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Abstract

State-space inference and learning with
Gaussian processes (GPs) is an unsolved
problem. We propose a new, general metho-
dology for inference and learning in nonlinear
state-space models that are described prob-
abilistically by non-parametric GP models.
We apply the Expectation Maximization al-
gorithm to iterate between inference in the
latent state space and learning the parame-
ters of the underlying GP dynamics model.

Inference (filtering and smoothing) in linear dynam-
ical systems (LDS) and nonlinear dynamical systems
(NLDS) is frequently used in many applications in-
cluding signal processing, state estimation, control,
and finance/econometric models. Inference aims to
estimate the state of a system from a stream of noisy
measurements. Imagine tracking the location of a car
based on odometer and a GPS sensors, both of which
are noisy. Sequential measurements from both sensors
are combined to overcome the noise in the system and
to obtain an accurate estimate of the system state.
Even when the full state is only partially measured,
it can still be inferred; in the car example the engine
temperature is unobserved, but can be inferred via the
nonlinear relationship from acceleration. To exploit
this relationship appropriately, inference techniques in
nonlinear models are required; they play an important
role in many practical applications.

LDS and NLDS belong to a class of models known as
state-space models. A state-space model assumes that
there exists a time sequence of latent states xt that
change with time according to a Markovian process
specified by a transition function f . The latent states
are observed indirectly in yt through a measurement
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function g. We consider state-space models given by

xt = f(xt−1) + εt−1 , xt ∈ RM ,
yt = g(xt) + νt , yt ∈ RD .

(1)

Here, the system noise εt−1 ∼ N (0,Σε) and the mea-
surement noise νt ∼ N (0,Σν) are both Gaussian. In
the LDS case, f and g are linear functions, whereas
the NLDS covers the general nonlinear case.

The goal in inference is to guess about the latent
states x using measurements y only. Bayesian infer-
ence of the hidden states (smoothing) in LDS with ad-
ditive Gaussian noise can be done exactly via Kalman
smoothing, see for example [14]. In learning, the goal
is to infer both f and g from observations yt.

Linear dynamical systems can only model a limited
set of phenomena. As a result there has been in-
creasing interest in studying NLDS for the last few
decades. Since exact inference and (parameter) learn-
ing in NLDS is generally analytically intractable, ap-
proximate methods need to be employed.

Common examples for approximate inference in non-
linear dynamical systems, include the Extended
Kalman Filter (EKF) [10], the Unscented Kalman
Filter (UKF) [7], and the Assumed Density Filter
(ADF) [1, 12]. General forms of the dynamics model
for inference and learning were proposed in terms of
Radial Basis Functions [5] and neural networks [6]. In
the context of modeling human motion, GPs have been
used in [18, 9] for inference. Recently, GPs were used
for filtering in the context of the UKF, the EKF [8],
and the ADF [2].

For nonlinear systems these methods encounter prob-
lems: The local linearizations of the EKF and the UKF
can lead to overfitting. Furthermore, learning using
the UKF and the EKF typically requires a paramet-
ric form of the dynamics and measurement functions
to be specified in advance. Neural network [6] and
RBF [5] approaches have a constant level of uncer-
tainty in the dynamics and measurement functions,
which means they do not appropriately quantify un-
certainty in f and g. Although probabilistic GPs are
used in [18, 9], the MAP estimation (point estimate)
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of the latent states can lead to overconfident predic-
tions because the uncertainty in the latent states is
not accounted for. Other GP approaches proposed
solely for filtering [2, 8] do take the state uncertainty
into account, but require ground-truth observations of
the latent states during training, typically a strong as-
sumption in many applications.

In this paper, we address the shortcomings of the
methods above by proposing the GPIL algorithm for
inference and learning in NLDS. Our flexible frame-
work uses non-parametric GPs to model both the tran-
sition function and the measurement function. The
GPs naturally account for three kinds of uncertainties
in the real dynamical system: system noise, measure-
ment noise, and model uncertainty. The model un-
certainty varies depending on the density of the train-
ing data. Our model integrates out the latent states
unlike [18, 9], where a MAP approximation to the la-
tent states is used. The non-parametric nature of our
model does not require a pre-specified parametric form
of the measurement and/or dynamics model. At the
same time, it does not require any ground truth ob-
servations of the latent states x. We propose to learn
parameterized GPs for the dynamics and measurement
functions using Expectation Maximization (EM) [3].

