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Abstract— Creating robots that can act autonomously in

dynamic, unstructured environments is a major challenge. In

such environments, learning to recognize and manipulate novel

objects is an important capability. A truly autonomous robot

acquires knowledge through interaction with its environment

without using heuristics or prior information encoding human

domain insights. Static images often provide insufficient in-

formation for inferring the relevant properties of the objects

in a scene. Hence, a robot needs to explore these objects by

interacting with them. However, there may be many exploratory

actions possible, and a large portion of these actions may be

non-informative. To learn quickly and efficiently, a robot must

select actions that are expected to have the most informative

outcomes. In the proposed bottom-up approach, the robot

achieves this goal by quantifying the expected informativeness

of its own actions. We use this approach to segment a scene

into its constituent objects as a first step in learning the

properties and affordances of objects. Evaluations showed that

the proposed information-theoretic approach allows a robot to

efficiently infer the composite structure of its environment.

I. INTRODUCTION

Recognizing and manipulating objects is an essential ca-
pability for many robots. Today’s industrial robots operate in
structured environments with accurate object knowledge pro-
vided by human engineers. However, robots in unstructured
environments will frequently encounter new objects. Hence,
pre-defined object information does not always suffice. In-
stead, the robot should autonomously learn the properties of
objects in its environment using machine learning techniques.

Supervised machine learning techniques, however, often
require large amounts of manually annotated data. Further-
more, many techniques need a human expert to fine-tune
parameters and features to a specific situation. Such top-
down methods, which rely on prior training and human
expertise, are usually not suitable for autonomous robots [1].

Alternatively, robots can autonomously collect new knowl-
edge using interactive perception [2, 3]. This bottom-up
approach couples perception to physical interactions, such
as pushing, grasping, or lifting. Interactive perception allows
a robot to learn, for example, the appearance and shape
of objects [4–8], their haptic properties [9, 10], kinematic
structure [2], and how the state of those objects changes as
a result of manipulation [4, 10–12].

For such bottom-up approaches, selection of efficient
actions is a challenge. In real world domains, most robots
can execute a large variety of actions. Therefore, exploring a
scene by executing all possible actions is usually infeasible.
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Fig. 1. Our robot learns the structure of its environment by observing
the effects of its actions. Based on its observations so far, the robot selects
the exploratory actions that are expected to yield maximally informative
outcomes, using information-theoretic principles.

Instead, the robot should choose actions that are expected to
reveal the most information about the world [9, 13, 14].

In this paper, we propose using a bottom-up approach
that requires little prior knowledge to explore novel envi-
ronments. In our approach, the robot uses its actions to
elicit the information required for the specific situations
that it encounters, as illustrated in Fig. 1. Rather than
finding explorative actions using heuristics, we propose an
autonomous system that selects maximally informative ac-
tions in a principled manner. The expected informativeness of
actions is quantified using the information-theoretic measure
of information gain.

We focus on segmenting the perceptual scene into separate
objects. Only after segmentation can the robot explore the
properties and affordances of individual objects [1, 15].
Methods for bottom-up object segmentation based solely
on static images are limited by inherent ambiguities in the
observations [3, 4]. For example, two differently-colored
adjacent regions may actually be distinct parts of the same
object, or belong to different objects. In our approach, we
resolve such segmentation ambiguities by testing whether the
regions are physically connected.

The knowledge gathered by our system is used to generate
a graph-based representation of the observed scene, wherein
the edges of the graph represent the probability of pairs
of segments belonging to the same object. Our experiments
show that the proposed approach efficiently discovers which
groups of segments correspond to objects.



II. RELATED WORK

Segmentation is an important step in finding and learning
the properties and affordances of unknown objects in the
robot’s environment. Section II-A discusses how interaction
can be used to obtain such segmentations. Subsequently,
Section II-B discusses how to select maximally informative
actions. The application of informative action selection in
interactive settings is discussed in Section II-C.

A. Interactive scene segmentation

Fitzpatrick and Metta [4] did early work on using a robot’s
actions to segment visual scenes with unknown objects, by
detecting the motion resulting from sweeping the arm across
the workspace. Li and Kleeman [15] refined this method
by using short, accurate pushes in cluttered environments.
Kenney et al. [3] proposed to accumulate information over
time to increase the accuracy of the segmentation.

