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Abstract—Inference of human intention may be an essential

step towards understanding human actions and is hence impor-

tant for realizing efficient human-robot interaction. In this paper,

we propose the Intention-Driven Dynamics Model (IDDM), a

latent variable model for inferring unknown human intentions.

We train the model based on observed human movements/actions.

We introduce an efficient approximate inference algorithm to

infer the human’s intention from an ongoing movement. We

verify the feasibility of the IDDM in two scenarios, i.e., target in-

ference in robot table tennis and action recognition for interactive

humanoid robots. In both tasks, the IDDM achieves substantial

improvements over state-of-the-art regression and classification.

I. INTRODUCTION

Recent advances in sensors and algorithms allow for robots
with improved perception abilities. For example, robots can
now recognize human poses in real time using depth cameras
[22], which can enhance their ability to interact with humans.
However, effective perception alone may not be sufficient for
Human-Robot Interaction (HRI), since the robot’s reactions
should depend on understanding the human’s action. An im-
portant understanding problem is inferring the others’ intention
(also referred to as goal, target, desire, plan) [23], which
humans heavily rely on, for example, in sports, games and
social activities. Humans can learn and improve the ability of
prediction by training. For example, skilled tennis players are
usually trained to possess better anticipation than amateurs.
This observation raises the question of how a robot can also
learn to infer the underlying intention from human movements.

In order to infer the intention from an ongoing movment,
we first address its inverse problem, i.e., modeling how the
movement is governed by the intention. This idea is built
upon the hypothesis that a human movement usually follows
a goal-directed policy [4, 10]. The human movement con-
sidered here is represented by a time series of observations.
This makes discrete-time dynamics models a straightforward
choice for movement modeling and intention inference. In a
robotic scenario, we often rely on high-dimensional and noisy
sensor data. However, the intrinsic dimensionality is typically
much smaller. Therefore, we seek a low-dimensional latent
representation of the relevant information in the data, and
then model how the intention governs the dynamics in this
low-dimensional state space. Jointly considering both the low-
dimensional representation and the latent dynamics leads to

(a) Robot table tennis. (b) Interactive humanoid robot

Fig. 1: Two representative HRI scenarios where intention
inference plays an important role: (a) target inference in robot
table tennis games. (b) action recognition for human-robot
interaction.

smooth trajectories in latent space with respect to the intention.
In this paper, we exploit this smoothness property and pro-

pose the Intention-Driven Dynamics Model (IDDM), in which
the dynamic in the latent states is driven by the intention of the
human action/behavior. The IDDM can simultaneously find
a good low-dimensional representation of high-dimensional
and noisy observations and describe the dynamics in the low-
dimensional latent space. Using the learned model, human
intention can be inferred from an ongoing movement. As
exact inference is not tractable in our model, we propose
an approximate inference algorithm and show that it can
efficiently infer the intention of a human partner.

To verify the feasibility of the proposed methods, we discuss
two representative scenarios where intention inference plays an
important role in human-robot interactions:

(1) Target inference in robot table tennis. We consider
human-robot table tennis games, as shown in Fig. 1a. The
robot’s hardware constraints impose strong limitations on its
flexibility. It requires sufficient time to execute a ball-hitting
plan: movement initiation to an appropriate preparation pose
is needed before the opponent returns the ball, to achieve the
required velocity for returning the ball [27]. The robot player
uses different preparation poses for forehand and backhand
hitting plans. Hence, it is necessary to choose between them
based on inference of the opponent’s target location.

(2) Action recognition for interactive humanoid robot. In
this setting, we use our technique to improve the interaction
capabilities of a NAO humanoid robot, as shown in Fig. 1b. In



x1 x2 x3 · · ·

z1 z2 z3

(a) GPDM

g

x1 x2 x3 · · ·

z1 z2 z3

(b) IDDM

Fig. 2: Graphical models of the Gaussian process dynamical
model (GPDM) and the proposed intention-driven dynamics
model (IDDM). The proposed model explicitly incorporates
the intention as an input to the transition function.

order to realize natural and compelling interactions, the robot
needs to correctly recognize the actions of its human partner.
This ability, in turn, allows it to act in a proactive manner. We
show that the IDDM has the potential to identify the intention
of action from movements in a simplified scenario.

