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Abstract

Perception is an essential ability for autonomous robots in non-standardized conditions. However, the
appearance of objects can change between different conditions. A system visually tracking a target based
on its appearance could lose its target in those cases. A tracker learning the appearance of the target in
different conditions should perform better at this task. To learn reliably, the system needs feedback. In
this study, feedback is provided by a secondary teacher system that trains the tracker. The learning tracker
is compared to a baseline non-learning tracker using data from an autonomous mobile robot operating in
realistic conditions. In this experiment, the learning tracker outperforms the non-learning tracker. This
shows that we successfully used the teacher system to train a visual tracking system on an autonomous
robot.

1 Introduction
For an autonomous robot operating in a non-standardized dynamic environment, it is crucial to reliably
perceive the world around it. Perception has to be both real-time and robust for the robot to operate safely.
Robots can be equipped with many different types of sensors, but visual perception of the environment is a
popular choice. As the world is dynamic, robots have to be able to learn about new objects while performing
their duties, even in non-standardized conditions.

Robot vision and tracking. Compared to the task of computer vision, the problem of robot vision is
harder in some aspects as the system has to process images real-time using limited on-board computing
power. Furthermore, the camera of a robot often has a limited resolution and quality. However, in some
aspects the problem is also easier as subsequent images are related to each other. Tracking approaches
exploit this: processing can be constrained to a small region of the image where the target is expected.
Constrained processing enables real-time performance. Particle filters are often used to track visual targets,
for example in [3, 10, 12, 15].

Most tracking systems have a model of the appearance of the target. This appearance depends on both
internal properties (shape, reflectance properties and pose) and external properties (illumination conditions,
camera parameters, and occlusion) [8, 12]. During the tracking task, the appearance of the target model
can change. Handling these changes is sometimes considered the main challenge of visual tracking [12].
Appearance change can be reduced by evaluating the system under standardized conditions. However, this
is not an option when the robot operates in a non-standardized real-world environment.

Adaptation with and without feedback. In the literature on visual tracking multiple techniques are used
to be able to handle changing circumstances. First, it is possible to try to make the tracker model invariant to
appearance changes, which was done in [8]. That study needed prior training on a large set of images under
different conditions, so it is not suitable for learning new objects as they are encountered in the world.

A second approach is to adapt the model to the appearance of the target in detections in previous frames.
In contrast to the approach described in the previous paragraph, this approach does not need a separate
training phase but learns on the task continuously, making it possible to track novel objects for which no



training database is available. This was the approach used by [12] to incrementally learn a low dimensional
eigenspace representation to track faces or objects.

The danger of this approach is that the target might disappear or the tracker might slowly drift away
from the target, with the model adapting to the background rather than to the target. Some visual tracking
models take specific measures to prevent this. In [14], the color model was adapted only to those pixels
that the current model could ‘confidently’ classify as belonging to the target. In [9, 10] the color model was
only adapted if the current detection was sufficiently similar to the previous model. In [4, 7] the color model
was only adapted to slow appearance changes to prevent learning when the target disappears or is occluded.
In [15] the color features were adapted based on the best-matching shape features and vice-versa to prevent
the tracker from drifting away.

In short, there are many different approaches to solve the problem of adapting the appearance model to
data that does not actually correspond to the target. However, those approaches are not guaranteed to solve
this problem. For instance, even if sharp changes are prevented from impacting the model, the tracker might
still slowly drift away, adapting to the background. Also, the appearance of the target can change very fast,
for instance if lights are turned on or off, in which case adapting to fast change is desired. To be certain the
tracker adapts only to the target, feedback is needed.

Feedback mechanism. Feedback can be provided by another system. This might be a detector system
that would be too computationally demanding to steer the robot in real time. In that case it might run on
the robot’s hardware at a lower temporal frequency, providing feedback in just some of the frames. Another
solution would be to run such a system off-board on a more powerful machine. However, if the connection
to the off-board system is not perfectly reliable, continuous feedback is still not guaranteed.