The main contributions of this paper are twofold:

• We propose a tractable algorithm for approximate
inference (smoothing) in GP state-space models.

• Using GP models for f and g, see eq. (1), we
propose learning without the need of ground-truth
observations xi of the latent states.

1 Model and Algorithmic Setup

We consider an NLDS, where the stochastic Markovian
transition dynamics of the hidden states and the cor-
responding measurement function are given by eq. (1).
The transition function f and the measurement func-
tion g, eq. (1), are both unknown. In order to make
predictions, we have to learn the transition function f
and measurement function g solely given the informa-
tion of T sequential observations Y = [y1, . . . ,yT ].

We use GPs to model both the unknown transition
function f and the unknown measurement function
g, and write f ∼ GPf , g ∼ GPg , respectively. A
GP is a distribution over functions and is specified
by a mean function and a covariance function, also
called a kernel, [15]. Throughout this paper, we use
the squared exponential kernel and a prior mean func-
tion that equals zero everywhere. A separate GP is
used for each target dimension of f and g.

Since the latent states x are unobserved, we cannot
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Figure 1: An example of a function predicted by a
set of support points. The αi are the pseudo training
inputs, while the βi are the pseudo training targets.
The shaded area represents the 95% confidence region
around the expected function value (blue, solid).

learn GPf and GPg directly; instead, we apply the
EM algorithm to learn their free parameters. Let us
have a look at the “parameters” of a GP. In a stan-
dard GP setup, the GP can be considered effectively
parameterized by the hyper-parameters, the training
inputs, and the training targets. In the considered
state-space model, eq. (1), the training inputs can
never be observed directly. Therefore, in this paper,
we explicitly specify these parameters and parameter-
ize a GP by a pseudo training set, which is considered
a set of free parameters for learning. These param-
eters are related to the pseudo training inputs used
for sparse GP approximations [16]. The pseudo in-
puts that parameterize the transition function f are
denoted by α = {αi ∈ RM}Ni=1 and the corresponding
pseudo targets are denoted by β = {βi ∈ RM}Ni=1.
Intuitively, the pseudo inputs αi can be understood
as the locations of the means of the Gaussian basis
functions (SE kernel), whereas the pseudo targets βi
are related to the function value at this location. We
interpret the pseudo training set as N pairs of inde-
pendent observations of transitions from xt−1 to xt.
Note that the pseudo training set does not form a
time series. To parameterize the measurement func-
tion g, we follow the same approach and use the
pseudo inputs ξ = {ξi ∈ RM}Ni=1 and pseudo outputs
υ = {υi ∈ RD}Ni=1.

The pseudo training sets are learned jointly with the
kernel hyper-parameters. Unlike the sparse GP model
in [16], we do not integrate the pseudo training tar-
gets out, but optimize them instead since integration
is analytically intractable in our model. An example
of a pseudo training set and the corresponding predic-
tive function is shown in Fig. 1. The corresponding
graphical model of our model is shown in Fig. 2.

Once the pseudo training set, α and β, is deter-
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Figure 2: The model employed. The parameter sets
α,β and ξ,υ serve as a pseudo training set for GPf
and GPg, respectively. GPf and GPg are not full
GPs, but rather sparse GPs that impose the condition
xt+1 ⊥ xt−1|xt,α,β.

mined, predicting xt from xt−1 is a GP prediction
using GPf [2, 13]. Here, xt−1 serves as the (uncer-
tain) test input, while α and β are used as a standard
GP training set. Likewise, predicting yt from xt cor-
responds to a GP prediction (with uncertain inputs)
with xt as the test input and a training set defined
through ξ and υ. The model setup for predictions can
be stated as

xti ∼ GPf (xt−1|α,βi) , ytj ∼ GPg(xt|ξ,υj) ,

where xti is the ith dimension of xt and ytj is the jth di-
mension of yt. Note that xt+1 ⊥ xt−1|xt,α,β, which
preserves the Markovian property in eq. (1). Without
using a pseudo training set, the conditional indepen-
dence property would be xt+1 ⊥ xt−1|xt, f , which re-
quires conditioning on the infinite dimensional object
f . This makes it difficult to design practical inference
algorithms that exploit the Markovian property.