The methods in the previous paragraph relied on image
differencing to detect movement. Problems with this method,
e.g. handling textureless objects, were addressed by Beale
et al. [1], who started from a low-level over-segmentation
of the image. Instead of estimating for every pixel whether
it belongs to the object, object membership was estimated
per segment. If visual features on the objects can be reliable
tracked, these features can also be used to perform movement
detection in the context of interactive segmentation [8, 16].

In all of those methods, the robot used actions that were
either fixed, selected at random, or chosen by a heuristic.
For a large part, they considered scenes containing only one
object. However, if a robot has access to many possible
exploratory actions, trying them at random is not efficient.
Heuristics, on the other hand, rely on human insights and
are likely to fail in unforeseen situations.

Other segmentation methods focused on settings where the
robots held an object and used actions to segment it from the
background and learn its properties [6, 7, 12, 17, 18]. These
methods could further inspect objects after they have been
segmented and, hence, these approaches would be a good
complement to our work.

B. Selecting informative actions

Rather than using fixed actions or heuristics, the robot
should adapt to the current situation by evaluating the infor-
mativeness of different actions. For instance, in the work of
Denzler and Brown [13], the camera parameters that provide
the largest mutual information are selected. Schneider et
al. [9] proposed acquiring data with a tactile sensor at the
height expected to produce the largest reduction in entropy.
Hsiao et al. [19] minimized the expected costs of object
pose estimation by selecting an optimal n-length sequence of
actions. They found that usually a search depth of n = 1 is
already sufficient. These active perception approaches change
the perceptual parameters, but do not try to cause changes
in the environment. Furthermore, these methods are usually
applied after prior training.

C. Informed interaction
In contrast to the methods in the previous section, inter-

active perception approaches attempt to cause changes in
the environment. By observing the effects of actions, object
knowledge can be obtained without prior supervised train-
ing. This interactive approach also benefits from maximally
informative actions. For instance, Krainin et al. [5] used a
next-best-view algorithm based on information gain to select
the best viewpoint and re-grasps for in-hand object modeling.
Another way to estimate the informativeness of an action is
by comparing the current situation to similar situations in the
past, and selecting the action that was the most successful
in uncovering new object properties in those situations. This
approach was used by Katz et al. [14] to estimate the value
of actions for exploring the kinematic structure of articulated
objects using Q-learning.

In summary, informed action selection has been shown to
outperform random actions in different active and interactive
perception scenarios [9, 13, 14]. However, the discussed
approaches for selecting informative actions did not address
the problem of learning about completely novel objects. Most
of these approaches required detailed models or training data
of the objects before being able to efficiently discriminate
between them [9, 13, 19]. Other approaches needed to
already have sufficient knowledge to pick up the object [5]
or required a human-crafted, domain-specific representation
to generalize past experiences to the current situation [14].

III. OBJECT SEGMENTATION USING MAXIMALLY
INFORMATIVE INTERACTION

The approaches for object learning and segmentation
reviewed in Section II depend largely on prior training
or human domain knowledge. In contrast, we propose to
enable robots to develop such knowledge autonomously by
interacting with novel objects. As a first step towards this
goal, a robot needs to efficiently decompose the scene it
perceives into its constituent objects.

The starting point of our segmentation approach is an over-
segmentation of the visual scene into coherent segments. This
process is described in Section III-A. Subsequently, the robot
actively explores the scene to determine which segments
constitute coherent objects. Efficient exploration is accom-
plished by selecting actions that are expected to maximize
information gain. The action selection and execution methods
are described in Sections III-B to III-F. The robot observes
the resulting state of its environment as described in Section
III-G. An overview of this process is given in Fig. 2, and the
entire algorithm is summarized in Algorithm 1.

A. Finding object candidates using visual over-segmentation
As described in Section II-A, movement detection by

image differencing has several disadvantages. Therefore, our
approach uses visual over-segmentation to create segments
containing pixels close together in Euclidean and color space,
similar to the work of Beale et al. [1]. Subsequently, we
observe whether movement has occurred for each segment,
rather than for each pixel. Objects can consist of multiple



Fig. 2. Based on the results of previous actions, the action that is expected
to yield the maximum information gain is chosen. This action results in
some segments moving together, which increases the confidence that those
segments form an object.

regions, each of which is coherent in space and color. Hence,
we assume that a true segmentation of the objects in the scene
can be obtained by merging segments.

