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Abstract— Playing table tennis is a difficult task for robots,
especially due to their limitations of acceleration. A key bottle-
neck is the amount of time needed to reach the desired hitting
position and velocity of the racket for returning the incoming
ball. Here, it often does not suffice to simply extrapolate
the ball’s trajectory after the opponent returns it but more
information is needed. Humans are able to predict the ball’s
trajectory based on the opponent’s moves and, thus, have a
considerable advantage. Hence, we propose to incorporate an
anticipation system into robot table tennis players, which en-
ables the robot to react earlier while the opponent is performing
the striking movement. Based on visual observation of the
opponent’s racket movement, the robot can predict the aim of
the opponent and adjust its movement generation accordingly.
The policies for deciding how and when to react are obtained
by reinforcement learning. We conduct experiments with an
existing robot player to show that the learned reaction policy
can significantly improve the performance of the overall system.

I. INTRODUCTION

Playing table tennis is a challenging task, particularly
for robots. The reasons vary from the robot’s deficiencies
in perceiving the environment to the hardware limitations
that restrict the action planning. Hence, robot table tennis
has been used by many groups as a benchmark task for
high-speed vision [1], [4], fast movement generation [3],
[11], learning [9], [10] and many other subproblems in
robotics. For example, a recent approach [11] allowed a
Barrett WAMTM robot arm to successfully return 85% of
the balls served to a specific region by a ball launcher, but
its success rate would have degenerated by an enlargement
of the region of incoming balls. This problem also occurs
to other robot table tennis players that generate the hitting
plan without considering the moves of the opponent. Despite
that the robot is faster and more precise than a human being,
even a beginner player would have the upper hand simply by
choosing regions which the robot cannot reach in time if it
bases its actions only on the trajectory of the incoming ball.

A major cause of failure is the robot’s limitation of
acceleration, which severely restricts its movement abilities.
As a result, not every movement can reach the desired virtual
hitting state [11], i.e., the position, orientation and velocity
for the racket at a certain time, and return the ball to the
opponent’s court. This limitation can best be illustrated using
typical human table tennis movements [13], which consist of
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(a) Awaiting Stage (b) Preparation Stage

(c) Hitting Stage (d) Finishing Stage

Fig. 1. The four stages of a typical table tennis ball rally are shown with
the red curve representing the ball trajectories. Blue trajectories depict the
typical racket’s movements of players.

four stages, as shown in Figure 1. In the awaiting stage, the
ball moves towards the opponent and is returned back. The
player moves to the awaiting pose and stays during this stage.
The preparation stage starts when the ball passes the net.
The arm swings backwards to a preparation pose. A virtual
hitting state is produced at the beginning of the hitting stage.
The racket moves towards this hitting state and hits the ball at
the end of the hitting stage. It follows through in the finishing
stage and recovers to the awaiting pose. The duration of
the hitting stage is constant for expert players and lasts
approximately 80ms. Even against a slower opponent, which
allows less than 300ms for the robot’s hitting movement, this
short time often does not suffice for the racket to reach the
hitting state from the preparation position. Therefore, many
desired hitting movements are not feasible.

In general, the path between the preparation position and
the hitting position influences the chances of successfully
returning the ball. Therefore, it is essential to adjust the
preparation position based on all available information in
order to increase the success probability. This idea coincides
with the insight that skilled table tennis players rely heavily
on good anticipation. In this context, anticipation [2] in
striking sports is the abilities to predict the opponent’s
intention from incomplete cues, and to react based on it.
The player maps partial movement of the opponent to a
potential target to which the opponent plans to return the
ball. Therefore, anticipation allows the robot to prepare better
for the incoming ball by adjusting the preparation position
before it can extrapolate the ball’s trajectory. Humans can be
trained to obtain the proficiency in tracking the opponent’s
movement, exploiting prior knowledge to predict the target,
and reacting accordingly at the right time. This insight opens
the question of whether such perception, prediction and



reaction can also be learned and utilized in robotics.
In this paper, we build an anticipation system for robot

table tennis players, which allows the robot to decide a
preferable preparation pose before the opponent finishes the
stroke and, thus, better respond to the incoming ball. We
formulate the anticipation process of choosing the optimal
preparation pose and time to react as a Markov decision
process (MDP) in Section II. The decision making relies
on the approaches to perception of the environment and
prediction of the opponent’s intention, which are presented
in Section III. Subsequently, we incorporate the anticipation
system into an existing robot table tennis setup and evaluate
the performance in Section IV. Experimental results show
that the learned policies can significantly improve the per-
formance of this robot player.