Additional parameters, such as the initial state distri-
bution, are also learned during training. The hyper-
parameters for the dynamics GP and the measure-
ment GP are denoted by θf and θg, respectively. Just
as with the LDS, the prior on the initial state is
a Gaussian with mean µ0 and covariance Σ0. The
entire parameter space can be summarized as Θ =
{α,β, ξ,υ, θf , θg,µ0,Σ0}.
We apply the EM algorithm in the NLDS for infer-
ence and learning. EM iterates between two steps,
the E-step and the M-step. In the E-step (or infer-
ence step), we find a posterior distribution p(X|Y,Θ)
on the hidden states for a fixed parameter setting
Θ. In the M-step, we find the parameters of the dy-
namical system Θ that maximizes the expected log-
likelihood Q = EX [log p(X,Y|Θ)], where the expec-
tation is taken with respect to the E-step distribution
on the hidden states X. Optimizing Q converges to a
maximum likelihood solution in p(Y|Θ). Both the E-

step and the M-step require approximations when we
model the transition dynamics f and the measurement
function g with GPs.

2 Inference (E-step)

The E-step infers a posterior distribution
p(x1:T |y1:T ,Θ) of the sequence of latent states
X given the observation sequence Y. In the following,
we omit the explicit conditioning on Θ for notational
brevity. Due to the Markov assumption, the joint
distribution of the hidden states is given by

p(x1:T |y1:T ) = p(x1|y1:T )

T∏
t=2

p(xt|xt−1,y1:T ) . (2)

To determine the marginal posterior distributions
p(xt|y1:T ), we use the forward-backward algo-
rithm [14]. The forward-backward algorithm re-
quires solving three sub-problems: time update (Sec-
tion 2.1.1), measurement update (Section 2.1.2), and
the backward sweep (Section 2.2) to complete smooth-
ing. Our use of forward-backward explicitly incorpo-
rates the uncertainties and the nonlinearities in the
transition dynamics and measurements through GP
models GPf and GPg, respectively.

2.1 Forward Sweep (Filtering)

The forward sweep comprises time update and mea-
surement update. They typically alternate in a
predictor-corrector setup: First, the time update pre-
dicts the hidden state at time t given past observations
from time 1 to t−1. Second, the measurement update
refines the prediction by incorporating new evidence
from the current observation at time t.

2.1.1 Time Update

The time update corresponds to computing the one-
step-ahead predictive distribution of the hidden state
p(xt|y1:t−1) using p(xt−1|y1:t−1) as a (Gaussian) prior
on xt−1. Propagating a density on xt−1 to a density on
xt corresponds to GP prediction (under model GPf )
with uncertain inputs, [13]. The exact mean µpt and
covariance Cp

t of the predictive distribution can be
computed analytically.1 The predictive distribution
on xt can therefore be approximated by a Gaussian
N (µpt ,C

p
t ) using exact moment matching.

Analogously, we can approximate the predictive distri-
bution in observed space, p(yt|y1:t−1), by a Gaussian

1We use the notation µp
t and Cp

t to indicate a one-
step-ahead prediction within latent space (with uncertain
inputs) from time step t − 1 to t using the dynamics GP,
GPf , given y1:t−1.
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N
(
µy,Cyy

)
with the exact mean and the exact co-

variance using the above prediction p(xt|y1:t−1) as a
prior on xt. Detailed expressions are given in [2].

2.1.2 Measurement Update

The measurement update computes a posterior distri-
bution p(xt|y1:t) by refining the predictive distribution
p(xt|y1:t−1) by incorporating the most recent measure-
ment yt. Reporting the results from [2], the updated
state distribution (filter distribution) is determined as

p(xt|y1:t) = N (µet ,C
e
t ) , (3)

µet = µpt + CxyC
−1
yy (yt − µy) , (4)

Ce
t = Cp

t −CxyC
−1
yy Cyx . (5)

New evidence from the observation yt is incorpo-
rated in eq. (4). The cross-covariance Cxy =
Cov

[
xt,yt|y1:t−1

]
is determined exactly. The matrix

CxyC
−1
yy plays the role of the Kalman gain for linear

dynamical systems. However, Cxy and Cyy are based
upon predictions with nonlinear GP models for a) the
transition dynamics and b) the measurement function
in eq. (1).