The point clouds to be segmented are obtained using an
RGBD camera mounted at the robot’s end effector, as shown
in Fig. 1. This set-up allows the robot to move the camera to
different positions. Calibration of the camera allows merging
of the point clouds and the removal of any points that do not
correspond to objects on the table in front of the robot.

To obtain an over-segmentation, points are clustered ac-
cording to six-dimensional feature vectors containing the
color in CIELAB space [20] and the location in Euclidean
space using the k-means algorithm. This is very similar to
the SLIC algorithm [21], which operates in image space
rather than on three-dimensional point clouds. Examples of
segmentations are shown in Fig. 2. Segments are tracked
over time by initializing the cluster centers in the current
time step using the centers in the previous time step, similar
to [22, 23].

B. Graph-based scene representation

We represent the over-segmented visual scene as a graph
G = (V,E) with V being the set of vertices representing
the segments and E being the set of edges connecting every
pair of vertices that belong to the same object. We consider
every graph G ∈ G, with G denoting the set of all graphs
corresponding to partitionings of the set of all segments. For
every pair of vertices (i, j), we define gij = 1 if the vertices
belong to the same object ({i, j} ∈ E), and zero otherwise.

If a segment is pushed, all segments belonging to the same
object as the pushed segment should move as well. The
segments observed to move at time step t are represented
by ot, with otj = [ot]j = 1 if vertex j was observed as
moving, and zero otherwise.

When two segments are moving synchronously, the con-

fidence that they belong to the same object increases. On
the other hand, when only one of the segments moves, the
confidence that they belong to different objects increases.
The degree of confidence depends on the pushed vertex
v. The data gathered about the edge between vertices i
and j, up to time step t, will be denoted by Dt

ij =�
nt
ij N t

ij mt
ij M t

ij

�
with nt

ij the number of times both
vertices moved out of the N t

ij times that one of those vertices
was pushed, and mt

ij the number of times both vertices
moved out of the M t

ij times at least one of them moved
but neither was pushed.

C. Finding informative actions for exploration
We want to find out which pairs of segments belong to the

same objects, using as few actions as possible. Therefore,
we want to find the vertex v to be pushed at time t that
maximizes the expected information gain, that is given by
the Kullback-Leibler divergence

KL(P�Q) =
�

i

P (i) ln
P (i)

Q(i)

between the conditional distribution over graphs after the
push p(G|Dt+1) and before the push p(G|Dt).

In order to evaluate the expected information gain of every
push, the probability distribution of a scene structure given
observation data p(G|Dt) needs to be calculated. According
to Bayes’ rule, and assuming independence of observations
given gij , the conditional probability p(G|Dt) is proportional
to the joint probability

p(G,Dt) = p(G)
�

i;j>i

p(Dt
ij |gij), (1)

where the product is over all pairs of vertices (i, j) with
j > i. The probability p(oi = 1|oj = 1) depends on whether
i and j are part of the same object, i.e. gij = 1, and whether
j was pushed. As these probabilies are not known, we need
to estimate the parameter vectors

θh =

�
θh,0
θh,1

�
=

�
p(oi = 1|j = v, oj = 1, gij = h)
p(oi = 1|j �= v, oj = 1, gij = h)

�
, (2)

for h ∈ {0, 1} together with the conditional distribution
over G. The parameters are re-estimated after every action,
according to the observed results. The estimate of the pa-
rameters Θ at time step t will be denoted by Θt.

Conditioning on the parameters, and assuming observa-
tions are independent over time, (1) can be written as

p(G|Dt,Θt) ∝ p(G,Dt|Θt)

= p(G)
�

i;j>i

p(Dt
ij |gij = h,θt

h)

∝ p(G)
�

i;j>i

Bin(nij |Nij , θh,0)Bin(mij |Mij , θh,1), (3)

where Bin(n|N, p) is the probability mass according to the
binomial distribution. Equation (3) is used to evaluate the
distribution over graphs G given the data available before
and after a potential action. These distributions are then used



to calculate the expected gain in information due to pushing
vertex v

Eot+1

�
KL(p(G|Dt,ot+1,Θt)�p(G|Dt,Θt))|Dt, v,Θt

�

= I(G;ot+1|Dt, v,Θt).

