
Balancing Safety and Exploitability in Opponent Modeling

Zhikun Wang, Abdeslam Boularias, Katharina Mülling, Jan Peters
Max Planck Institute for Intelligent Systems
Spemannstr 38, 72076 Tübingen, Germany
{firstname.lastname}@tuebingen.mpg.de

Abstract

Opponent modeling is a critical mechanism in repeated
games. It allows a player to adapt its strategy in order to bet-
ter respond to the presumed preferences of his opponents. We
introduce a new modeling technique that adaptively balances
exploitability and risk reduction. An opponent’s strategy is
modeled with a set of possible strategies that contain the ac-
tual strategy with a high probability. The algorithm is safe
as the expected payoff is above the minimax payoff with a
high probability, and can exploit the opponents’ preferences
when sufficient observations have been obtained. We apply
them to normal-form games and stochastic games with a fi-
nite number of stages. The performance of the proposed ap-
proach is first demonstrated on repeated rock-paper-scissors
games. Subsequently, the approach is evaluated in a human-
robot table-tennis setting where the robot player learns to pre-
pare to return a served ball. By modeling the human players,
the robot chooses a forehand, backhand or middle preparation
pose before they serve. The learned strategies can exploit the
opponent’s preferences, leading to a higher rate of successful
returns.

Introduction
Opponent modeling allows a player to exploit the oppo-
nents’ preferences and weaknesses in repeated games. Ap-
proaches that discard opponent modeling usually need to
make worst-case assumptions, e.g. following a minimax
strategy. Such approaches are considered safe as their ex-
pected payoff is lower-bounded by the minimax payoff.
However, they lack the ability to exploit non-competitive
or imperfect opponents in general-sum games. In contrast,
the idea of fictitious play (Brown 1951) has been exten-
sively used for sixty years. Assuming the opponents are
playing stationary strategies, fictitious play consists of mod-
eling them by the empirical probabilities of the observed ac-
tions and then optimally responding according to the model.
Using a sufficiently accurate model of a stationary opponent,
fictitious play yields a higher expected payoff than any ap-
proach without modeling. However, even when the station-
arity assumption holds, inaccurate models are inevitable for
a limited number of observations, which exposes the player
to adopting overly risky strategies.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Online learning algorithms, e.g. (Zinkevich 2003) and
(Bowling 2005), were developed to guarantee zero average
regret in the worst case. However, the opponents are usu-
ally suboptimal (Simon 1991) or not completely competitive
(e.g. in general-sum games) in many real-world situations.
A practical criterion (Powers, Shoham, and Vu 2007) is con-
cerned with learning to play optimally against stationary op-
ponents or opponents whose strategies converge to a sta-
tionary one. For example, WoLF-IGA (Bowling and Veloso
2002) and AWESOME (Conitzer and Sandholm 2007) learn
the best-response against stationary opponents, and con-
verge in self-plays. However, these algorithms may adapt
to unsafe counter-strategies due to inaccurate estimates of
the opponents’ strategies. To address the safety issue in op-
ponent modeling, Markovitch and Reger (2005) proposed
to infer a weakness model instead of estimating the precise
model. McCracken and Bowling (2004) proposed an ε-safe
learning algorithm that chooses the best counter-strategy
from a safe set of strategies. Strategies of the corresponding
set do not lose more than ε in the worst case. In more recent
work, Johanson (2009) proposed robust learners by consid-
ering restricted Nash responses and data-biased responses
for imperfect information games.

In this paper, we propose a different approach to mod-
eling an opponent’s strategy with a set of possible strate-
gies that contains the actual strategy with a high probabil-
ity. For simplicity, we limit the discussion in this paper to
the two-player games. Nevertheless, the modeling technique
can be extended to multi-player games. Given a parameter
δ that controls the safety-exploitability trade-off, a station-
ary opponent’s strategy is modeled with a set of possible
strategies that contains the actual one with probability no
less than 1− δ. These possible strategies are chosen accord-
ing to their consistency with the observations. We propose
an algorithm that provides a counter-strategy with a lower-
bound above the minimax payoff with probability no less
than 1− δ. Such a strategy is said to be δ-safe, where δ is a
parameter indicating the trade-off between the safety and the
exploitability. The model of possible strategies shrinks along
with the increased number of observations, and converges to
the actual opponent’s strategy. Therefore, the algorithm en-
sures the convergence of the counter-strategy to the actual
best-response.