2.2 Backward Sweep

The backward sweep is required for the M-step of the
EM algorithm and corresponds to seeking the distri-
bution

γ(xt) := p(xt|y1:T ) (6)

of the hidden state conditioned on all (previous, cur-
rent, and future) observations. We present a new al-
gorithm for smoothing in NLDS. We initialize γ(xT )
by the last step of the forward sweep, that is, the
filter distribution p(xT |y1:T ). The distributions of
the smoothed states γ(xt−1) are computed recursively
from t = T to 2 according to

γ(xt−1) =

∫
p(xt−1|xt,y1:T )γ(xt)dxt (7)

=

∫
p(xt−1|xt,y1:t−1)γ(xt)dxt (8)

by integrating out the smoothed hidden state at time
step t. Evaluating eq. (8) has two steps. First, we
calculate the conditional p(xt−1|xt,y1:t−1) in a “back-
ward inference” step. Second, we solve the integral
of this conditional distribution multiplied with γ(xt)
to determine the marginal p(xt−1|y1:T ) Additionally,
learning in the M-step requires the computation of the
cross-covariances p(xt−1,xt|y1:T ). In the following, we
discuss these steps in detail.

Backward inference. We compute the conditional
distribution p(xt−1|xt,y1:t−1) by first approximating

the joint distribution p(xt−1,xt|y1:t−1) with

p(xt−1,xt|y1:t−1)=N
([

µet−1

µpt

]
,

[
Ce
t−1 Cep

CT
ep Cp

t

])
(9)

and then conditioning on xt. This approximation
implicitly linearizes the transition dynamics f (see
eq. (1)) globally, in contrast to the local lineariza-
tion of the EKF. We can compute all of the variables
in eq. (9) from three sources: First, µet−1 and Ce

t−1

are given by the filter distribution, eq. (4), at time
t − 1. Second, µpt and Cp

t are the mean and the co-
variance of the predictive distribution p(xt|y1:t−1) =
N (µpt ,C

p
t ) at time t. Third, the cross-covariance

Cep = Cov
[
xt−1,xt|y1:t−1

]
can be computed ana-

lytically in the forward sweep. We omit the exact
equations, but refer to [2], where similar computa-
tions are performed to compute the cross-covariance
Cxy = Cov

[
xt,yt|y1:t−1

]
.

Finally, with Jt−1 := Cep(C
p
t )

−1, we obtain the de-
sired conditional

p(xt−1|xt,y1:t−1) = N
(
xt−1 |m,S

)
, (10)

m = µet−1 + Jt−1(xt − µpt ) , S = Ce
t−1 − Jt−1C

T
ep .

Smoothed state distribution. We compute
the integral in eq. (8) by exploiting the mixture
property of Gaussians [4]: Since p(xt−1|xt,y1:t−1) =
N
(
Jt−1xt + µet−1 − Jt−1µ

p
t ,C

e
t−1 − Jt−1C

T
ep

)
, and

p(xt|Y) = N (µst ,C
s
t ), the mixture property leads to

the smoothed state distribution

p(xt−1|y1:T ) = γ(xt−1) = N
(
xt−1 |µst−1,C

s
t−1

)
,

µst−1 = µet−1 + Jt−1(µst − µpt ) ,

Cs
t−1 = Ce

t−1 + Jt−1(Cs
t −Cp

t )J
T
t−1 . (11)

Cross-covariances for learning. Parameter learn-
ing using EM or variational methods requires the full
distribution p(x1:T |Y). Due to the Markov assump-
tion, E [xt|Y], Cov [xt|Y], and

Cov [xt−1,xt|Y]

= Ext−1,xt [xt−1x
T
t |Y]− Ext−1 [xt−1|Y]Ext [xt|Y]T

=

∫
Ext−1 [xt−1|xt,Y]xT

t p(xt|Y)dxt − µst−1(µst )
T .

are sufficient statistics for the entire distribution. Mul-
tiplying eq. (9) with γ(xt) and integrating over xt,
yields the desired cross-covariance

Cov [xt−1,xt|Y] = Jt−1C
s
t . (12)

Alg. 1 summarizes the E-step.