II. LEARNING REACTION POLICIES

The essence of the anticipation process is decision making
based on perception and prediction, of which two funda-
mental issues have to be addressed for the robot table
tennis setup. First, the uncertainties in the prediction and
the outcome need to be considered. Given an observed
partial opponent’s movement, the aim of the opponent can
often be predicted. However, this predicted target is subject
to uncertainty arising from several sources: the noise in
the perception, the lack of adequate prior knowledge for
prediction, and the fact that the opponent may still change
the target before the racket hits the ball. Furthermore, even
if the target is fully revealed, the outcome, i.e., success of
returning the ball to the opponent’s court, is not deterministic
as the underlying dynamics of the robot arm are often
too complicated to be modeled precisely at high speed.
Therefore, the decision making algorithm should be able to
deal with the uncertainties from these sources.

The second fundamental issue is the time-accuracy trade-
off. Due to the incremental observations, the prediction
accuracy increases while the opponent’s racket is moving
towards the ball. Hence, there arises a trade-off between
prediction accuracy and the time left for the system to
respond to the predicted target, e.g., to move the arm from
the awaiting pose to the desired preparation pose, as both
influence the success probability of the taken action. Also
note that once the reaction is triggered, the moving from
the awaiting pose to the preparation pose is no longer trivial
and the robot can hardly change the preparation pose again.
Hence, it is essential to obtain a policy that triggers the best
reaction at the right time.

Modeling the problem of how and when to react as a MDP,
we learn the optimal policy by reinforcement learning. The
uncertainties are naturally encoded in the stochastic transition
of the model, and the reaction timing is decided by following
the optimal policy. We can learn and improve the policy
from accumulated experience. We notice that the idea of
considering the optimal stopping problem as decision making
in MDPs is related to the previous work in [12].

A. Markov Decision Process Models

We formulate the process of anticipation as a stochastic
MDP. The stochastic transition takes the uncertainties of
the prediction and the outcome into account. Choosing the
optimal reaction time can be transformed into an optimal
stopping problem in a stochastic process. The decision that
adjusts the preparation position or keeps waiting is made by
maximizing the expected future reward it leads to, i.e., the
probability of successfully returning the ball in this case.

Specifically, we want to maximize the future expected
reward with respect to a policy π: J(π) = E[

∑T
t=1 rt].

The environment states st with time indices t = 1 . . . T
are obtained by the perception and prediction mechanisms
with high frequency. At every time step t, the system is in
a state st ∈ S and can take an action at ∈ A in accordance
to the policy π, i.e, at = π(st). The rewards are given by
rt = R(st,at) and switching between states is governed by
the transition probabilities P as st+1 ∼ P(st+1|st,at). As
the objective function shows, we can view this problem as a
finite horizon, episodic MDP.

For our problem, we define the state s ∈ S =
Rn
⋃
{s0, s1} by a set that consists of a continuous n-

dimensional space plus two terminal states corresponding to
failure and success of returning. The n-dimensional space
combines all relevant aspects of the environment, e.g., the
state of the ball, the state of the robot arm, and the prediction
of the target with associated uncertainty.

In each state, the system has to decide whether to wait
for more information or to trigger the reaction and move the
robot towards a preparation pose. The action a ∈ A ⊂ R3

corresponds to the offset to adjust the racket position from
the awaiting position. Taking the action a = 0 means to
stay and wait. The system transfers to a new state with an
unknown transition model P , determined by the changes
of environment until more information of perception and
prediction is available. Once there is a non-zero action a,
the reaction is triggered and cannot be changed due to the
accumulating momentum. Therefore, the process transits to
a terminal state indicating whether the striking motion was
successful. The reward rt is only non-zero in those two
terminal states, being -1 and 1, respectively.

B. Policy Learning with Function Approximation

An explorative stochastic policy π(a|s) stands for the
probability of choosing action a in state s. We can define
the state-action value function Qπ(s,a) of a policy π as

Qπ(s,a) = R(s,a)+∫
s′∈S
P(s′|s,a)

∫
a′∈A

π(a′|s′)Qπ(s′,a′)da′ds′,

which measures the expected future reward when taking
action a in state s and following the policy π thereafter.
In the terminal states, the values of the Q functions are
Qπ(s0,a) = −1 and Qπ(s1,a) = 1 for all a.