Unfortunately, the stationarity assumption is often unreal-

istic. A more reasonable assumption is local stationarity, i.e.,
the opponent’s strategy is assumed to be stationary within a
number of consecutive repetitions. A statistical hypothesis
tests is used to detect significant changes in the opponent’s
strategy, so that the algorithm can efficiently adapt to them.
Given a sequence of consecutive observations that are likely
to be drawn from a locally stationary strategy, the proposed
algorithm computes a locally δ-safe counter-strategy.

The proposed modeling technique allows a table-tennis
playing robot to improve its response to balls served by hu-
man opponents. The used robot setting (Muelling, Kober,
and Peters 2010) has three possible high-level actions, i.e.
setting to either a forehand, backhand, or middle preparation
pose while the opponent serves. Each action has a relatively
high success rate when the ball is served to its corresponding
region. However, the robot is limited in its acceleration, re-
sulting in low success rate for incoming balls far away from
the preparation pose. Assuming that the opponent uses a sta-
tionary strategy, this algorithm generates counter-strategies
such that the robot is more likely to successfully return the
served ball. We use the low-level planner to evaluate the ex-
pected success rate of the learned strategies.

Strategy Learning in Normal-Form Games
The two participants are indicated by player i and player j,
and the algorithm plays on behalf of player i. A repeated
game consists of several repetitions of a base game. Such a
base game can either be a normal-form game or a stochastic
game. A normal-form game is represented by reward matri-
ces for both participants, among which the reward matrix
for player i is denoted by R. In each game, two players
choose their own actions ai, aj independently from action
spaces Ai,Aj respectively. The reward for player i is given
by Rai,aj depending on their joint action.

For normal-form games, the strategies are probability dis-
tributions over all possible actions ai and aj , which we
denote by πi(ai) ∈ ∆|Ai| and πj(aj) ∈ ∆|Aj |, where
|Ai|, |Aj | are the size of Ai,Aj , and ∆n is the n-simplex
set {π ∈ Rn|πT 1 = 1 and π � 0}. Consider the case when
player i has played the game N times and observed the op-
ponent’s actions {akj |k = 1 . . . N}. Assuming the actual op-
ponent’s strategy π∗j is stationary during theseN repetitions,
the goal of the player is to learn a best-response strategy πi
against the opponent’s possible strategies.

Fictitious play uses the empirical distribution π̃j(aj) =
Naj/N to model the opponent, where Naj is the num-
ber of times action aj was observed. Given the oppo-
nent’s model, player i wants to learn a best-response strat-
egy that maximizes its expected payoff. In normal-form
games, the expected payoff for strategies πi and πj is
computed as πTi Rπj . When the model is a single esti-
mate π̃j , the best-response strategy is given by BR(π̃j) =
arg maxπi

πTi Rπ̃j . It tends to always take the same action,
which can be unsafe when the opponent’s model is not suf-
ficiently precise.

To ensure the safety of the learned counter-strategy, we
propose an δ-safe technique for modeling the opponent with
a set of possible strategies instead of a single estimate. Fur-

thermore, we compute the generalized best-response strat-
egy against the proposed opponent’s model, resulting in a
δ-safe counter-strategy.

δ-Safe Opponent Modeling
Assume π∗j is the true opponent’s strategy, according to
which the opponent’s actions are drawn, and denote by
π̃j the empirical distribution. According to Theorem 5 in
(Seldin and Tishby 2010), the Kullback-Leibler (KL) diver-
gence between π̃j and π∗j is bounded by the following in-
equality with probability no less than 1− δ,

KL(π̃j ||π∗j) ≤ ε(δ) ,
(|Aj | − 1) ln(N + 1)− ln(δ)

N
.

The opponent’s possible strategies are selected by their
distance to the empirically observed behavior, where the KL
divergence serves as the natural measure of distance between
probability distributions. Hence, the model of the opponent
is given by

Ω(δ) , {πj ∈ ∆|Aj ||KL(π̃j ||πj) ≤ ε(δ)}.

The true opponent’s strategy π∗j lies in the set Ω(δ) with
probability no less than 1− δ.