To evaluate this expectation over all possible observations
ot+1, we need to compute

p(ot+1|Dt, v,Θt)

=
�

G∈Gp(o
t+1|G, v,Θt)p(G|Dt,Θt), (4)

where we assume that ot+1 is conditionally independent of
Dt given G, and G is independent of the selected action v.
Assuming that movement of vertex j is conditionally inde-
pendent on the movement of other vertexes and graph edges
given pushed vertex v and gjv , the conditional distribution

p(ot+1 = 1|G, v,Θt)

=
�

jp(o
t+1
j = 1|gjv = k, v,Θt) =

�
jθk,0.

D. Estimating the model parameters

The unknown parameters Θ that represent the probability
of observing different events can be estimated together with
G using expectation-maximization, by considering G to be
a latent variable. Expectation-maximization is an iterative
technique for finding maximum likelihood solutions in the
presence of hidden variables.

Starting from an initial setting of the parameters Θ0, the
algorithm iterates expectation and maximization steps. In
an expectation step, the conditional probability P (G|D,Θ)
is calculated, which is used to calculate a lower bound
Q(Θ|Θk) on the log-likelihood function. Q(Θ|Θk) expresses
the expected log-likelihood of parameters Θ conditioned on
the parameters in the previous iteration Θk, with Θk con-
sidered fixed. A maximization step then selects parameters
Θk+1 that maximize this expectation. As all variables in this
section refer to the variables at the current time step t, time
indexes are omitted for clarity.

Assuming observations are conditionally independent
given graph G, and assuming p(G) is independent of pa-
rameters Θ, the joint likelihood

p(G,D|Θ) =
�

i;j>ip(Dij |G,Θ)p(G).

Hence, the lower bound of the expected log-likelihood

Q(Θ|Θk) =
�

G∈G
p(G|D,Θk) log(p(G,D|Θ))

=
�

G∈G
p(G|D,Θk) log




�

i;j>i

p(Dij |G,Θ)p(G)





=
�

G∈G
p(G|D,Θk)

�

i;j>i

log(p(Dij |G,Θ)p(G)).

In the maximization steps, the lower bound on the log-
likelihood function is to be maximized to get the parameter

Algorithm 1 Maximally informative interaction algorithm.
1: t ← 0
2: loop

3: estimate Θt and P (G|D)
4: v∗ ← argmax

v
I(G; ot+1|Dt, v,Θt)

5: execute action v∗

6: t ← t+ 1
7: observe movement ot

8: end loop

(a) Scene observation (b) Action execution (c) Effect observation

Fig. 3. Before every action, the robot observes from different view-
points (a). The observations so far are used to predict the action with the
highest information gain. The robot executes the selected action (b), thereby
changing the state of its environment. The resulting change is observed (c)
and the robot is ready to choose its next action.

values for the next iteration Θk+1 = argmax
Θ

Q(Θ|Θk).

Analytically solving ∇ΘQ(Θ|Θk) = 0 yields

θk+1
h,0 =

�

i;j>i

nij

�

G∈G
p(gij = h|G)p(G|D,Θk)

�

i;j>i

Nij

�

G∈G
p(gij = h|G)p(G|D,Θk)

. (5)

For the second element of the parameter vectors θk+1
h,1 (h ∈

{0, 1}) the result is similar, but uses mij and Mij instead
of nij and Nij , respectively. The estimate of the prior P (G)
should be updated according to its parametrization.

E. Approximating the information gain
The number of partitions grows at a rate greater than ex-

ponentially in the number of vertices. Hence, the evaluation
of sums over all G becomes intractable for high numbers of
vertices. However, the expectation of the information gain
can be approximated by assuming that

P (G) =
�

i;j>i

P (gij).

In this case, the expected information gain can be evaluated
in polynomial time.

Under this assumption, the Kullback-Leibler divergence
between the probability distributions over the graphs before
and after a push becomes a sum of the Kullback-Leibler
divergences of individual edges. The number of possible
observations that we have to take the expectation over
also grows faster than exponentially. However, under the
assumption of edge independence, we can sample from this
distribution in order to efficiently approximate the expectated
information gain numerically.



The assumption of edge independence also allows efficient
estimation of parameters Θ together with latent variables gij
using expectation-maximization, as explained in Section III-
D. In this case, the parameters are Θ = {θ0,θ1,π} with θ0

and θ1 as defined in (2) and the prior probabilities specified
by πh = P (gij = h) for h ∈ {0, 1}.