If there is no feedback system available, feedback can be provided by alternative sources. The robot
can ask people near the robot to label unknown objects, or it can get feedback from physical interaction
with an ambiguous object [11]. These types of feedback are however not always available. A service robot
is not very valuable if its owner has to supervise it continuously. On the other hand, interaction with the
environment requires the robot to invest time that might be better spent. So, the system has to be able to
function with a limited amount of feedback. The limited feedback can be used to construct a stronger target
representation over time. As feedback comes in, the tracker learns the appearance of its target in different
conditions. This makes the tracker more robust, requiring less feedback as it is slowly able to handle more
situations by itself.

Overview. In this study a tracker that uses feedback to learn a robust representation of its target is de-
veloped. Many kinds of targets could be used, but in the current research we will use faces as tracker
targets. Our research question is whether the learning tracker is better at tracking faces in sensor data from
an autonomous, mobile robot than a non-learning tracker.

The next section describes the tracker and the way it is trained by the teacher system. Section 3 describes
how a robot is used to evaluate the tracker and the way the performance is measured and analyzed. The
results of the evaluation are presented in section 4. Concluding, a discussion of the results and possibilities
for future work is presented in section 5.

2 Vision-based Tracking System
Our tracking system consists of two main parts. A particle filter is used to track the target visually based
on an appearance model. Feedback is provided by a separate teacher system, to enable the complete system
to learn reliably. The particle filter uses its past experiences to select a target model appropriate for the
conditions the system faces. Over time, the system experiences a variety of conditions, and it learns how to
handle them. In this section we describe the tracker system first, after that we describe the teacher system
and the way feedback is handled.

2.1 Tracker System
The tracker estimates the probability distribution over the state at time t. This non-Gaussian state-density is
approximated using a particle filter [3]. The particle filter represents the state-density at time t with a sample
set consisting of N samples s(k)t and their corresponding weights π(k)

t , with k = 1, . . . , N . The samples



represent the (x, y, width, height) parameters of a rectangle corresponding to a possible target location. The
number of samples N = 100 was chosen as adding more particles hardly improved performance.

The particles are weighted with the probability of observing the current features if the target were present
in the area covered by the particle. Like in [10], the area containing the target of the system and the areas
covered by the particles in the current image are represented using three dimensional histograms of (R,G,B)
values. The histogram uses 8× 8× 8 bins that each contain the count of pixels with corresponding (R,G,B)
values1.

The weight of a particle is based on a comparison of histograms q (the appearance model of the target)
and p

s
(k)
t

(the model of the area of particle s(k)t ). The distance measure used to compare these histograms
is the Bhattacharyya distance shown in equation 1, which sums over all m bins of the histograms. If the
distance between two histograms is small, the corresponding particle’s weight should be high. The weight
is calculated using equation 2, which was used successfully in [10].
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In equation 2, σ is a free parameter. With high σ, all particles get nearly equal weights. However, with a
very low σ, all the weight centers around a couple of particles with a small distance, which means the face
might be lost if these particles are not on the target. σ = 0.1 worked well in our case.

After weighting the particles, N samples are drawn with replacement by choosing a particular sample
with a probability proportional to its weight. Then, the location of the target is estimated by taking the
weighted mean of all particles. Each of the samples is then propagated according to the motion model.
A simple 0th order model is used, to keep the dimensionality of the search space low. This means that a
Gaussian component is added to each particle. This component has a mean of ~0, as there is no expected
bias in scaling or translation. The variance of the Gaussian component corresponds to the expected amount
of movement. Standard deviations of 20 pixels for x and y components, and 8 pixels for the height and
width worked well. The sample set now corresponds to the state distribution of the next time step, given
all observations up to now. As the next observation comes in, a new estimate can be made by repeating the
entire process.