In practice, the algorithms is not very sensitive to the
choice of the parameter if δ ≤ 0.5. We set δ = C/(N + 1),
where C ≤ 1 is a constant, so that the algorithm has an
upper-bound on its regret.

δ-Safe Strategy Learning
With probability no less than 1−δ, the true opponent’s strat-
egy is inside Ω(δ). However, the player has no further infor-
mation to choose the real opponent’s strategy among all pos-
sible strategies in this set. To learn a safe counter-strategy,
we generalize the best-response strategy to be the counter-
strategy that has the maximal expected payoff in the worst
case. This problem can be formulated as:

BR(Ω(δ)) , arg max
πi∈∆|Ai|

min
πj∈Ω(δ)

πTi Rπj . (1)

Finding the best-response solution in Problem (1) is a con-
vex optimization problem that can be solved efficiently us-
ing sub-gradient methods. When the opponent’s model con-
tains the true strategy π∗j , the expected payoff of the best-
response strategy has a lower-bound above the minimax pay-
off. Therefore, the learned strategy is safe with probability
no less than 1− δ.

The resulting counter-strategy eventually converges to
BR(π∗j) if the opponent’s strategy converges to a station-
ary strategy π∗j . As the number of observations increases in-
finitely, the bound ε on the KL divergence converges to zero.
For an infinite amount of data, the set of possible opponent’s
strategies shrinks to only one element which is the empiri-
cal estimate π̃j , and the empirical distribution π̃j converges
to π∗j . As a result, the counter-strategy will eventually con-
verge to the best-response against π∗j .

The learned counter-strategy also converges sufficiently
fast to the best-response against a stationary opponent. We
now assume that the opponent uses a stationary strategy π∗j

and the game has been played t times. The regret is given
by the difference of expected payoffs between the learned
strategy and the best-response. As shown in the appendix,
the expected regret for the next game is upper-bounded as
E[rt] ≤ 4β

√
2ε+ δτ , where β and τ are constants and ε =

(|Aj | ln(t + 1) − lnC)/t. Thus, the expected accumulated
regret in the first T games is upper-bounded as

RT =

T∑
t=1

E[rt] ≤
T∑
t=1

(
const1

√
ln(t+ 1)/t+ const2/t

)
.

As the partial sums of harmonic series have logarithmic
growth rate and the partial sums of the series

√
ln t/t have

growth rate of O(
√
T lnT), the accumulated regret bound

has a growth rate of O(
√
T lnT). Therefore, the algorithm

has zero average regret and converges fast.

Adaptive Strategy Update
Given N observed actions from consecutive games, the
learned strategy is δ-safe only if these actions are sampled
from the same strategy π∗j . However, the opponent may also
update its strategy during the games. Therefore, an adaptive
learning algorithm is required to deal with the changes in
the opponent’s strategy and learn against locally stationary
strategies.

We propose an algorithm that keeps accumulating obser-
vations and improves the counter-strategy when the oppo-
nent’s strategy is locally stationary. It also detects changes
in the strategy of the opponent and recomputes the counter-
strategy accordingly. The proposed algorithm, as outlined in
Algorithm 1, maintains two sets of samples: a set X that con-
tains observed actions for learning a counter-strategy, and a
set Y that serves as a validation set to test if the strategy has
changed. The algorithm is online so that the strategy πi can
be updated while the opponent is also adjusting its strategy
against πi.

In step 12 of the algorithm, we test the hypothesis that
the probability of executing action aj is the same in local
strategies that generated the sample set X and the validation
set Y. The sampled actions are converted into binary vari-
ables indicating if they are equal to aj . Then, the empirical
mean of these binary variables is tested with the hypotheses:
H0 : pX(aj) = pY (aj), vs. H1 : pX(aj) 6= pY (aj).

Let µ = (p̃X(aj)+ p̃Y (aj)/(|X|+ |Y|), and σ2 = µ(1−
µ). With large sample sets X and Y, the statistic

z0 =
p̃X(aj)− p̃Y (aj)

σ
√

1/|X|+ 1/|Y|

is approximately normally distributed, where p̃X(aj) and
p̃Y (aj) are empirical probabilities of action aj in X and Y.
The test of H0 fails if |z0| > zα/2, where α is the signifi-
cance level of the test.