Unlike [17] the “backward” conditional distribution,
eq. (10) is computed without the need of an explicit
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Algorithm 1 Forward-backward algorithm for GPIL

1: function NLDSsmoother

2: (µe0,C
e
0)←(µ0,Σ0) . initialize forward sweep

3: for t = 1 : T do . forward sweep
4: compute p(xt|y1:t) = N (µet ,C

e
t ) . eq. (4)

5: end for
6: (µsT ,C

s
T )←(µeT ,C

e
T ) . initialize backward sweep

7: for t = T − 1 : 1 do . backward sweep
8: compute p(xt|Y) = N (µst ,C

s
t ) . eq. (11)

9: . cross-covariance between xst+1,x
s
t , eq. (12)

10: Rs
t+1←Cs

t+1J
T
t

11: end for
12: . return sufficient statistics for p(x1:T |y1:T ,Θ)
13: return µs1:T , Cs

1:T , Rs
2:T

backward model. The dynamics GP solely models
the forward dynamics of the latent states. Our infer-
ence algorithm is robust against numerical problems
for high measurement noise, problems which were re-
ported in [19] in the context of inference in NLDS using
the UKF and Expectation Propagation [11].

3 Learning (M-Step)

In the following, we derive the M-step for gradient-
based optimization of the parameters Θ. In the M-
Step, we seek the parameters Θ that maximize the like-
lihood lower bound Q = EX [log p(X,Y|Θ)] where the
expectation is computed under the distribution from
the E-Step, meaning X is treated as random. We de-
compose Q into

Q=EX [log p(X,Y|Θ)] = EX[log p(x1|Θ)]

+EX

 T∑
t=2

log p(xt|xt−1,Θ)︸ ︷︷ ︸
Section 3.1

+
T∑
t=1

log p(yt|xt,Θ)︸ ︷︷ ︸
Section 3.2

 (13)

using the factorization properties of the model.

In the following we use the notation µi(x) = Efi [fi(x)]
to refer to the expected value of the ith dimension of
f when evaluated at x. Likewise, σ2

i (x) = Varfi [fi(x)]
refers to the variance of the ith dimension of f when
evaluated at x.

3.1 Contribution from Transition Model

We focus on finding a lower-bound approximation to
the contribution from the transition function, namely,

EX [log p(xt|xt−1,Θ)]

=

M∑
i=1

EX

[
logN (xti|µi(xt−1), σ2

i (xt−1))
]
, (14)

which equals

−1

2

M∑
i=1

EX

[
(xti − µi(xt−1))2

σ2
i (xt−1)

]
︸ ︷︷ ︸

Data Fit Term

+EX

[
log σ2

i (xt−1)
]︸ ︷︷ ︸

Complexity Term

.

Eq. (14) amounts to an expectation over a nonlin-
ear function of a normally distributed random vari-
able since X is approximate Gaussian (E-step). The
expectation in eq. (14) corresponds to an intractable
integral, which is due to the state-dependent variances
in our model.

Data fit term. We first consider the data fit term in
eq. (14), which is an expectation over the square Ma-
halanobis distance. For tractability, we approximate
the expectation of the ratio

EX

[
(xti − µi(xt−1))2

σ2
i (xt−1)

]
≈ EX

[
(xti − µi(xt−1))2

]
EX [σ2

i (xt−1)]

=: M̃f (xti,xt−1) . (15)

Complexity term. We next approximate the com-
plexity penalty in eq. (14), which penalizes uncer-
tainty. The contribution from the logarithm in the
expectation can be lower bounded by

EX

[
log σ2

i (xt−1)
]
≤ logEX

[
σ2
i (xt−1)

]
, (16)

where we used Jensen’s inequality. Eq. (16) also serves
as a Taylor approximation centered at EX

[
σ2
i (xt−1)

]
,

which is accurate to first order for symmetry reasons.

3.2 Contribution from Measurement Model

The measurement function g in eq. (1) is assumed un-
known and modeled by GPg. Our algorithm allows for
joint training of the dynamics GP and the measure-
ment GP. An expression M̃g(yti,xt) nearly identical
to eq. (15) (contribution from the dynamics model)
can be computed for the observation model. We can
also find a nearly identical measurement model version
of eq. (16).

