectral task
weights W = {wt}mt=1 ⊂ Rd and spatial task weights
A = {at}mt=1 ⊂ Rk. The loss objective for the FD case then
becomes

L(W,A,µw,Σw,µa,Σa) =

−
m∑
t=1

nt∑
i=1

Ece

(
w(t);X

(t)
i , y

(t)
i

)
+

1

2

m∑
t=1

(
Ω
(
w(t),µw,Σw

)
+ Ω

(
a(t),µa,Σa

)) (12)

Algorithm 1: FD Multi-task Logistic Regression
Data: Training sets T from m related tasks
Result: µw, Σw, µa, Σa

1 Initialize µw = 0 and Σw = I ;
2 Initialize µa = 1√

k
1 and Σa = I ;

3 Arbitrary initialize W =
{
w(t)

}t
t=1

and A =
{
a(t)

}m
t=1

;
4 while µw, Σw, µa and Σa not converged do
5 for w(t) ∈ W and a(t) ∈ A do
6 while w(t) and a(t) not converged do
7 Choose some learning rate η ∈ ]0,∞[;
8 Set w(t) = w(t) − η∇L

(
w(t);a(t),µw,Σw

)
;

9 Set a(t) = a(t) − η∇L
(
a(t);w(t),µa,Σa

)
;

10 Update µw = mean(W) using (8);
11 Update Σw = cov(W;µw) using (9);

Fig. 1. Gradient based MTL logistic regression algorithm based on simul-
taneous MAP estimates of the weights followed by prior updates to capture
common structure in FD space throughout each task.

where Ece and Ω are defined accordingly as in (7). Minimiz-
ing (12) can be done again using gradient based numerical
optimization. The spectral task weight gradient reads

∇L
(
w(t);a(t),µw,Σw

)
=

nt∑
i=1

(
h
(
X

(t)
i ;w(t),a(t)

)
− y(t)i

)
X

(t)
i

T
a(t)

+ Σ−1w

(
w(t) − µw

) (13)

and the spatial one is similarly given by

∇L
(
a(t);w(t),µa,Σa

)
=

nt∑
i=1

(
h
(
X

(t)
i ;w(t),a(t)

)
− y(t)i

)
X

(t)
i w

(t)

+ Σ−1a

(
a(t) − µa

)
.

(14)

In order to break the circular dependencies between spatial
and spectral gradient, we have to alternatingly fix one set
of weights to compute the MAP estimate of the others. A
gradient descent based procedure to learn FD priors is depicted
in Fig. 1.

D. Subject-specific Adaptation

Once we have trained the prior parameters using MTL
we can immediately use the mean weights for prediction.
When given a new feature x or X , we only need to compute
h (x;µw) or h(X;µw,µa), respectively, for an out-of-the-
box prediction of the class probability. When decoding brain
states for a new subject, we are faced with a new task that has
subject-specific variations. The Bayesian framework naturally
copes with this case; we have to just compute the MAP
estimate with the trained prior of the adapted weights based
on the new data set. However, we do not know how much



belief we should put into the prior to optimally trade-off
between task-specific variations and shared task knowledge.
This concept can be captured formally by introducing an
additional regularization factor λ ∈ [0,∞] for subject-specific
adaptation. Given we denote our new task data with D =
{(xi, yi)}ni=1 ⊂ Rd × {C1, C2} we obtain adapted weights in
the non-FD case by minimizing

Lλ(w) = −
nt∑
i=1

Ece (w;xi, yi) +
λ

2
Ω (w,µw,Σw) (15)

w.r.t. to the weights w. The gradient for numerical optimiza-
tion is analytically given by

∇Lλ (w) =

nt∑
i=1

(h (xi;w)− yi)xi + λΣ−1w (w − µw) .

(16)
The FD case derives in the exact same way, but shares the
regularizer for the spatial and spectral weights. An optimal
regularization factor λ may be obtained using model selection
techniques (e.g. by cross-validation)

E. Experimental Setup

We evaluated the model on real EEG signals recorded from
ten healthy subjects (two female, eight male, 22-28 years old,
nine subjects were naı̈ve to BCIs and one participated twice in
BCI experiments) using a two-class motor imagery paradigm
of left or right hand movements.