The paper is organized as follows. We present the IDDM
and address the problem of training in Section II. In Sec-
tion III, we study efficient approximate algorithms for in-
tention inference. We verify the feasibility of the proposed
methods in the two scenarios in Section IV and V. Finally,
we provide a brief review of related work in Section VI, and
conclude in Section VII. 1

II. INTENTION-DRIVEN DYNAMICS MODEL

We propose the Intention-Driven Dynamics Model (IDDM),
which is an extension of the Gaussian Process Dynamical
Models (GPDM) [25]. The GPDM provides a nonparametric
approach to learning the transition function in the latent state
space and the measurement mapping from states to obser-
vations simultaneously. As shown in Fig. 2a, the transition
function in GPDM is only determined by the latent state.
However, in the cases considered in this paper, the underlying
intention, as an important drive of human movements, can
hardly be discovered directly from the observations or the
estimated latent states. Considering that the dynamics can be
substantially different when the actions are based on different
intentions, we propose the IDDM, the graphical model of
which is shown in Fig. 2b. The IDDM explicitly incorporates
the intention into the transition function in the latent state
space. The dynamics model is inspired by the hypothesis that
the human action is directed by the goal [4, 10]. For example,
in table tennis, the player swings the racket in order to return
the ball to the intended target.

The observations of a movement comprise a time series of
observations z1:T � [z1, . . . , zT ]. For notation simplicity and
without loss of generality, we consider that all the observations
of movements have the same length T . In the proposed
generative model, we assume that the observation zi are

1Supplementary technical details, demos and results can be found at
http://www.ias.tu-darmstadt.de/Research/ProbabilisticMovementModeling

measured from the d-dimensional state space X to the D-
dimensional observation space Z , given by

zt = Wz̃t , z̃t = h(xt) + nz,t, nz,t ∼ N (0,Σz,t) , (1)

where W = diag(w1, . . . , wD), i.e., the i-th dimension of
observations zt is the scaled i-th dimension of the outputs
z̃t with a parameter wi. The scaling parameters W allow for
dealing with raw features that are measured in different units,
such as positions and velocities. We place a Gaussian process
(GP) prior distribution on every dimension of the unknown
function h [20], which can be marginalized out during learning
and inference. A GP is fully specified by a mean function
mz(·) and a positive semidefinite covariance (kernel) function
kz(·, ·). The predictive probability of the observations zt is
given by a Gaussian distribution zt ∼ N (mz(xt),Σz(xt)) .

We consider first-order Markovian dynamics, see Fig. 2b,
which is modeled by a latent transition function f , given by

xt = f(xt−1,g) + nx,t, nx,t ∼ N (0,Σx,t) . (2)

The state at time t is determined by the latent state at time
t − 1 as well as by the intention g. We place a GP prior
GP(mx(·), kx(·, ·)) on every dimension of f and marginalize
it out. Then, the predictive distribution of the latent state
xt conditioned on xt−1 and the intention g is a Gaussian
distribution given by xt ∼ N (mx(xt−1,g),Σx(xt−1,g)).

To summarize, in the proposed IDDM, one set of GPs mod-
els the transition function in the latent space conditioned on
the intention g. A second set of GPs models the measurement
mapping from the latent states x and the observations z.

A. Covariance Functions

For simplicity, we use GP prior mean functions that are zero
everywhere, i.e., mz(·) ≡ 0 and mx(·) ≡ 0. Hence, the model
is determined by the covariance functions kz(·, ·) and kx(·, ·),
which will be motivated in the following.

The underlying dynamics of human motion are usually
nonlinear. To account for nonlinearities, we use a flexible
Gaussian tensor-product covariance function with automatic
relevance determination for the dynamics, i.e.,

kx([x,g], [x
�
,g�];α) = kx(x,x

�;α)kx(g,g
�;α) (3)

= α1 exp
�
− 1

2�x− x��2Λx
− 1

2�g − g��2Λg

�
+ α

−1
4 δxx�δgg� ,

where the shorthand notation �a�2Λ � aTΛa, the diago-
nal matrices Λx = diag(α21 , . . . ,α2d) > 0 and Λg =
diag(α31 , . . . ,α3|g|) > 0 weight the corresponding input
dimensions, α is the set of all hyperparameters, and δ is
the Kronecker delta function. When the intention g is a
discrete variable, we set the hyperparameter α3 = ∞ such
that kx(g, g�;α) ≡ δg,g� .

The covariance function for the measurement mapping from
the state space to observation space is chosen depending on
the task. For example, the GPDM in [25] uses an isotropic
Gaussian covariance function parameterized by the hyperpa-
rameters β

kz(x,x
�;β) = exp

�
−β1

2 �x− x��2
�
+ β

−1
2 δx,x� , (4)
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as intuitively the latent states that generate human poses lie
on a nonlinear manifold. Note that the hyperparameters β do
not contain the signal variance, which is parameterized by the
scaling factors W. When applying it to target prediction in
table tennis games, we use the linear kernel

kz(x,x
�;β) = xTx� + β

−1
1 δx,x� , (5)

as the observations are already low-dimensional, but subject to
substantial noise. Empirical comparisons of different covari-
ance functions for the measurement mapping, i.e., the isotropic
Gaussian in Eq. (4) and the linear covariance function in
Eq. (5), will be shown in Section IV.