The optimal deterministic policy π∗ chooses the action
that maximizes the value of its corresponding Q function,



Algorithm 1: The LSPI algorithm iteratively up-
dates the approximation parameters and the opti-
mal policy.

Input : previously obtained samples D
Output: the approximation parameters w

the corresponding policy π
1 w′ = 0;
2 repeat
3 w = w′;
4 π(s) = argmaxa φ(s,a)

Tw;
5 Estimate Ã and b̃ according to Eq. (1), (2);
6 w′ = Ã

−1
b̃;

7 until w ≈ w′;

i.e., π∗(s) = argmaxaQ
π∗(s,a). The value function of π∗

can be written as

Qπ
∗
(s,a) =

∫
s′∈S
P(s′|s,a)

(
max
a′∈A

Qπ
∗
(s′,a′)

)
ds′.

Given the transition model P , the optimal policy can be
obtained by iteratively updating first the Q value function
then the policy. In practice, integration with respect to the
transition probabilities is replaced by sampling. As the above
MDPs have continuous state and action spaces, we employ a
linear function approximation architecture to make the policy
learning and decision making tractable.

We approximate the Q function using a function ap-
proximator that is linear in its basis functions, given by
Q̂π(s,a;w) = φ(s,a)Tw, where φ(s,a) consists of basis
functions φ1(s,a) . . . φk(s,a). To take the two terminal
states into account, we include two specific feature functions
φ1(s,a) = I(s = s0) and φ2(s,a) = I(s = s1) that indicate
whether the current state is a terminal state.

The approximation parameters w are learned with the
Least-Squares Policy Iteration (LSPI) algorithm [7]. Given
the finite set of samples D = {(si,ai, ri, s′i)|i = 1, . . . , L},
the estimates

Ã =
1

L

L∑
l=1

φ(si,ai)(φ(si,ai)− φ(s′i, π(s
′
i)))

T , (1)

b̃ =
1

L

L∑
l=1

φ(si,ai)ri, (2)

are used to iteratively update first the approximation pa-
rameters w then the corresponding policy π. As shown
in Algorithm 1, LSPI can deal with both continuous and
discrete state and action spaces.

The LSPI algorithm learns the policy offline. However,
the environment, especially the opponent’s behavior may be
changing from time to time. As the recent samples are very
helpful for making decisions in next plays, it is better to up-
date the policy on-the-fly. Additionally, the learned optimal
policy is biased by sample distribution. Therefore, learning
the global optimal policy demands sufficient exploration.

Algorithm 2: The online LSTD-Q algorithm
learns the policy with sufficient exploration.

Input : previously obtained samples D
1 Initialize w, π, Ã and b̃ by Algorithm 1;
2 foreach encountered state s do
3 Take action a = π(s);
4 Randomly change a with probability ε;
5 Observe new state s′ and reward r;
6 D ← D

⋃
{(s,a, r, s′};

7 a′ = argmaxa′ φ(s
′,a′)Tw;

8 Ã← Ã+ φ(s,a)(φ(s,a)− φ(s′,a′))T ;
9 b̃← b̃+ φ(s,a)r;

10 w← Ã
−1

b̃;
11 π(s) = argmaxa φ(s,a)

Tw;

We apply a modified LSTD-Q [7] learning algorithm to
make decisions and update the policy, as show in Algo-
rithm 2. It takes actions according to the current policy,
and ensures exploration with the ε-greedy strategy. The
value function and the corresponding policy are continually
updated with observed transition and rewards. The learned
policy by LSTD-Q converges slowly to the optimal policy
given samples D as it only performs one iteration. In order
to compute the optimal policy more efficiently, we execute
the LSPI algorithm offline to iteratively update the policy.

III. PERCEPTION AND PREDICTION FOR
ROBOT TABLE TENNIS

The decision making needs the perception of the envi-
ronment and the prediction of the opponent’s target. We
develop a vision system1 to perceive the environment’s state
with high frequency. Besides the table tennis ball’s state,
the system tracks the opponent’s racket as its orientation
and movement direction provide strong indication of the
opponent’s intention. Based on the information we obtained,
Gaussian process regression (GPR) predicts the opponent’s
target utilizing a knowledge base that contains previous
experiences.