2.2 Teacher System and Feedback Handling
In the current research, the required feedback will be provided by a teacher system. This is a face detector
that processes every frame of the video sequence from the robot’s camera independently. This detector
employs a boosted cascade of Haar-like features, as described in [5, 13]. This detector is implemented in the
OpenCV library [1], which also contains cascades pre-trained on several datasets. In the current experiment,
the ‘default frontal face’ cascade is used. The parameters that are used in the current research are OpenCV’s
suggested parameters for still images.

Feedback available. Every time the teacher system detects the target, two histograms are constructed.
One of these models the target as it appears in the current image. The other histogram is a model of the
complete image. This represents the environment conditions associated with the target model, and will be
called the ‘background model’. These two histograms are stored together in a database with earlier pairs of
target model and background model. Furthermore, to prevent the tracker from drifting away, whenever the
detector finds a face, all particles are re-initialized to the face location.

No feedback available. Not in every frame feedback is given. The teacher system can fail to detect a
target, and the feedback system could be unavailable as discussed in the introduction. In every frame where
no feedback is received, the best target model in the database has to be found. First a histogram is made of
the entire current image. This background histogram is matched against the database of earlier background

1In a preliminary test, different representations were used based on the gradient and the gray scale value of each pixel, but these
representations were less successful.



histograms. The distance measure used for this nearest neighbor search is the Bhattacharyya distance that
was also used to weight the particles. This measure is shown in equation 1 on page 3.

We expect that the target model associated with the best matching background histogram was made
under conditions similar to the current ones. This makes that target model the most appropriate appearance
model for the current image, so it is used to weight the particles of the particle filter.

3 Robot and Experimental Setup
In this section, the robot which is used in the experiment is described, as well as its control architecture.
Then we describe how the tracker is tested, and how the tracker’s performance is measured and analyzed.

3.1 Autonomous Robot
The hardware platform used in the experiment is a Pioneer 2 mobile platform. The platform carries, among
others, a high definition video camera used to provide input to the tracker system2.

The tracker provides data to the robot control program that has the goal to follow a person. This program
makes the robot turn to the detected face and approach it to a distance of approximately one meter. It does
this by keeping the face in the middle of the visual field and at an apparent size that corresponds to a distance
of one meter. If the apparent size of the detected face is smaller (the face is farther away) or the detected
face is not centered in the middle of the field of view, a control signal proportional to the magnitude of the
error (the difference between the actual value and the target value) will be sent to the robot to decrease the
error.

First, the difference between the middle of the detected face to the middle of the horizontal field of view
is calculated. If this difference is positive, the face is detected in the right half of the visual field. The speed
for the left wheel is set toKturn∗error, the speed for the right wheel is set to−Kturn∗error, whereKturn

is the proportionality constant for turning and the difference is expressed in rad. This centers the target in
the middle of the horizontal field of view.

Secondly, the difference between the desired apparent size of the face (corresponding to a distance of
approximately one meter) and the actual apparent size of the face is calculated. A positive value means
the apparent size is too small, indicating the robot has to approach. Both wheel speeds are then set to
Kforward ∗ error, with Kforward the proportionality constant for approaching and the error expressed in
pixel difference. If the difference is negative (indicating the apparent size is too big), output is suppressed
as the user can be approaching the robot. Also, driving backwards might be dangerous.

The proportionality constants should not be too large, to avoid overshoot, but large enough to provide an
adequate response to differences between actual values and target values. Finding the right value is a process
of trial and error. We found that using Kturn = 200 mm / s per rad and Kforward = 3 mm / s per pixel
yielded appropriate behavior. The output of both control actions are summed and the command is executed
by the Pioneer platform. The sum was capped at a maximum of 200 mm / s to ensure safe operation of the
robot.

3.2 Experimental Setup
Data collection. In the data collection phase, the robot is guided by a person walking backwards, facing
the robot. The robot follows the face using the tracker. The tracker gets feedback when available. The
detections of the detection subsystem and all images are saved to disk to be used later.