B. Learning the IDDM

The proposed model can be learned from a training data set
D = {Z,g} of J movements and corresponding intentions.
Each movement Zj consists of a time series of observations
given by Zj = [zj1, . . . , z

j
T ]

T . We construct the overall
observation matrix Z by vertically concatenating observation
matrices Z1

, . . . ,ZJ , and the overall intention matrix g from
g1

, . . . ,gJ . In the robot table tennis example, one movement
corresponds to a stroke of the opponent, represented by a
time series of observed racket and ball configurations. We
assume the intention g can be obtained in the training data,
for example by post-processing the data. In the robot table
tennis example, the observed intention corresponds to the
target where the opponent returns the ball to (see Fig. 3 for
an illustration).

Similar to the work by [25], we find the maximum a

posteriori (MAP) estimate of the latent states X. Alternative
learning methods and an empirical comparison can be found
in [24, 5]. Given the model hyperparameters, the posterior
distribution of latent states X can be decomposed into the
probability of observations given states and the probability of
states given intention:

p(X|Z,g,α,β,W) ∝ p(Z|X,β,W)p(X|g,α), (6)

both obtained by the GP marginal likelihood [20].
The GP marginal probability of the observations Z given

the latent states X is given by a Gaussian distribution

p(Z|X,β,W)

= |W|M√
(2π)MD|Kz|D

exp
�
− 1

2 tr
�
K−1

z ZW2ZT
��

, (7)

where M � JT is the length of observations Z, and Kz is
the covariance matrix of X computed by the kernel function
kz(·, ·).

Given the intention g, the sequence of latent states X has
a Gaussian probability

p(X|g,α) = p(X1)p(X2:T |X1:T−1,g,α)

= p(X1)√
(2π)md|Kx|d

exp
�
− 1

2 tr
�
K−1

x X2:TX
T
2:T

��
, (8)

where Xindices is constructed by vertically concatenated state
matrices x1

indices, . . . ,x
J
indices, m � J(T − 1) is the length of

X2:T , and Kx is the covariance matrix of X1:T−1 computed

Algorithm 1: The algorithm learns the model hyperparam-
eters α,β, and W. They are obtained by maximizing the
marginal likelihood using the Monte Carlo EM algorithm.

Input : Data: D = {Z,g}
Input : Number of EM iterations: L
Output: Model hyperparameters: Θ = {α,β,W}
for l ← 1 to L do1

for i ← 1 to I do2

Initialize X by its MAP estimate ;3

Draw sample X(i) from p(X|Z,g,Θ) using4

HMC ;
Maximize 1

I

�I
i=1 p(Z,X

(i)|g,Θ) w.r.t. Θ using5

SCG;

by the kernel function kx(·, ·). We use a Gaussian prior
distribution on the initial states X1.

Based on Eqs. (7)-(8), the MAP estimate of the states is
learned by maximizing the posterior in Eq. (6). We minimize
the negative log-posterior

L(X) = D
2 log |Kz|+ 1

2 tr
�
K−1

z ZW2ZT �−M log |W|
+ d

2 log |Kx|+ 1
2 tr

�
K−1

x X2:TX
T
2:T

�
+ 1

2 tr
�
X1X

T
1

�
+ const

with respect to the states X, using the Scaled Conjugate
Gradient (SCG) method.

C. Learning Hyperparameters

A reliable approach to learning the hyperparameters
Θ = {α,β,W} is to maximize the marginal likelihood
p(Z|g,Θ) =

�
p(Z,X|g,Θ)dX, which can be achieved

approximately by using Expectation-Maximization (EM) algo-
rithm. The EM algorithm computes the posterior distribution
of states q(X) = p(X|Z,g,Θ) in the Expectation (E) step,
and updates the hyperparameters by maximizing the expected
data likelihood Eq[p(Z,X|g,Θ)] in the Maximization (M)
step. However, the posterior distribution q(X) is difficult to
achieve in IDDM. Following [25], we draw samples of the
states X(1)

, . . . ,X(I) from the posterior distribution using
Hybrid Monte Carlo (HMC) [2], and hence the data like-
lihood is estimated via Monte Carlo integration given by
Eq[p(Z,X|g,Θ)] ≈ 1

I

�I
i=1 p(Z,X

(i)|g,Θ). In the M step,
we use SCG to update the hyperparameters. In practice, we
choose the number of samples I = 100 and the number of
EM iterations L = 10. Although this procedure, as described
in Algorithm 1, is time demanding, this is not a big issue in
practice as we learn the hyperparameters off-line.