Extension to Finite Stage Stochastic Games
For stochastic games, we only consider those with a finite
number of stages, which can be represented by a tree struc-
ture of states s ∈ S. The game starts from an initial state

1 X := ∅.;
2 Initialize πi to be the minimax strategy;
3 repeat
4 while |X| < Nmin do
5 Draw an action ai from the current

strategy πi;
6 Observe a new sample aj ;
7 X := X ∪ {aj};
8 Update πi by solving Problem (1);
9 end

10 repeat
11 Get Nmin new samples as Y;
12 Perform two-sample tests for each action

aj in X and Y ;
13 if all the tests were passed then
14 X := X ∪Y;
15 Update πi by solving Problem (1);
16 end
17 until test failed or game is over;
18 X := ∅;
19 Reset πi to be the minimax strategy;
20 until the game is over.;
Algorithm 1: Adaptive algorithm for learning
counter-strategies in normal-form games.

s0 at stage 1. At each state s, the players choose their ac-
tions asi and asj from action spaces Asi and Asj respectively.
Let Child(s) denote the set of states that possibly follow
after the state s. The game transfers to a subsequent state
sk ∈ Child(s) with probability Ps(sk|asi , asj) based on the
joint action, and the player i receives an immediate reward
Rs
asi ,a

s
j
. The game terminates when a leaf state sl is reached,

and the global reward for player i is the sum of all rewards
that it obtained in all stages. For stochastic games, a strategy
consists of local strategies at every state.

The strategy learning algorithm can be extended to re-
peated stochastic games with a finite number of stages. Here,
the same opponent modeling technique is used at every
state. We model the opponent’s strategy at state s by the set
Ωs(δ) , {πsj ∈ ∆|A

s
j ||KL(π̃sj ||πsj) ≤ ε(δ,Ns)}, where the

function ε(δ,Ns) = ((|Asj |−1) ln(Ns+1)− ln(δ/|S|))/Ns
depends on Ns, i.e. the number of observations available at
state s.

A different model of the opponent is used at every state.
The counter-strategy is recursively computed, starting with
the states of the last stage. At a state in the last stage, only
the immediate reward is considered. Therefore, learning the
counter-strategy is the same as in normal-form games, re-
sulting in a δ-safe estimate of expected payoff at this state.
The estimated payoff is back propagated to the previous
stage as a lower-bound of the future expected reward. Hence,
the reward at the previous stage is given by the sum of the
immediate reward and the estimated future reward. Then, the
counter-strategy at the previous stage is learned with the up-
dated reward matrices. The counter-strategies at every state

(a) The payoff matrix in rock-
paper-scissors games.

Rock Paper Scissor
Rock 0 -1 1
Paper 1 0 -1

Scissor -1 1 0

(b) The empirical reward matrix
for the table-tennis playing robot.

Right Left Middle
Forehand 0.6506 0.0648 0.5222
Backhand 0.0449 0.3889 0.1222

Middle 0.4103 0.5648 0.7444

Table 1: Reward matrices for the rock-paper-scissors game
and the table-tennis playing robot setting.

of each stage are obtained by traversing the state tree in a
bottom-up order.

An on-policy learning algorithm is used for updating the
strategy. Unlike in normal-form games, stochastic games re-
quire the exploration of the entire state space in order to find
the best-response counter-strategy. If the strategy πsi at the
state s has zero probability for an action asi , some subse-
quent states may not be reachable. Therefore, we propose
to use smoothed strategies with an exploration parameter
ξ ∈ [0, 1] such that π̄si (a

s
j) = (1 − ξ)πsi (a

s
j) + ξ/|Asj |,

to ensure sufficient exploration.

Evaluation
We first evaluate our algorithms in rock-paper-scissors
games. Then we apply it to a table-tennis playing robot in
order to improve the performance of returning served balls.

Repeated Rock-Paper-Scissors
Rock-paper-scissors is a zero-sum normal-form game. The
reward matrix for player i is defined in Table 1(a). We rep-
resent strategies πi and πj by vectors with elements cor-
responding to the probabilities of taking rock, paper and
scissor respectively. The minimax strategy in the game is to
draw actions uniformly, i.e. πi = [1/3, 1/3, 1/3]. If player
i follows this uniform strategy, its expected reward is zero
regardless of what the opponent’s strategy is.