The robot was guided along one long ‘training’ path to allow it to learn. The training sequence contains
1263 images with 1021 successful detections by the teacher face detector system. It was also guided along
18 ‘testing paths’ to collect data for evaluation. The test sequences contain between 231 and 577 images,
with between 134 and 366 frames in which a successful detection was made.

Each path contains at least one section in the university’s robot laboratory and one section in the corridor.
The illumination in these areas is very different: the robot laboratory has more artificial light, and the sections
in the corridor get very close to the windows, causing varying light intensity as the windows are passed.
Figure 1 illustrates the kind of images in the dataset and the different types of illumination encountered
along a path.

2The BORG team description paper describes the platform in detail: http://www.ai.rug.nl/crl/uploads/Site/BORG TDP 2011.pdf.



(a) frame 142 (b) frame 333 (c) frame 434

Figure 1: Some stills from a test sequence illustrating the different illumination conditions.

Training phase. In the training phase, the training sequence is processed by the tracker system. Whenever
the teacher system detects the target, a color model of the entire image is stored together with a color model
of the target found by the teacher system. All these models together form a database which can be used by
the tracker to improve its performance.

Testing phase. To evaluate the quality of the trained system, we test the performance of the tracker in
the absence of feedback. The teacher system is only used to initialize the tracker at the start of the path.
After that, the tracker is not corrected anymore. Being able to perform in the absence of feedback makes the
system tolerant to faults and to limited availability of feedback. Besides evaluating the trained tracker, we
also evaluate the performance of a non-learning tracker that did not store any data in the training phase. The
non-learning tracker has only one target model, representing the appearance of the target in the initial frame
of the sequence. The trained tracker and the non-learning tracker are evaluated on the 18 testing sequences
of recorded frames.

3.3 Data Analysis
In the testing phase, the feedback system is not used to correct the trackers. Instead, it is used to find the
‘true’ location of the face. This is done because there is no manual annotation of the ground truth in the
sequences.

The face location estimates of both trackers are compared to the ‘true’ location as detected by the teacher
system. The performance score suggested in [6] is used. It is a measure of overlap between the feedback
system’s detection (regarded as ground truth) and the tracker’s estimate. The performance measure is shown
in equation 3 with Atrue the area of the true face location (in this case the feedback system’s detection),
Aestimate the area of the box found by the tracking system, and Aoverlap the area of the overlap between
those two boxes. In frames where the feedback system is not able to make a detection, no performance score
is calculated.

Score =
Aoverlap√

Atrue ×Aestimate

(3)

Comparing the learning tracker and the non-learning tracker. The average of all performance scores
of each sequence is taken for both the trained learning tracker and the non-learning tracker. Then the number
of sequences in which average performance of the learning tracker was higher than the average performance
of the non-learning tracker is counted.

Under the null hypothesis, the learning and non-learning trackers perform equally well on average so
the expected number of sequences in which the learning tracker performs better is 9 (half of 18 sequences).
The two-sided binomial test is used to test whether the number of sequences where the learning tracker
performed better is significantly higher than expected under the null hypothesis.

Effect of number of detections in the training file. We also take a closer look at the effect of the number
of detections in the training file on the performance of the learning tracker. We use each of the 18 testing
sequences as training data, and then evaluate the trained tracker on the other 17 files. The correlation
coefficient between the number of detections in the training sequence and the performance of the tracker
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Figure 2: (a) Performance on all test sequences for the learning tracker and the non-learning tracker. Points
above the x = y line have a higher performance for the learning tracker. (b) Performance of both tracker
types over time evaluated on one test sequence. The non-learning tracker suffers as conditions change.
Performance is a measure of overlap between detection and tracker estimate, as explained in section 3.3.

can be calculated. The correlation coefficient can be transformed to a statistic with a distribution that is
approximately normal using the Fisher transformation [2]. The resulting value can be compared to an
expected value of 0 with a Z test to test whether the null hypothesis that the number of detections in the
training set and the performance of the tracker are uncorrelated can be rejected.