The model also depends on the hyperparameter d: the
dimensionality of the latent state space. Choosing an appro-
priate d is important. If the dimensionality is too small the
latent states cannot recover the observations and, therefore,
leads to significant prediction errors. On the other hand, a
high-dimensional state space results in redundancy and can
cause a drop in performance and computational efficiency.



Nevertheless, model selection, for example based on cross-
validation, is helpful and should be conducted before learning
and applying the model.

To summarize, the model M = {X,Θ} can be learned
from a data set D. It is used to infer the unobserved intention
of a new ongoing movement.

III. APPROXIMATE INTENTION INFERENCE

After learning the model M from the data set D, the
stationary intention g can be inferred from a sequence of
new observations z1:T at test time. In this section, we omit
the model M and the data set D for notation simplicity.
Exact inference is not tractable as the intention g is connected
to all the unobserved latent states x1:T in the graphical
model. Therefore, we use EM algorithm to find the maximum-
likelihood estimate (MLE) of the intention g∗, given by

g∗ = argmaxg p(z1:T |g) =
�

p(z1:T ,x1:T |g)dx1:T , (9)

which is obtained by maximizing the marginal likelihood with
the latent states x1:T integrated out. To find the MLE, we apply
the EM algorithm.

In the E step, we calculate the posterior distribution of the
latent states p(x1:T |z1:T ,g0) based on the current estimate of
the intention g0. This problem corresponds to the filtering and
smoothing problems in nonlinear dynamical systems. For the
GPDM and the IDDM, approximate filtering and smoothing is
necessary, using particle filtering or Gaussian approximations
for example. In [13] Particle filters (GP-PF), extended Kalman
filters (GP-EKF), and unscented Kalman filters (GP-UKF) for
approximate filtering with GPs were proposed. Assumed Den-
sity Filter (GP-ADF) for efficient GP filtering and smoothing
based on moment matching were proposed in [8, 9]. We follow
the work in [8, 9] as the approximated posterior distribution
q(x1:T ) ≈ p(x1:T |z1:T ,g0) provides credible error bars, i.e.,
it is robust to incoherent estimates. We describe our approach
to approximate filtering and smoothing in the intention-driven
dynamics model in Section III-A.

In the M step, we update the intention based on approx-
imated posterior distribution q(x1:T ) ≈ p(x1:T |z1:T ,g0), by
maximizing the expected data log-likelihood

argmax
g

Q(g|g0) = Eq [log p(x1:T ,x1:T |g)]

= Eq [log p(z1:T |x1:T )]� �� �
Qz

+Eq [log p(x1:T |g)]� �� �
Qx(g)

, (10)

where Qz is independent of the intention g and hence can be
omitted, and decomposition of Qx(g) leads to

argmax
g

Qx(g) = argmax
g

T−1�

t=1

Qt(g), (11)

where

Qt(g) =

��
q(xt,xt+1) log p(xt+1|xt,g)dxt+1dxt. (12)

This optimization problem can be solved approximately. We
present the M step in detail in Sec III-B.

A. Filtering and Smoothing in the IDDM

Given a prior distribution p(x1) and the current estimate
of g, we are interested in computing the posterior distribution
p(x1:T |z1:T ,g0).

A Gaussian approximation of the joint distribution
p(x1:T |z1:T ,g0) is computed explicitly by computing
the marginals p(xt|z1:T ,g0) and the cross-covariances
p(xt−1,xt|z1:T ,g0). These steps yield a Gaussian approxi-
mation with a block-tri-diagonal covariance matrix. For the
computations, we employ forward-backward smoothing (GP-
RTSS) in GPDM, see [9].

The computation of the joint distributions
p(xt−1,xt|z1:t−1,g0) and p(xt, zt|z1:t−1,g0) suffices
for forward-backward smoothing in the IDDM, as the
Gaussian filter/smoothing updates can be expressed solely
in terms of means and (cross-)covariances of these joint
distributions [7].

We outline the computations required for the Gaussian
approximation of p(xt−1,xt|z1:t−1,g0) using moment match-
ing; the Gaussian approximation of p(xt, zt|z1:t−1,g0) fol-
lows analogously.