First, we evaluate the opponent modeling technique by
playing against a stationary opponent’s strategy π∗j =
[0.6, 0.2, 0.2]. The performance of the algorithm is tested on
samples ranging exponentially from 1 to 108 observations.
For each sample size, the experiment is repeated 20 times.
The plot in Figure 1 show the estimated expected reward and
true expected reward. The true reward is the expected reward
when the learned strategy plays against the true opponent’s
strategy. It is lower-bounded by the estimated reward with
probability no less than 1− δ, which is the expected reward
when the learned strategy plays against the worst-case oppo-
nent’s strategy in the model. The reward gradually converges
to the optimal reward, showing that the algorithm can exploit
the opponent with sufficient observed data.

Then we evaluate the change detection mechanism in Al-
gorithm 1. The game has three thousand repetitions, where
the opponent uses a stationary strategy [0.8, 0.1, 0.1] for
the first thousand actions and changes to another stationary
strategy [0.1, 0.1, 0.8] for the remaining two thousand ac-
tions. After the first thousand repetitions, the learned strat-
egy πi tends to take paper more frequently than other ac-
tions. Therefore, the sudden switch of the opponent’s strat-
egy causes a significant drop of the true expected reward. As

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

Number of samples

R
ew

ar
d

optimal reward
minimax reward
delta−safe estimated expected reward
true expected reward

Figure 1: With a stationary opponent’s strategy, the expected
reward grows with the increasing number of samples, and
converges to the optimal reward. The error bars show the
maximal and minimal reward in 20 repeated tests.

0 500 1000 1500 2000 2500 3000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Number of samples

R
ew

ar
d

optimal reward
minimax reward
reward without change detection
reward with change detection

Figure 2: Comparison of true reward by algorithms with or
without change detection. The algorithm with change detec-
tion can adapt to strategy switch more efficiently. The step
curve is caused by the minimal sample size Nmin = 256.

si a
s0
i a

s0
j π

si
j si a

s0
i a

s0
j π

si
j

s1 R R 1/3,1/3,1/3 s2 R P 1/5,3/5,1/5
s3 R S 2/5,2/5,1/5 s4 P R 1/5,2/5,2/5
s5 P P 1/3,1/3,1/3 s6 P S 1/5,1/5,3/5
s7 S R 3/5,1/5,1/5 s8 S P 2/5,1/5,2/5
s9 S S 1/3,1/3,1/3

Table 2: The local-strategies for the designed opponent. (i)
It tends to avoid taking the previous action if it lost the first
stage. (ii) It prefers to take the previous action if it won the
first stage. (iii) It draws actions uniformly if the first stage
was a tie game.

displayed in Figure 2, the algorithm shows its efficiency in
adjusting to such situations.

Two-Stage Rock-Paper-Scissors
Considering that human players change their strategies
based on previous games in practice, we use a two-stage
form of the regular rock-paper-scissors as an example of
stochastic games with a finite number of stages, We assign
a reward matrix in Stage 2 that is twice as much as it is in
Stage 1. The game states can be represented by a two-level
tree of states. The root state s0 corresponds to a regular rock-
paper-scissors game at Stage 1, and the game transfers to
one of nine following states according to the executed joint
action.

We design an opponent with a stationary strategy [0.6,
0.2, 0.2] in the first stage. Its preferences in Stage 2 are
shown in detail in Table 2, as well as the conditions for trans-
ferring to a subsequent state si.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.2

0.4

0.6

0.8

Number of repetitions

R
ew

ar
d

globally optimal reward
minimax reward
estimated expected reward
true expected reward

Figure 3: In two-stage rock-paper-scissors games, both the
estimated expected reward and true expected reward con-
verge to the globally optimal reward.

(a) forehand pose (b) middle pose (c) backhand pose

Figure 4: Three pre-defined preparation poses. They are op-
timized for hitting points in different regions.

The performance of the learning algorithm is evaluated
by its expected reward. As shown in Figure 3, it converges
to the globally optimal reward.

Returning Served Table-Tennis Balls
The proposed modeling technique is used to learn strategies
which allow a table-tennis playing robot to improve its re-
sponse to balls served by human opponents. The used table-
tennis robot has three possible high-level actions, namely,
choosing the forehand, backhand or middle preparation pose
before the opponent serves. Each action has a relatively high
success rate when the ball is served to its corresponding re-
gion (Figure 4). However, the robot is limited in its velocity
and acceleration, hence, it has a low success rate if the served
ball is far from the chosen preparation pose. This algorithm
allows generating strategies such that the robot would be
more likely to successfully return the balls. We could use
the low-level planner to evaluate the learned strategies.