Each subject sat in a comfortable chair in front of a
screen and performed 300 trials in the experiment (150 per
condition, stimuli were presented in pseudorandom order and
no feedback on the performance was provided). Each trial
consisted of an initial pause of three seconds, followed by
an imagery phase lasting seven seconds in which a centrally
displayed arrow pointing to the left or right informed the
subject to perform haptic left or right hand motor imagery,
respectively.

Brain activity during the experiment was recorded using
EEG with 128 electrodes positioned according to the extended
10-20 system (referenced at Cz). The signals were sampled
at 500Hz using BrainAmp amplifiers1 and a temporal analog
high-pass filter with 10 seconds time constant.

After the experiment was conducted, data preprocessing
solely consisted of spatially filtering the signals with a surface
Laplace [17] to keep the results unbiased for evaluation.
FD feature matrices were generated by applying the discrete
Fourier transform with a Hann window to the motor imagery
phase of each trial in order to extract equidistant log-band
power features of 2Hz width within the frequency range from
7Hz to 31Hz from all electrodes. Hence, the FD space was
spanned by 128× 12-dimensional features.

III. EXPERIMENTAL RESULTS

A. Classification Performance

The performance of MTL logistic regression on the real-
world BCI paradigm was evaluated by comparing classifica-

1BrainProducts GmbH, Gilching, Germany

tion accuracies when different amount of subject-specific data
is available. In particular, one out of the ten subject data sets
was taken out to be regarded as subject-specific calibration
data. Three models where used for comparison: FD MTL
Logistic Regression with Gaussian prior trained using the
algorithm shown in Fig. 1, standard FD Logistic Regression
with L2 regularization (i.e. uninformed prior) and finally FD
MTL Linear Regression with a Gaussian prior and maximum-
likelihood estimates for the variance hyperparameter [12]. Two
out of the ten subjects performing near chance were taken out
from prior training (i.e. priors were finally trained from seven
task data sets).

After obtaining priors for the models, the 300 samples from
the subject-specific data were randomly divided into a distinct
training set (200 samples) and test set (100 samples). Each
model was successively trained on an increasing subset of the
training set using a step size of 50 trials and 5-fold cross-
validation from {exp(−10), exp(−9), . . . , exp(9), exp(10)}
for hyperparameter selection of the regularization value. Eval-
uation of the trained models occured on the test set to compute
their accuracy. The whole procedure was conducted for each
subject using 100 runs with random splits into training and
test set. The mean accuracy development over all subjects and
runs is shown in Fig. 2. Further, the development of the model
deviation from the prior (cross-validated mean regularization
factor) over the runs is visualized in Fig. 3.

The results reveal a decreasing performance gap between
the models with increasing amount of calibration data to train
on. However, MTL logistic regression with prior information
outperforms the MTL model from the previous framework as
well as standard logistic regression with uniformed prior and
manages to reach the 70% mark (considered as the minimum
requirement for reliable communication in BCIs) with much
less training data. Development of the regularization factor
shows a decreasing trend over an increasing amount of cali-
bration data. This indicates that the decoder is deviating from
the prior in order to learn more task-specific structure, which
is in fact a plausible statistical behavior; we expect that with
more data from a problem the underlying structures emerges
stronger which can be captured by the model to improve on
subject-specific variations.

B. Spatial and Spectral Prior

Trained models using FD features have weights associated
to the topography and frequency distribution that indicate
relevance of individual dimensions for prediction. In order
to compare findings of the MTL algorithm with domain
knowledge of the SMR paradigm, Gaussian prior parameters
for the FD space were trained with the algorithm in Fig. 1
from eight subjects (leaving out two near chance performers).
A visualization of the resulting priors is shown in Fig. 4.