The sums in (5) calculate p(gij = h|D,Θk). Still assum-
ing the vertex connections gij are independent, an approxi-
mation can be calculated in closed form as

p̃(gij = h|Dij ,Θk)

∝ πh

�

i;j>i

Bin(nij |Nij ,θh,0)Bin(mij |Mij ,θh,1).

This approximation is inserted in (5) to estimate the param-
eters θ0 and θ1. By solving ∇πQ(Θ|Θk) = 0, we obtain

π0 = (1− π1) =
�

i;j>i

p(gij = 1|D,Θk)/|E|,

with |E| being the number of edges. This approximate
inference algorithm has a time complexity cubic in the
number of vertices.

F. Action selection and execution
Once the expected information gain of pushing each action

is evaluated, the segment that is expected to yield the highest
one-step information gain when pushed is selected. A one-
step look-ahead is commonly used [5, 9, 13], and Hsiao et
al. [19] found that, in their framework, one-step lookahead
is usually sufficient.

If the expected information gain for multiple actions is
equal, as it is at the beginning of learning, the segment
to be pushed is selected at random. The robot pushes the
center of the selected segment in a direction correspond-
ing to a projection of the segment’s normal in the table
plane. Infeasible or dangerous actions, e.g., pushes outside
the workspace, are not executed. Instead, the next most
informative action is selected. Algorithm 1 summarizes our
approach to maximally informative interaction.

G. Observing the effect of the action
After an action has been executed, the resulting scene is

observed. Similar to the original observation, the new scene
is over-segmented using the methods described in Section
III-A. In order to track segments over different observations,
the segment centers are initialized using the previous segment
centers, as suggested by Heisele et al. [22, 23].

After clustering, the locations of the new segment centers
are compared to the locations of the corresponding old
segment centers. Any centers that had a displacement larger
than a predefined threshold are considered to have moved as
a result of the action.

IV. EXPERIMENTS

Our approach was evaluated on a robot platform together
with a system for uninformed action selection for compari-
son. This section will first describe the experimental set-up
and subsequently present our results and a discussion thereof.

Fig. 4. The matrices show, for every pair of segments, the system’s estimate
of the probability that they belong to the same object. Results after 5, 10,
and 15 actions are shown. The segments have been re-ordered according to
the object they belong to. Ideally, this matrix would be a block diagonal.

A. Experimental set-up

The platform used for evaluation is a Mitsubishi PA-10
robot arm. Mounted on this arm are a force-torque sensor, an
RGBD camera and a rod for pushing the objects, as shown
in Fig. 1. In front of the robot is a table supporting the
objects to be segmented. The camera is calibrated such that
point clouds can be transformed to the robot’s coordinate
system. In this manner, point clouds corresponding to differ-
ent viewpoints of the same scene can be merged. Observing
from different view points avoids changing the segmentation
too much when the object is pushed. Furthermore, parts of
the point clouds that do not correspond to the objects in the
robot’s workspace can be automatically removed.

The force-torque sensor enables the robot to detect col-
lisions, so that it can operate safely without human su-
pervision. Hence, experiments can be run in an entirely
autonomous manner.

This experimental set-up is shown in Fig. 3. It illustrates
how the robot observes its environment and subsequently
selects and executes the action that it expects to have the
highest information gain, based on its current internal rep-
resentation of the environment. This maximally informative
interaction method is described in detail in Section III. We
compare this method to an uninformed method that chooses
vertices to be pushed at random with a uniform probability.

Initially, four objects are put closely together on the table
in front of the robot. They are represented using k = 30
segments. In this set-up, selecting the most informative action
takes less than a second, a small fraction of the time needed
to push and observe the result. Both rigid and non-rigid
objects were used in the experiment. After each action, the
robot outputs its estimate of the probability that each pair
of segments belongs to the same object p(gij |D1:t,Θt) ∝
p(D1:t

ij |gij ,Θt) as given in (3). These probabilities are cal-
culated in the same manner for the informed algorithm. A
human annotation of the segments in the last frame is used
as a ground truth.

The average error between the ground truth of gij and
the estimated probability is used as performance measure.
This measure is calculated after every action. Segments to
which no points, or a large number of points from multiple
objects, have mistakenly been assigned are excluded from
this calculation. Similar initial configurations were used for
both methods.
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Fig. 5. Number of actions the robot takes in its environment plotted versus
the average error per edge for both action selection methods on a log scale.
Mean and standard error over 10 trials for each method are shown.