The robot chooses its preparation pose while the opponent
serves. Therefore, they take actions independently. We can
consider the problem as a repeated two-player game. The
empirical reward matrix for the robot can be computed as
the success rates for every joint action. The success rates
are estimated by the low-level planner with 600 recorded
served ball trajectories from different human players. As
shown in Table 1(b), we roughly know how well a robot’s
action can return balls in those three regions. According to
this reward matrix, the minimax play follows the strategy
of [0.2088, 0, 0.7912], whose elements correspond to choos-
ing the forehand, backhand and middle pose respectively. It
assumes a competitive opponent and prefers to choose the
middle position. However, it is not the optimal strategy if
an opponent tends to serve the ball to the right region more
frequently.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Number of games

A
ve

ra
ge

 e
xp

ec
te

d
re

w
ar

d

AER of pure strategy 1
AER of pure strategy 3
AER of learned strategy

Figure 5: The curves show the average expected reward. The
pure strategy 1 is to always prepare at the forehand position.
The pure strategy 3 is to always rest at the middle position,
which is the optimal strategy.

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of games

A
ve

ra
ge

 e
xp

ec
te

d
re

w
ar

d

AER of pure strategy 1
AER of pure strategy 3
AER of learned strategy

Figure 6: The curves show the average expected reward. The
pure strategy 1 is the optimal counter-strategy.

We recruited three volunteers to repeatedly serve the ball.
The experiment with each volunteer consists in over one
hundred trials. For each trial, the low-level planer provides
three binary outputs, indicating whether a high-level action
can successfully return the served ball according to its tra-
jectory. The learned stochastic strategy at each trial is evalu-
ated by the expected reward, i.e., the success rate. To analyze
the performance of the algorithms, we show the curve of its
Average Expected Reward (AER), which is the sum of its
expected reward divided by the number of trials.

The first volunteer served the balls with approximately a
uniform distribution over the three regions. Therefore, pure
strategy 3, which always takes action 3, leads to the maximal
average expected reward. The results are shown in Figure 5.
Our δ-safe strategies are slightly worse than the pure strat-
egy 3 in the beginning as it starts from playing the minimax
strategy, yet quickly converge to the optimal strategy.

The second volunteer had a significant preference to serve
the balls to the right region. According to the results in Fig-
ure 6, the learned strategies follow the minimax strategy at
first, as there are not enough observations. With the accumu-
lation of observations, it moves gradually towards pure strat-
egy 1 that only takes action 1, which is the optimal counter-
strategy against this opponent.

The third volunteer started with a strategy that prefers
to serve the ball to the middle/right side, and intentionally
switched his strategy after around 85 trials to preferring the
middle/left side. Pure strategies 1 and 3 are respectively the
optimal counter-strategy before and after the switch. We
compare the Algorithm 1 to its simplified version without
change detection in this case. As shown in Figure 7, both al-

0 20 40 60 80 100 120 140 160
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of games

A
ve

ra
ge

 e
xp

ec
te

d
re

w
ar

d

pure strategy 1
pure strategy 3
learned strategy without change detection
learned strategy with change detection

Figure 7: The algorithm with change detection outperforms
other strategies against the volunteer 3.

gorithms have decreased performance right after the switch
happens. As the two-sample test failed after playing one
hundred trials, the proposed algorithm successfully detected
the strategy switch and adapted to it by re-initializing to the
minimax strategy. Therefore, it outperforms other strategies
after the switch happens, and results in the best average ex-
pected reward for all trials.

The algorithm can run efficiently in real table-tennis
games. We use the projected sub-gradient method to find
the optimal counter-strategy in each repetition of the game,
which is initialized with the counter-strategy used in the pre-
vious game. In the table-tennis problem, the algorithm takes
less than 50ms on average to compute a response for each
serve.