We approximate the joint distribution p(xt−1,xt|z1:t−1,g0)
by the Gaussian

N
��

µx
t−1|t−1

µx
t|t−1

�
,

�
Σx

t−1|t−1 Σx
t−1,t|t−1

Σx
t,t−1|t−1 Σx

t|t−1

��
. (13)

We use the short-hand notation adb|c where a = µ denotes
the mean µ and a = Σ denotes the covariance, b denotes
the time step of interest, c denotes the time step up to which
we consider measurements, and d ∈ {x, z} denotes either the
latent space (x) or the observed space (z).

Without loss of generality, in Eq. (13), we assume that the
marginal distribution N

�
xt−1 |µx

t−1|t−1,Σ
x
t−1|t−1

�
is known

(corresponds to the filter distribution at time t−1). We compute
the remaining elements of Eq. (13) explicitly using moment-
matching.

Using iterated expectations, the a-th dimension of the mean
of the marginal p(xt|z1:t−1,g0) is

(µx
t|t−1)a = Ext−1

�
Efa [fa(xt−1,g

0)|xt−1]|g0
, z1:t−1

�
(14)

=

�
m

a
x(xt−1,g

0)p(xt−1|z1:t−1,g
0)dxt−1 ,

where we plugged in the posterior GP mean function, for the
inner expectation. Writing out the posterior mean function and
defining γa := K−1

x ya, with yai , i = 1, . . . ,M , being the
training targets of the GP with target dimension a, we obtain

(µx
t|t−1)a = q�γa , where (15)

qT =

�
kx([xt−1,g

0], X̄)p(xt−1|z1:t−1,g
0)dxt−1 . (16)

Here, X̄ denotes the set of the M GP training inputs (xij ,gj),
i = 1, . . . , N, j = 1, . . . , J . The intention gj is assumed
stationary in a single trajectory x1j , . . . , xNj . For notational
convenience we assume that all training sequences are N time
steps long.



If kx is a Gaussian kernel, we can solve the integral in
Eq. (16) analytically and obtain the vector q with entries
qi, i = 1, . . . ,M,

qi = σ
2
f |Σx

t−1|t−1Λx + I|−
1
2 exp

�
− 1

2ζ
T
i Ω

−1ζi

�
,

ζi = xi − µx
t−1|t−1 , Ω = Σx

t−1|t−1 +Λ−1
x .

The computations of the (cross-)covariances Σx
t−1,t|t−1 and

Σx
t|t−1 in Eq. (13) follow the same scheme—we have to solve

integrals of a Gaussian prior p(xt−1|z1:t−1,g0) times two
Gaussian kernels (instead of a single one for the mean, see
Eq. (16)). The computations are performed analytically but
are omitted here. We refer to [8, 9] for details.

With the Gaussian kernel as in Eq. (4), a Gaussian ap-
proximation to the second joint p(xt, zt|z1:t−1,g0) can be
computed analogously. For the linear measurement kernel in
Eq. (5), we can also solve the integration corresponding to
Eq. (16) analytically and obtain

q = β1X̄µx
t−1|t−1 . (17)

Due to space restrictions, we omit further details, but the
required computations are straightforward.

Following [7], we obtain the updates for the latent state
posteriors (filter and smoothing distributions) as

µx
t|t = µx

t|t−1 +Σxz
t|t−1(Σ

z
t|t−1)

−1(zt − µz
t|t−1) , (18)

Σx
t|t = Σx

t|t−1 −Σxz
t|t−1(Σ

z
t|t−1)

−1Σzx
t|t−1 , (19)

µx
t−1|T = µx

t−1|t−1 + Jt−1(µ
x
t|T − µx

t|t−1) , (20)

Σx
t|T = Σx

t−1|t−1 + Jt−1(Σ
x
t|T −Σx

t|t−1)J
T
t−1 , (21)

where we have

Jt−1 = Σx
t−1,t|t−1(Σ

x
t|t−1)

−1
. (22)

These smoothing updates yield the marginals of
p(x1:T |z1:T ,g0). The missing cross-covariances Σx

t−1,t|T of
p(x1:T |z1:T ,g0) that yield a block-tri-diagonal covariance
matrix are

Σx
t−1,t|T = Jt−1Σ

x
t|T , (23)

where Jt−1 is given in Eq. (22). For more technical details, we
refer to [6] and the supplementary material (see Footnote 1).