B. Experimental results

Each action selection systems was evaluated in ten com-
plete trial runs on a real robot. Examples of the system’s
estimation of the probability that pairs of segments belong to
the same object during one such run is shown in Fig. 4. This
figure shows the uncertainty about which vertices belong
to the same object. This uncertainty reduces as the results
of an increasing number of actions are observed. After 15
actions, the interactive system has come close to a perfect
segmentation of the four objects. Fig. 5 shows the average
error of the estimated scene structure over all ten runs.

As the extend of evaluations that can be obtained on the
robot is limited, we also evaluated the methods on 100 sim-
ulated trial runs using twice as many objects and segments.
In simulation, all vertices that are part of the pushed objects
were considered to move together, but to simulate noise, each
element of the observation vector was flipped with a 10%
probability. Results of this simulation are shown in Fig. 6.
Similar to the real robot experiments, the system needs more
random actions than maximally informative actions to reduce
the error to the same value.

The data from these simulated runs was analyzed using
a paired-sample two-tailed t-test. After performing eight
random actions, the error is significantly different from the
error after six maximally informative actions, t(99) = −2.3,
p < 0.05, with informative actions resulting in lower errors.
This difference becomes larger and more significant as the
number of executed actions increases.

C. Discussion

Regardless of the action selection method, within 15
actions the system learns about the structure of its envi-
ronment, with the error between the system’s prediction
and the true state of the world going down steadily. After
15 actions the error is still decreasing, which indicates a
better prediction could be made if the system was allowed
to perform more actions. The error seems sufficiently low for
the system to make useful predictions about interaction with
its environment, which shows that our interactive approach
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Fig. 6. Number of actions plotted versus the average error per edge. Mean
and standard error over 100 simulated trials are shown for each method.

and the chosen graphical representation were effective in this
scenario.

By representing the environment using an oversegmen-
tation of the raw sensory information, we could confine
possible exploratory behaviors to a relatively small discrete
set of actions. Because the set of actions was limited in this
case, exploring at random was not an unreasonable strategy.

Even though random action selection was a feasible strat-
egy in the current set-up, the number of actions needed to
reduce the error to a certain value was still smaller when
maximally informative actions were chosen. For instance, 16
random actions are needed to reduce the error to the value
that is obtained by performing just 13 maximally informative
actions. However, compared to the variance among trial runs,
the advantage of selecting maximally informative actions is
limited. We expect this difference to be much larger in high-
dimensional or continuous action spaces.

One reason for the large inter-trial variance is that our vi-
sion system did not always find a suitable over-segmentation
and tracking of segments sometimes failed. Another source
of variance is the unmodelled interaction between objects.
For example, sometimes objects topple over or consistently
bump into each other, while in other trials such events did
not take place. However, modelling such interactions would
be possible only after obtaining a segmentation, or with the
use of additional prior information.

It is interesting to see that the random action selection
method seems to have a small initial advantage, both on
the real robot and in simulation. This advantage could be
due to the fact that after only a few actions the estimate of
the parameters is far from the actual values due to a lack
of data. Hence, the expected value of the information gain
of possible actions will not be reliable. If the information
gain cannot be predicted reliably, this lack of knowldedge
can cause the action selection system to choose sub-optimal
actions. A possible solution to this bootstrapping problem is
to initialize the system using a few random actions.

V. CONCLUSION

In this paper, we have proposed a bottom-up approach
to object learning using interaction with the robot’s envi-



ronment. Maximally informative interaction allows robots to
efficiently develop knowledge about their environment.

Our interactive approach was applied on a real robot
to learn a decomposition of the scene into objects. This
segmentation is an important first step in learning about
objects, as it allows subsequent exploration to focus on single
objects rather than the cluttered scene.

Our experiments show that it is possible to develop this
important knowledge completely autonomously. Except for
setting up the objects in the robot’s workspace, no human
supervision at all was needed while the robot explored its
environment. This makes it feasible for the robot to learn
over longer periods of time.

Useful representations could be learned through explo-
ration using either random or maximally informative action
selection. However, these representations improved faster
when maximally informative actions were used.

We plan to use our approach to scene segmentation as
a stepping stone for learning object properties. Besides
intrinsic properties such as shape and mass, it is important for
a robot to learn which actions an object affords and how these
actions change the state of the objects in the environment.
Ideally, a robot would discover autonomously how to change
the state of its environment to a desired goal state.
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