A. The Vision System

To track the opponent’s racket, the vision system employs
three Prosilica GE640C cameras mounted above the robot.
Their position and direction are chosen so that the opponent
can always be seen from every camera and, hence, the racket
surface is fully visible from at least two cameras. These
cameras are synchronized and calibrated to the coordinate
system of the robot. Each camera outputs a stream of frames
with frequency of 60Hz, ensuring the possibility of real-
time racket tracking. We divide the tracking problem into
localizing the racket in each camera and reconstructing its
3D configuration from camera pairs. These problems are both
solved in parallel on a multi-core computer.

1As it is the first step towards good anticipation, only visual information
is used but later we hope to also make use of auditory information.



For each camera, we use linear-chain Condition Random
Fields (CRF) [16] for treating the problem of tracking the
racket in a sequence of frames. In the frame It indexed by
time step t, we compute the most likely racket configuration
θt represented by a sub-window with fixed size. We also
include the shift of configurations in consecutive frames
in the model as the speed of the racket is constrained by
the physical motor limits of a human. The joint conditional
probability of configurations given N frames is given by

P (θ1...N |I1...N ) =

1

Z(I1...N )
exp

{
N∑
t=1

αT f(θt, It) +

N∑
t=2

βTg(θt−1,θt)

}
,

where Z(I1...N ) is the partition function, vector g(θt−1,θt)
measures the differences of the image coordinates between
two consecutive configurations, vector f(θt, It) represents
the features of a configuration, and α and β are correspond-
ing parameters in the CRF model. We use the local color
histogram in the configuration as the features f , with the
HSV space quantized into one hundred bins2.

From ten labeled shots of the racket movements, the
parameters α and β are learned by maximizing the likelihood
of the labeled configurations. Subsequently, the tracking at
time t is to find the configuration with the maximal marginal
probability P (θt|I1...t), which can be decomposed as

P (θt|I1...t) ∝

exp
(
αT f(θt, It)

)∑
θt−1

P (θt−1|I1...t−1) exp
(
βT g(θt−1,θt)

) .

As the features are a histogram, we can obtain αT f(θt, It)
efficiently for all θt using fast convolution. The second
factor can be approximately estimated by only considering
θt−1 whose distance from θt is bounded by a constant.
Therefore, fast convolution is also applicable. As a result, we
can efficiently compute the marginal probability P (θt|I1...t).

From the parameters α, we can derive a score for every
color. We highlight the shape of the racket by removing all
pixels whose scores are below a fixed threshold. An example
is shown in Figure 2. Note that the racket may not always
be detected correctly, especially when its surface’s normal
vector is perpendicular to the camera direction, resulting in
an incorrect configuration. However, it is still visible from the
other two cameras. Hence, the configuration can be corrected
in the 3D reconstruction stage, as shown in Figure 2.

We reconstruct the racket’s 3D configuration from matched
points for every camera pair where the racket is visible.
The racket surface has no texture, rendering the matching
of the keypoints difficult. Consider that the projection of the
racket on an epipolar line [6] forms a line segment. The
camera pairs have approximately horizontal epipolar lines.
Therefore, for a pair of epipolar lines, we match the left
most points with a score higher than the threshold, and the

2We group all pixels in 1000 captured images into 100 clusters by k-
means, and quantize the HSV space by nearest neighbor mapping.

Fig. 2. The images show the cropped scenes from the cameras of the
vision system together with the reconstructed racket surface. We highlight
the pixels on the racket surface whose scores are higher than the threshold
by the red color. Green dots are matched points from a pair of cameras.
Although the racket is not detected in the middle image due to the viewing
angle, it can be recovered from the other cameras.

right most points as well. Those pairs of matched points are
converted into a set of 3D points.

Although noise is inevitable, we expect that the majority
of the matched points are correct and, hence, will be on
the same plane. We apply RANSAC [5] to robustly estimate
the normal vector of the racket surface, and concurrently
eliminate outlier points. The procedure can be performed
in parallel, with different hypotheses evaluated on different
cores. The green dots in Figure 2 correspond to all matched
points, from which we can recover the surface of the racket.
The surface is projected into the 2D images. Therefore, we
can detect and repair the incorrect configuration in a single
camera.

In conclusion, we obtain a pipeline that robustly tracks the
racket’s position and orientation with frequency of 60Hz.
Together with a real-time ball tracking system [8], the
robot can perceive the state of the ball and the opponent’s
racket, which yield the information needed for prediction and
decision making.