B. Maximization

With these computation, we obtain a Gaussian approxima-
tion to the posterior q(x1:T ) ≈ p(x1:T |z1:T ,g0) with a block-
tri-diagonal covariance matrix. The result

q(xt,xt+1) = N
��

µx
t|T

µx
t+1|T

�
,

�
Σx

t|T Σx
t,t+1|T

Σx
t+1,t|T Σx

t+1|T

��
(24)

is used in the M step. Here, we first consider continuous
intention variables g.

The integration in Eq. (12) can be rewritten as

Qt(g) =

��
q(xt,xt+1) log (p(xt+1|xt,g)q(xt)) dxt+1dxt

−
�

q(xt) log q(xt)dxt. (25)

Algorithm 2: The EM algorithm finds the maximum-
likelihood estimate of continuous intention g.

Input : Observations x1:T

Output: MLE of the continuous intention g
Initialize g ;1

repeat2

g0 ← g ;3

E step: approximate p(x1:T |z1:T ,g0) with q(x1:T ) by4

forward-backward smoothing (GP-RTSS) ;
M step: update g by optimizing (11) using SCG with5

J steps, based on Eq. (26) ;
until �g − g0� < � ;6

We can approximate p(xt+1|xt,g)q(xt) with a joint Gaussian
distribution using the same technique as in the E step, and
obtain q̃(xt,xt+1|g) = N (µ̃, Σ̃), as well as gradients ∂µ̃/∂g
and ∂Σ̃/∂g. As a result, the Eq. (12) can be approximated as

Qt(g) ≈ DKL(qt,t+1||q̃t,t+1) +H(qt,t+1) +H(q(xt)), (26)

with shorthand notation qt,t+1 � q(xt,xt+1) and q̃t,t+1 �
q̃(xt,xt+1|g). In Eq. (26), the entropy of a Gaussian distri-
bution and the KL divergence between two Gaussians can be
computed analytically. Therefore, we can analytically compute
the approximate value of Qt(g) in Eq. (26) and the corre-
sponding gradients with respect to the intention g. The M
step, the optimization problem in (10) and (11), is then solved
using SCG. The Algorithm 2 describes the inference algorithm
for continuous intentions g. We set the number of SCG steps
to J = 20 in experiments.

When the intention g is a discrete variable, for example the
type of action, a more efficient algorithm is to enumerate all
the possible value of g and choose the one with the maximum
approximated value (Jensen’s lower bound) of the log marginal
likelihood in Eq. (9), given by

log p(z1:T |g) ≈ H(q(x1:T )) + Eq [log p(z1:T ,x1:T |g)] , (27)

where q(x1:T ) ≈ p(x1:T |z1:T , g) is the approximated posterior
distribution given the current value of intention g.

To summarize, we proposed an efficient approximate ap-
proach to intention inference from a new movement. The
method can deal with both continuous (Algorithm 2) and
discrete (Eq. (27)) intention variables.

IV. ROBOT TABLE TENNIS

Playing table tennis is a challenging task for robots, as it
requires accurate prediction of the ball’s movement and very
fast response. Hence, robot table tennis has been used by many
groups as a benchmark task in robotics [16, 17]. Thus far, none
of the groups which have worked on robot table tennis ever got
to the levels of a young child despite having robots that could
see and move faster and more accurate than humans [17].
Likely explanations for this performance gap are (i) the human
ability to predict hitting points from opponent movements
and (ii) the robustness of human hitting movements [17]. In



Fig. 3: The robot’s hitting point is the intersection of the
coming ball’s trajectory and the virtual hitting plane 80 cm
behind the table.

this paper, we use a Barrett WAM robot arm to play table
tennis against human players. The robot’s hardware constraints
impose strong limitations on its flexibility.

The robot requires sufficient time to execute a ball-hitting
plan: to achieve the required velocity for returning the ball,
movement initiation to an appropriate preparation pose is
needed before the opponent hits the ball. The robot player uses
different preparation poses for forehand and backhand hitting
plans. Hence, it is necessary to choose between them based
on the modeling the opponent’s preference [26] and inference
of the opponent’s target location for the ball [27].

The robot perceives the ball and the opponent’s racket in
real-time, using seven Prosilica GE640C cameras [27]. These
cameras are synchronized and calibrated to the coordinate
system of the robot. The ball tracking system uses four
cameras to capture the ball on both courts of the table.
The racket tracking system provides the information of the
opponent’s racket, i.e., position and orientation. As a result,
the observation zt includes the ball’s position and velocity, and
the opponent’s racket position, velocity, and orientation before
the human plays the ball. We downsample the observations at
12Hz. Here, the position and velocity of the ball are processed
online with an extended Kalman filter. However, the same
smoothing method cannot be applied to the racket’s trajectory,
as its dynamics are unknown. Therefore, the obtained states of
the racket are subject to substantial noise and the model has
to be robust to this noise.