4 Results
The results of the comparison of the trained learning tracker and the non-learning tracker are shown in
figure 2(a). The learning tracker had a higher performance than the non-learning tracker in 16 out of 18
sequences. Under the null hypothesis that both trackers perform equally well, the number of sequences
in which the learning tracker performs better should follow a binomial distribution B(18, 0.5). Under this
distribution, the probability of observing a similar or more extreme result than the observed 16 out of 18
sequences is < 0.005. So, the number of sequences in which the learning system outperforms the non-
learning system is significantly higher than expected under the null hypothesis in a two-sided binomial test.

The performance of the trained tracker and the non-learning tracker over time is shown in figure 2(b).
Within the robot laboratory, both trackers degrade in performance over time but the non-learning tracker
suffers more. The trained tracker has different models for different illumination conditions so it is more
robust to the slowly changing conditions. When the corridor is entered around frame 180, illumination con-
ditions change abruptly and the non-learning tracker performance loses its target, while the trained tracker
can switch to a different model and still has a good performance. When the laboratory is entered again, the
initial model of the non-learning tracker fits the illumination again and it can recover.

Comparing different sizes of the training set. Learning tracker performances on training sets after train-
ing on different sequences are shown in figure 3. The correlation coefficient r between the number of detec-
tions in the training set and the performance score of the learning tracker is 0.536. This means z(r) = 0.602
according to the Fisher transformation [2]:

z(r) = 0.5 ln
1 + r

1− r
(4)

Under the null hypothesis, the population correlation coefficient ρ is expected to be 0. There are 18
data points, so σ̂z(r) = 1/

√
18− 3 = 0.258. Z = (z(r) − z(ρ))/σ̂z(r) = 2.33. This means the null

hypothesis that performance is independent of the number of detections in the training set can be rejected
at the α = 0.05 significance level: there is a positive correlation between the number of detections in the
training set and the trained tracker’s performance.
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Figure 3: Learning tracker performance score depends on the amount of training data. Performance score
measures overlap between detection and tracker estimate, as explained in section 3.3. The line shows the
best least-squares fit of a first-order polynomial to the data.

5 Discussion
A tracker was developed that uses a learning algorithm that attempts to use the best target model given the
color distribution of the current frame. This was hoped to provide robustness against illumination changes,
as target models for different illumination conditions were available.

The trained learning tracker estimated the position of the target better than the non-learning tracker in
16 out of 18 test sequences. This is significantly higher than the number expected under the null hypothesis
of doing better in half of the test cases. We found a significant positive correlation between the number of
detections in the training set and the learning tracker’s performance. So, one perceptive system successfully
trained another perceptive system to become better over time at controlling an autonomous robot.

The described learning method is able to work continuously: it stores pairs of target and background
models as feedback comes in over time, even while the robot is performing its task. Despite this, the
experiment was split up in a train and a test phase, and evaluation was done on recorded sequences rather
than on the working robot. This was done to be able to evaluate the learning and non-learning systems on the
same data to get a reliable comparison of their performance. However, during the data collection phase, the
robot was learning while tracking the target. This shows that our system is capable of continuously learning
while executing the task. The tracking task itself was executed well by the robot. As long as turns were
made slowly to allow the robot to keep up, the robot was able to follow the person correctly.

5.1 Future Work
The learning algorithm. The learning method described in this study was not very complex: pairs of
target and background models were associated using instance-based learning. However, this instance-based
learning method does not scale up well, as the memory requirement goes up linearly with the amount of
training data. To scale this method up, clustering could be used to group similar training instances together
or a different learning technique could be used.

Using prediction to improve tracking. In the current system, selected particles are updated with a Gaus-
sian component with a mean of ~0. An improvement would be to predict in which direction the target will
move based on the action executed by the robot: if the robot turns left, the target is expected to move to
the right in the visual field. This knowledge can be integrated quite easily in the particle filter by setting
the mean of the Gaussian component to the expected translation and scaling. This extension to the tracker
system is expected to situate particles closer to the actual location of the target, and so it is expected to
improve the performance of the system.
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