4 Summary of Algorithm

The manifestation of EM in the NLDS is summarized
by Alg. 2. The function NLDSsmoother implements
the E-step. The maximization routine implements the
M-step. Following the steps in the M-step (Section 3),
we finally approximate the exact objective function Q
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Algorithm 2 EM using GPIL

1: repeat
2: . E-step: Section 2, Alg. 1
3: µs1:T , Cs

1:T , Rs
2:T ← NLDSsmoother(Y, Θ)

4: . M-step: Section 3, eq. (17)
5: Θ← maximize Q̃(Θ, µs1:T , Cs

1:T , Rs
2:T ) wrt Θ

6: until convergence
7: return Θ, µs1:T , Cs

1:T , Rs
2:T

by

Q̃ = − 1
2

T∑
t=2

M∑
i=1

logEX

[
σ2
fi(xt−1)

]
+ M̃f (xti,xt−1)

− 1
2

T∑
t=1

D∑
i=1

logEX

[
σ2
gi(xt)

]
+ M̃g(yti,xt) (17)

− 1
2 log|Σ0| − EX

[
1
2 (x1 − µ0)TΣ−1

0 (x1 − µ0)
]
.

The partial derivatives of Q̃ with respect to Θ can be
computed analytically, which allows for gradient-based
parameter optimization.

5 Results

We evaluated our approach on both real and synthetic
data sets using one-step-ahead prediction. We com-
pared GPIL predictions to eight other methods, the
time independent model (TIM) with yt ∼ N (µc,Σc),
the Kalman filter, the UKF, the EKF, the Autoregres-
sive GP (ARGP) trained on a set of pairs (yi,yi+1),
and the GP-UKF [8], and the neural network/EKF
based NDFA [6].2 Note that the EKF, the UKF, and
the GP-UKF required access to the true functions f
and g. For synthetic data, f and g were known. For
the real data set, we used functions for f and g that
resembled the mean functions of the learned GP mod-
els using the GPIL algorithm. For the synthetic data,
we also compared to the GPDM [18]. For the real data
set, however, GPDM was not tested due to the compu-
tational demand when running on the large test data
set.

The Kalman filter, the EKF, and the UKF are stan-
dard state-space approaches to time series analysis.
We compared against the ARGP because it is a pow-
erful non-parametric Bayesian approach to time series
prediction; one-step-ahead predictions with ARGP can
be done analytically, but multi-step predictions require
moment matching approximations. We tested ARGP
on orders of 1 to 20 and selected the one with the best

2Implementations of the Kalman filter and the UKF are
based on the software available at http://www.cs.ubc.ca/

~murphyk/Software and http://www.cs.ubc.ca/~nando/
software, respectively.
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Figure 3: True (red) and learned (blue) transition
function with histogram of the inputs xt in the test
set. Both red error bars and the shaded area repre-
sent twice the standard deviation of the system noise.
Pseudo targets are represented by black crosses.

performance, order 10 for the real data set and order
1 for the synthetic data set. Note that the ARGP and
the TIM have no notion of a latent space and cannot
be used for estimation of the latent state, that is, they
cannot be applied in a typical tracking and/or control
setup.

The evaluation metrics were the negative log predic-
tive likelihood (NLL) and the root mean squared error
(RMSE) between the mean of the prediction and the
true value. Note that unlike the NLL, the RMSE does
not account for uncertainty.

Synthetic data. We considered an illustrative ex-
ample where the hidden state followed sinusoidal dy-
namics specified by

xt = 3 sin(3xt−1) + ε , ε ∼ N
(
0, σ2

ε

)
, σ2

ε = 0.12 .

Furthermore, we considered a linear measurement
model, yt = xt + ν, with ν ∼ N

(
0, σ2

ν

)
, σ2

ν = 0.12.

The results were produced using a pseudo training set
of size N = 50, T = 100 training observations and
10,000 test observations. Quantitative results for the
sinusoidal dynamics are shown in Table 1. The true
dynamics model is compared to the learned dynamics
model GPf in Fig. 3. The error bars (shaded area) on
the learned dynamics model include both system noise
and model uncertainty.

The UKF and the EKF required access to the true gen-
erating process. Having the true dynamics model gives
the UKF and the EKF a distinct advantage over the
competing methods. However, the GPIL could still
outperform them since both the UKF and GP-UKF
had trouble with the high curvature in the dynam-
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Table 1: Comparison of the GPIL with six other methods on the sinusoidal dynamics example and the Whistler snowfall

data. We trained on daily snowfall from Jan. 1 1972–Dec. 31 1973 and tested on next day predictions for 1974–2008. We

report the NLL per data point and the RMSE as well as the NLL 95% error bars.