The robot always chooses its hitting point on a virtual
hitting plane (80 cm behind the table), as shown in Fig. 3.
We define the human’s intended target g as the intersection of
the returned ball’s trajectory with the virtual hitting plane. As
the X-coordinate (see Fig. 3) is most important for choosing
either forehand or backhand hitting plans, the intention g con-
sidered here is the X-coordinate of the hitting point. Physical
limitations of the robot restrict the X-coordinate to the range
to ±1.2 m from the robot’s base (table is 1.52 m wide).

To evaluate the performance of target prediction, we have
collected a data set with recorded stroke movements from dif-
ferent human players. The true targets were obtained from the
ball tracking system. The data set was divided into a training
set with 100 plays and a test set with 126 plays. The standard
deviation of the target coordinate in the test set is 102.2 cm. A
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Fig. 4: Mean absolute error of the ball’s target with standard
error of the mean. These errors are before the opponent has
hit the ball and only based on his movements.

straightforward approach to prediction is to learn a mapping
from the features zt to the target g. Hence, we compare our
model to Gaussian Process Regression (GPR) using a Gaussian
kernel with automatic relevance determination.

For every recorded play, we compare the performance of the
proposed IDDM intention inference and the GPR intention
(forward) prediction at 80ms, 160ms, 240ms and 320ms
before the opponent hits the ball. Note that this time-step is
only used such that the algorithms can be compared, and that
the algorithms are not aware of the hitting time of the opponent
in advance. As demonstrated in Fig. 4, the proposed model
outperforms the GPR. At 80ms before the opponent hits the
ball, the proposed model results in the mean absolute error of
31.55 cm, which achieves a 13.3% improvement over the GPR
(p-value: 0.016), whose average error is 36.4 cm. One model-
free naive intention prediction would be to always predict the
center of the intentions in the training set. This naive prediction
model causes an error of 81.9 cm. Hence, both the GPR model
and the IDDM substantially outperform naive goal prediction.

Note that the prediction is made before the opponent hits
the ball, and only used to choose between forehand and
backhand hitting plans. More fine-tuning can follow later when
the returned ball’s trajectory has been observed. Hence, a
certain amount of error is tolerable since the robot can apply
small changes to its hitting plan based on the ball’s trajectory.
However, it cannot switch between forehand and backhand
hitting plans because of torque/temporal constraints.

We perform model selection to determine the covariance
function kz , which can be either an isotropic Gaussian kernel,
see Eq. (4), or a linear covariance function, see Eq. (5). Fur-
thermore, we perform model selection to find the dimension d

of the latent states. In the experiments, the model was selected
by cross-validation on the training set. The best model under
consideration is with a linear covariance function and four

TABLE I: The mean absolute errors (in cm) of the goal
inference made 80 ms before the opponent hits the ball.

kernel d = 3 d = 4 d = 5 d = 6
linear 41.52 31.55 35.36 37.04
Gaussian 38.49 34.16 34.44 37.28



dimensional latent state space. Experiments on the test set
verified the model selection result, as shown in Table I.

Our results demonstrate that the IDDM can improve the
target prediction in robot table tennis and choose the correct
hitting plan. We have verified the model in a simulated
environment, but using data from real human movements
recorded from a human playing against another human. The
simulation shows that the robot can successfully return the ball
when given a prediction by the IDDM model. For a demo, see
Footnote 1.

V. ACTION RECOGNITION FOR INTERACTIVE ROBOTS

To realize safe and meaningful HRI, it is important that
robots can recognize the human’s action. The advent of robust,
marker-less motion capture techniques [22] has provided us
with the technology to record the full skeletal configuration of
the human during HRI. Yet, recognition of the human’s action
from this high-dimensional data set poses serious challenges.

In this paper, we show that the IDDM has the potential
to recognize the intention of action from movements in a
simplified scenario. Using a Kinect camera, we recorded the
32-dimensional skeletal configuration of a human during the
execution of a set of actions namely: crouching (C), jumping
(J), kick-high (KH), kick-low (KL), defense (D), punch-high
(PH), punch-low (PL), and turn-kick (TK). For each type of
action we collect a training set consisting of ten repetitions
and a test set of three repetitions. The system downsamples
the output of Kinect and processes three skeletal configurations
per second. The actions were performed slowly in the data set,
for example one jumping action takes about 1.5 seconds, so
that the NAO robot has sufficient time to respond.