Conclusions
We introduced a new opponent modeling technique, which
models the opponent by a set of strategies whose KL di-
vergence from the empirical distribution is bounded. Based
on it, we proposed δ-safe algorithms for both normal-form
games and stochastic games with a finite number of stages.
The algorithms learn strategies whose expected reward has
a lower-bound of minimax payoff with probability no less
than 1 − δ. We showed that the learned strategies are con-
verging to the best-response strategy and have zero average
regret. We also employ two-sample tests to deal with locally
stationary opponents. We evaluated the performance of our
algorithms in rock-paper-scissors games and a table-tennis
playing robot setting. The experimental results show that the
proposed algorithms can balance safety and exploitability in
opponent modeling, and adapt to changes in the opponent’s
strategy.

Acknowledgement
The authors would like to thank Yevgeny Seldin for valuable
discussions.

Derivation of Expected Regret Bound
The expected regret for the game t+1 is E[rt] = π∗Ti Rπ∗j−
πtTi Rπ∗j , where π∗i is the best-response against π∗j . There
are two situations.
(1): When π∗j /∈ Ω(δ),

rt ≤ τ , max
ai,aj

Rai,aj − min
ai,aj

Rai,aj .

(2): When π∗j ∈ Ω(δ), ‖π∗
j − πt

j‖1 ≤ ‖πt
j − π̃t

j‖1 + ‖π∗
j −

π̃t
j‖1 ≤

√
2KL(π̃t

j ||πj) +
√

2KL(π̃t
j ||π∗

j) ≤ 2
√
2ε, where π̃tj

is the empirical distribution obtained during those t games.
E[rt] = π∗Ti Rπ∗j−πtTi Rπ∗j . As πti is a best-response strat-
egy against πtj , π

tT
i Rπtj ≥ π∗Ti Rπtj .

E[rt] = π∗Ti Rπ∗j − πtTi Rπtj + πtTi Rπtj − πtTi Rπ∗j

≤ (π∗Ti Rπ∗j − π∗Ti Rπtj)

+ (πtTi Rπtj − πtTi Rπ∗j)

= π∗Ti R(π∗j − πtj) + πtTi R(πtj − π∗j)

≤
(
max{|π∗Ti R|}+ max{|πtTi R|}

)
‖πtj − π∗j‖1

≤ 4β
√

2ε,

where β , maxai,aj Rai,aj .
Since the situation (2) happens with probability no less

than 1− δ and it has lower expected regret than the situation
(1), the expected regret is bounded as E[rt] ≤ 4β

√
2ε+ δτ .

References
Bowling, M., and Veloso, M. 2002. Multiagent learn-
ing using a variable learning rate. Artificial Intelligence
136(2):215–250.
Bowling, M. 2005. Convergence and no-regret in multia-
gent learning. In Advances in neural information processing
systems 17, 209.
Brown, G. 1951. Iterative solution of games by ficti-
tious play. Activity analysis of production and allocation
13(1):374–376.
Conitzer, V., and Sandholm, T. 2007. AWESOME: A gen-
eral multiagent learning algorithm that converges in self-
play and learns a best response against stationary opponents.
Machine Learning 67(1):23–43.
Johanson, M., and Bowling, M. 2009. Data biased robust
counter strategies. In Proceedings of the Twelfth Interna-
tional Conference on Artificial Intelligence and Statistics.
Markovitch, S., and Reger, R. 2005. Learning and exploiting
relative weaknesses of opponent agents. Autonomous Agents
and Multi-Agent Systems 10(2):103–130.
McCracken, P., and Bowling, M. 2004. Safe strategies for
agent modelling in games. In AAAI Fall Symposium on Ar-
tificial Multi-agent Learning, 103–110.
Muelling, K.; Kober, J.; and Peters, J. 2010. A Biomimetic
Approach to Robot Table Tennis. In Proceedings of IROS.
Powers, R.; Shoham, Y.; and Vu, T. 2007. A general criterion
and an algorithmic framework for learning in multi-agent
systems. Machine Learning 67(1):45–76.
Seldin, Y., and Tishby, N. 2010. PAC-Bayesian Analysis
of Co-clustering and Beyond. Journal of Machine Learning
Research 11:3595–3646.
Simon, H. 1991. Bounded rationality and organizational
learning. Organization science 2(1):125–134.
Zinkevich, M. 2003. Online convex programming and gen-
eralized infinitesimal gradient ascent. In Proceedings of the
International Conference on Machine Learning.