Method NLL synth. RMSE synth. NLL real RMSE real
general TIM 2.21±0.0091 2.18 1.47±0.0257 1.01

Kalman [14] 2.07±0.0103 1.91 1.29±0.0273 0.783
ARGP [15] 1.01±0.0170 0.663 1.25±0.0298 0.793
NDFA [6] 2.20±0.00515 2.18 14.6±0.374 1.06
GPDM [18] 3330±386 2.13 N/A N/A
GPIL ? 0.917± 0.0185 0.654 0.684± 0.0357 0.769

requires UKF [7] 4.55±0.133 2.19 1.84±0.0623 0.938
prior EKF [10] 1.23±0.0306 0.665 1.46±0.0542 0.905
knowledge GP-UKF [8] 6.15±0.649 2.06 3.03±0.357 0.884

ics model, which caused them to predict future obser-
vations with unreasonably high certainty (overconfi-
dence). The GP-UKF used the same pseudo training
set during test as the GPIL algorithm; given that the
GP-UKF performed worse than the GPIL we specu-
late that the filtering/prediction (E-step) method is
better in the GPIL than the GP-UKF confirming the
results from [2]. Although the EKF performs better
than the UKF, its linearizations of the dynamics ap-
pear to be worse than all approximations made by the
GPIL algorithm.

The ARGP was disadvantaged because it had no no-
tion of a latent state-space. However, it was still com-
petitive with the state-space models. The analytic na-
ture of the Kalman filter did not make up for its inap-
propriate modeling assumptions, that is, the linearity
of the dynamics model; it is not able to predict with
appropriate variances, resulting in a high NLL. The
flexibility of the GPIL allowed it to outperform the
simpler analytic models despite its approximations.
The approximations in our model are as least as good
as the approximations used in EKF, UKF, GPDM, etc.

Real data. We used historical snowfall data in
Whistler, BC, Canada3 to evaluate the GPIL and
other methods on real data. The models were trained
on two years of data; the GPIL used a pseudo training
set of size N = 15; we evaluated the models’ ability to
predict next day snowfall using 35 years of test data.
The results are shown in Table 1.

The GPIL learned a GP model for a scalar close-to-
linear stochastic latent transition function. A possible
interpretation of the results is that the daily precipita-
tion is almost linear. Note that for temperatures above
freezing no snow occurs, which resulted in a hinge
measurement model. The GPIL successfully learned a
hinge-like function for the measurement model, Fig. 4,

3http://www.climate.weatheroffice.ec.gc.ca/
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Figure 4: Learned measurement GP (right panel) and
log histogram of the observations (left panel) during
testing, real data set. The gray area is twice the pre-
dictive standard deviation of the model uncertainty
plus the measurement noise. Pseudo targets are rep-
resented by black crosses.

which allowed for predicting no snowfall the next day
with high probability. The Kalman filter was incapable
of such predictions since it assumes linear functions f
and g, respectively.

6 Discussion and Conclusions

Parameterizing a GP using the pseudo training set is
one way to train a GP with unknown inputs. In princi-
ple, we could train the model by integrating the pseudo
training set out. However, this approach is analytically
intractable.

It is possible to compute the expectations in eqs. (13)
and (14) by sampling X from the E-step distribution.
If we sample xt−1 then xti can be integrated out an-
alytically providing a much lower variance estimator
than sampling xti as well. The sampling approach can
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give a small increase in performance over the deter-
ministic approximations discussed in this paper.

In our model, the latent states xt are never observed
directly. We solely have access to observations yt to
train the latent dynamics and measurement functions.
By contrast, direct access to ground truth observations
of a latent state sequence was required in [2, 8] to train
the dynamics model.

We introduced a general method for inference and
learning in nonlinear state-space models using EM.
Both the transition function between the hidden states
and the measurement function are modeled by GPs
allowing for quantifying model uncertainty and flexi-
ble modeling. Our approach exploits the properties of
GPs and allows for approximate smoothing in closed
form (E-step). The free parameters of the GPs are
their hyper-parameters and a pseudo training set. We
employed a gradient-based optimizer to learn the free
parameters (M-step). We showed that our learning ap-
proach successfully learned nonlinear (latent) dynam-
ics based on noisy measurements only. Moreover, our
algorithm outperformed standard and state-of-the-art
approaches for time-series predictions and inference,
such as Kalman filtering, the EKF, the UKF, the GP-
UKF, the GPDM, the NDFA, and AR models.
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