In this task, the intention g is a discrete variable and
corresponds to the type of action. Action recognition can be
regarded as a classification problem. We compare the proposed
algorithm to Support Vector Machines (SVM) [21] and multi-
class Gaussian Process Classification (GPC) [20, 12].

The algorithms make a prediction after observing a new
skeletal configuration. The proposed IDDM uses a sliding
window of length n = 5, i.e., it recognizes actions based
on the recent n observations. We choose the IDDM with a
linear covariance function for kz and a two-dimensional state
space. The IDDM achieves the precision of 83.8%, which
outperforms SVM (77.5%) and GPC (79.4%) using the same
sliding windows. We observed that the SVM and GPC confuse
between crouching and jumping, as they are similar in the
early and late stages. In contrast, the IDDM can distinguish
crouching (C) and jumping (J) from their different dynamics,
as shown in Fig. 5. The distinction between C and J becomes
significant while the human performs the actions: The longer
the movement is observed the more evidence is used by the
IDDM.

TABLE II: Trade-off between accuracy and time complexity,
by varying the size of sliding windows n.

n 4 5 6
Time(s) 0.27 0.32 0.39

Accuracy 79.0% 83.8% 86.6%

Time 

 

Latent dimension 1 Latent dimension 2
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Fig. 5: The trajectories of the 2D latent states for two consec-
utive Jumping actions are obtained by smoothing. The error
bars represent the corresponding standard deviations. The bar
charts correspond to the likelihood of Crouching, Jumping,
Kick-High and Turn-Kick at different stages of an action.

In order to apply the IDDM to real-time action recognition,
we need to trade-off between accuracy and time complexity,
by varying the size of sliding windows. As shown in Table II,
the proposed model can yield real-time action recognition in
3Hz with a little sacrifice in accuracy. Note that this is only
a preliminary experiment to show the feasibility of IDDM in
action recognition. We will actively work on more efficient al-
gorithms and implementations. For future experimental results
and a demo, see Footnote 1.

VI. RELATED WORK

Inference of intention, or referred to in some contexts as
goal, target, desire, plan, etc., has been investigated under dif-
ferent settings. For example, an early work [18] used Hidden
Markov Models to model and predict human behavior where
different dynamics models are adopted to the corresponding
behaviors. Bayesian models were used for inferring goals from
behavior in [19], where a policy conditional on the agent’s
goal is learned to represent the behavior. Bayesian models
can also interpret the agent’s behavior and predict its behavior
in a similar environment with the learned model [3]. Inverse
Reinforcement Learning (IRL) [1] is also worth mentioning.
IRL assumes a rational agent that maximizes expected utility,
and infers the underlying utility function from its behavior. In
a recent work [10], a computational framework is proposed
to model gaze following, where GPs are used to model the
policies with actions directed by a goal.

Observation of human movement often consists of high-
dimensional features. Determining the low-dimensional latent
state space is an important issue for understanding observed
actions. Gaussian Process Latent Variable Model (GPLVM)
[15] finds the most likely latent variables by marginalizing
out the mapping function from latent to observed space. Its
extension, Gaussian Process Dynamical Models [25] can be
used to model the dynamics of human motion while simulta-
neously finding low-dimensional latent states. For example, it
can model and extrapolate the appearance of human walking.

Nonlinear dynamics models have successful applications
in robotics. For example, Dynamic Motion Primitives [11]



were used in imitation learning, parametrizing the dynamic
as differential equations to achieve robust dynamics and fast
learning. Dynamics models are also helpful in tracking, for
example, a small robotic blimp using two cameras [13], where
GP-Bayes filters were proposed for efficient filtering. In a
following work, the model is learned using GPLVM [14], so
that the latent states need not be provided for learning.

VII. DISCUSSIONS

In this paper, we proposed the intention-driven dynamics
model (IDDM). Our contributions include: (1) suggesting the
IDDM, which simultaneously finds a good low-dimensional
representation of high-dimensional and noisy observations,
and models the dynamics that are driven by the intention; (2)
introducing an approximate algorithm to efficiently infer the
human’s intention from an ongoing movement; (3) verifying
the proposed model in two human-robot interaction scenarios,
i.e., target inference in robot table tennis and action recognition
for interactive robots. In these two scenarios, we show that
modeling the intention-driven dynamics can achieve better
prediction than algorithms without modeling dynamics.

There are many interesting directions that we are actively
exploring. The model suffers somewhat from its computational
complexity. The acceleration of the inference algorithm for its
real-time application in robot table tennis can be achieved by a
more efficient implementation, e.g. using parallel computing.
Moreover, the discovery of action types without supervision
can be interesting for HRI.
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