The trained prior identifies spatial relevance on electrodes
placed above the left and right sensorimotor cortex. Those
features agree with domain knowledge of the neurophysiolog-
ical characteristics for this paradigm and indicate that indeed
neural activity is used to predict the corresponding brain
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Fig. 3. Mean regularization value of MTL logistic regression (gathered
through 5-fold cross-validation) for subject adaptation over all subjects and
100 runs (see Fig. 2). Initial high regularization towards the prior for few
calibration trials demonstrates that the model is relying more strongly on the
prior than the data. As more subject-specific data is added to the training set,
regularization drops and incorporates more exposed structure specific to the
new subject.

condition. Furthermore, the model puts highest priority on the
frequency bin for 11-13Hz, which agrees with the µ rhythm
band-power modulation characteristics of the paradigm, too.
Implicit feature selection for subject adaptation is likewise
consistent with high covariates between the α-rhythm (9-
13Hz) and β-rhythm (19-23Hz and 27-29Hz).

C. Null Hypothesis Pairwise Permutation Test

In Section III-A we compared the mean accuracies over
each subject with increasing amount of calibration data in 100
runs. Here, we perform a statistical test to examine if there is a
significant difference in performance of the three tested mod-
els. In particular, a pairwise permutation test [18] between two
models was conducted under the null hypothesis that their true
mean performance is equal: The mean accuracy over the 100
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Fig. 4. The first plot shows the topography of the spatial weight prior trained
by MTL logistic regression over eight subjects. The prior indicates relevant
activity above the left and right sensorimotor cortex on electrodes C3 and C4.
The second plot shows a bar chart of the trained spectral weight prior. They
show high relevance on the frequency bin for 11-13Hz and its surrounding
bins corresponding to the µ-rhythm, as well as moderate relevance within the
β-range in 19-29Hz. The final third plot visualizes the spectral covariance
prior trained by the algorithm. High positive covariates for spectral weights
can be mainly found within the α- and β-frequencies while negative covariates
show up between those bands.

runs of each of the ten subjects and three models were taken
for one calibration set size, denoted by Pa = {a1, a2, . . . , a10}
for the performance samples from FD MTL logistic regression,
Pb = {b1, b2, . . . , b10} for the samples from FD mutli-task
linear regression and Pc = {c1, c2, . . . , c10} for standard L2
FD logistic regression. Further, let µa, µb and µc denote
the true mean performance from which Pa, Pb and Pc were
drawn, respectively. We tested two null hypotheses, the first
was H∗0 : µa = µb and the second H∗∗0 : µa = µc, i.e. MTL
logistic regression is compared against both other models.
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Using the test statistic T (Px,Py) = mean(Px) −mean(Py)
where x and y are substitutes for a, b or c the p-value was
computed by

p =
1

n

n∑
i=1

[
T
(
P(i)
x ,P(i)

y

)
≥ T (Px,Py)

]
where P(i)

x and P(i)
y are pseudorandomly generated pairwise

permutations of Px and Py . This means that each pair of
samples (xt, yt) for the same subject t appears in P(i)

x and
P(i)
y again, but with a chance of 50% that the positions have

switched to (yt, xt). The results for the p-value using n = 106

permutations over different amounts of calibration data are
shown in Fig. 5.

The results show that H∗0 is rejected at a 5% significance
level on all up to 200 calibration data points. Hence, together
with the classification results from Fig. 4, we can indeed ob-
serve a statistically significant improvement of the new MTL
model over the MTL model from the previous framework.
Against uninformed logistic regression we can reject H∗∗0 for
moderate calibration sessions (up to 100 trials) only. However,
it is notable that for short calibration phases (about 50 trials)
we can reject both hypotheses even at a 1% significance level,
indicating that the new model is able to make better use of
prior knowledge.

IV. DISCUSSION

This work extended a general framework from previous
work by a logistic regression model with more suitable as-
sumptions on the distribution of the dependent variable in
case of binary classification. We demonstrated a significant
improvement in classification accuracy of the new model
over comparable models for calibration-free decoding and
subject-specific adaptation ability. The new model was able
to learn spatially important locations on the scalp as well es
relevant spectral frequency bands, both consistent with expert

knowledge of the paradigm. Further approaches by using
different prior structures or loss functions, MTL derivations
for other effective models used throughout BCI research as
well as hybrid techniques of MTL together with advanced
spatial filters are to be investigated and may further improve
performance.
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