B. Target Prediction

The visual observations provide imperfect and incomplete
information that sheds light on the opponent’s intention.
The obtained data contains the position of the ball, and
the position and orientation of the opponent’s racket with
densely sampled time steps (60Hz). However, errors in the
position and orientation are inevitable, which lead to inaccu-
rate velocity estimates and erroneous acceleration estimates.
Thus, we cannot precisely determine the hitting point even if
the entire striking movement is observed. Moreover, despite
the human players’ limited acceleration, the desired target
can still be changed. Hence, we instead estimate the mean
and variance of the predicted target coordinates from the
available information before the player hits the ball.

Fig. 3. The image shows the virtual
hitting plane and the hitting point.

In the used table tennis
setup [11], the robot al-
ways chooses the hitting
point on the virtual hit-
ting plane demonstrated
in Figure 3. Therefore, the
desired target is the point
where the incoming ball’s
trajectory intersects with
the hitting plane. We pre-
dict the X and Z coor-



(a) forehand pose (b) backhand pose (c) middle pose

Fig. 5. Three pre-defined preparation poses are offered by the robot table
tennis player. They are optimized for hitting points in different regions.

dinates of the target separately. For each axis, Gaussian
process learns a non-parametric mapping from the available
information to the distribution of the predicted target. We
use the mean and the variance for future decision making.

The initial training data includes 600 opponent’s move-
ments along with the resulting hitting points. They serve
as a preliminary knowledge base, from which the Gaus-
sian process regression makes predictions. Equipped with
the fully automatic vision system, the knowledge base can
be incremented as more future plays are recorded, and
the performance of prediction can improve simultaneously.
However, the increase will result in a higher computational
complexity, hence, the time to predict grows as well. To cope
with this problem, we can adopt the local and global sparse
Gaussian process approximation [15], so that the prediction
complexity O(B2) is controlled with a budget B.

IV. EXPERIMENTS

We present the experimental results on the designed an-
ticipation system in this section.

A. Robot Table Tennis Player

We use the existing robot table tennis player [11]
to evaluate the effectiveness of the anticipation system.

Fig. 4. The image shows the visualized
environment information from the perception
system, including states of the opponent’s
racket, the ball and the robot arm.

We use the SL
framework [14],
which consists of
a real-world setup
and a sufficiently
realistic simulation.
The setup includes a
Barrett WAMTM arm
with seven degrees
of freedom that
is capable of high
speed motion. A
racket is attached to the end-effector. Table, racket and ball
are compliant with the international rules of human table
tennis. In this paper, we use the real-world setup to collect
data including opponent’s movement and ball’s trajectory,
as demonstrated in Figure 4. The evaluation is performed in
the simulated environment.

B. The Preparation Poses

The robot player offers three preparation poses that are
designed for optimizing the inverse kinematics, as shown
in Figure 5. We use these pre-defined preparation poses to

construct the radial basis functions for approximating the
action space A. We denote the pre-defined actions, i.e.,
adjusting to a preparation position, by the set A0. In any
state s, the optimal action a∗ = argmaxa Q̂

π(s,a;w) was
chosen by maximizing the approximated Q function. The
approximated Q̂ function with a specific state s can be
written in the form of

Q̂π(s,a;w) =
∑
k

wk exp

{
−‖a− ak‖2

2σ2
a

− ‖s− sk‖2

2σ2
s

}
=
∑

a′i∈A0

wi(s) exp

{
−‖a− a′i‖2

2σ2
a

}
,

where wi(s) =
∑
k:ak=a′i

wk exp{−‖s − sk‖2/(2σ2
s)}. As

the variance σa was set to be sufficiently small, the optimal
action a∗ will be very close to a pre-defined position a′i with
the maximal wi(s). Therefore, we always select actions from
the pre-defined set as their striking movements are optimized.
This simplification also reduces the decision making problem
to determining a∗ = argmaxak∈A0

Q̂π(s,ak;w).
We evaluate the performance of exclusively using a single

pre-defined preparation pose on a dataset with recorded
games from the same opponent player. The dataset is

0%
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40%

60%

80%

100%

forehand pose backhand pose middle pose

using selected data

using entire testing set

Fig. 6. The columns shows the rates
of successfully returning the ball for
the three preparation poses. The per-
formance is relatively high on the se-
lected subset whose hitting points are
in their respectively designed regions.
However, the performance on the entire
dataset is significantly reduced.

partitioned into a train-
ing set of 220 rallies and
a testing set of 172 ral-
lies. The outcome of ev-
ery play in the testing set
is estimated from five rep-
etitions in the simulated
environment. Every pre-
defined pose yields a rel-
atively high success rate
in its designated regions.
However, the overall rate
on the entire dataset is
considerably reduced due to its poor performance in the
other regions. The three poses are very different such that
switching between them is not trivial. Therefore, the player
without the anticipation system would achieve a success rate
of 53% on the testing set.
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Fig. 7. The average errors before the op-
ponent’s stroke, i.e., the distance between the
predicted target and the true hitting point on
the X-axis, are shown by the blue curve.
The green line shows the average distance
between the default (middle) preparation po-
sition and the true hitting point.

C. Target Prediction

We evaluate the
performance of
target prediction on
a larger dataset with
the recorded striking
movements from
different players,
using leave-one-out
cross validation. We
predict the hitting
point before the
opponent hits the
ball, with features
including position,



velocity and orientation of the racket and position and
velocity of the ball, which are extracted from the perceived
information up to a specific instant in time. The prediction
of the X coordinate of the target on the hitting plane is
evaluated as demonstrated in Figure 7, which shows that the
error of prediction decreases as the opponent finishes the
stroke. Hence, late reaction benefits from better prediction
due to more perceived information.

D. Reaction Policies

100150200250300350400
0.4

0.5

0.6

0.7

0.8

0.9

time (ms) before stroke

su
cc

es
s 

ra
te

 

 

using the predicted target
using the actual hitting point

Fig. 8. The probability of successfully
returning the ball drops along with the de-
creasing time for the robot to move from
the awaiting pose to the desired preparation
pose. The performance shown by the blue
curve is by choosing the preparation pose
based on the predicted target, while that in
the red curve is the optimistic estimate by
using the optimal preparation position given
the true hitting point.

However, late
reaction will reduce
the time to move
from the awaiting
pose to the desired
preparation position,
consequently leading
to lower probability of
successfully returning
the incoming ball.
Figure 8 displays
that the performance
on the testing set is
decreasing in general
while the time
for moving to the
preparation position
reduces. The curves show the probabilities of successfully
returning the ball if the robot starts moving to the desired
preparation pose after perceiving the environment at a
specific time. The results suggest that the target prediction
and choosing preparation pose accordingly can significantly
improve the probability of successfully returning the ball
from 53% to 73%, while the optimistic probability 81%
shown by the red curve is the (approximate) upper bound
that the algorithm can achieve given the existing setup.
However, the timing of deciding the desired preparation
pose can be further optimized with a learned policy that
trades off the prediction accuracy and time for moving.

For each recorded rally in the training set, we simulate the
outcome of every combination of the preparation pose and
reaction time. We apply Algorithm 1 to learn the optimal
policy. The learned policy yields the success rate of 78.5%
on the testing set, which is very close to the optimistic upper
bound. In comparison to the success rate 73% when the
reaction is solely based on prediction, the learned reaction
policy achieved a significant improvement. We also test the
learned policy on a dataset obtained with different players.
The anticipation system improves the success rate from 78%
to 82.5%. The improvement is less significant as most of the
hitting points are close to the robot and, thus, only using the
middle preparation pose already achieves a high success rate
on the dataset.

V. CONCLUSIONS AND FUTURE WORK

We presented an approach for learning anticipation poli-
cies based on perception of the environment and predic-

tion of the opponent’s prediction, which can be used for
robot table tennis players and, probably, other robot striking
sports. Based on visual observation of the opponent’s racket
movement, the robot can predict the aim of the opponent
and adjust its movement generation accordingly. An optimal
policy for deciding how and when to react is learned by
reinforcement learning. We conducted experiments with the
existing robot player to show that the learned anticipation
policy can significantly improve the performance of the
overall system.

There are also many interesting directions that we will
continue exploring. We will employ more types of sensors,
for example microphone arrays and stereo cameras, to bet-
ter perceive the environment, especially the opponent. As
more information can be obtained, the problem of high-
dimensional states arises, which requires more efficient
algorithms for learning the optimal policy. Moreover, the
anticipation mechanism can be also used in other problems
where the robot interacts with humans.
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