
Chapter 1
Action Capture: A VR-based Method for
Character Animation

Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

Abstract This contribution describes a Virtual Reality (VR) based method for char-
acter animation that extends conventional motion capture by not only tracking an
actor’s movements but also his or her interactions with the objects of a virtual en-
vironment. Rather than merely replaying the actor’s movements, the idea is that
virtual characters learn to imitate the actor’s goal-directed behavior while interact-
ing with the virtual scene. Following Arbib’s equation action = movement + goal
we call this approach Action Capture. For this, the VR user’sbody movements are
analyzed and transformed into a multi-layered action representation. Behavioral ani-
mation techniques are then applied to synthesize animations which closely resemble
the demonstrated action sequences. As an advantage, captured actions can often be
naturally applied to virtual characters of different sizesand body proportions, thus
avoiding retargetting problems of motion capture.

1.1 Introduction

Motivation and Basic Idea

Supporting the analysis of the interaction between a user and a technical product in
early phases of the product’s design is an important application area for 3D com-
puter graphics and Virtual Reality (VR). Consider the problem of evaluating the
ergonomics of a virtual prototype, e.g. a car interior. One approach for analyzing
the user-friendliness of the prototype’s operation is the application of immersive
Virtual Reality (VR) where a VR user performs various operation procedures on the
prototype. An advantage of this approach is that the user interaction is highly natu-

VR and Multimedia Group
Institute of Informatics
TU Bergakademie Freiberg
http://vr.tu-freiberg.de

1

2 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

ral, as it involves the same movements as would be used on a real prototype or final
product. However, a disadvantage of the approach results from the evaluation setup
which relies on the subjective experience of a single or a fewVR users only. The
limited group of test users could be a cause that some crucialinsights are missed in
the analysis of the prototype.

In order to gain more general insights on the usability aspects of virtual pro-
totypes, ergonomic analyses nowadays often make use of virtual humans. As an
advantage, virtual humans can come in many sizes and body proportions to serve as
arbitrarily large group of test persons. Further, with virtual humans, it is possible to
repeat the simulated procedures many times. Ergonomic analyses can become much
more objective this way. However, difficulties arise from specifying life-like anima-
tions of virtual humans in desktop settings. When animating complex, articulated
3D models such as virtual humans via desktop GUIs, subtle details of human move-
ments might be missed. In consequence, the resulting ergonomic analyses might be
rendered less meaningful as compared to animations based ontracking the user’s
movements in 3D space.

Our idea is to combine the advantages of the two approaches: First, a VR user
simulates the operation of a virtual prototype using immersive VR technology, such
as 6 DOF tracking devices and data gloves. Then, by exploiting the interaction pro-
tocols of the VR user’s performance, animations of a varietyof virtual humans re-
peating the demonstrated operating procedures are generated. We call this approach
action capture. Action capture extends conventional motion capture as it not only
records an actors movements in 3D space but also his or her interactions with the
objects of a virtual environment.

Fig. 1.1 Left: A VR user interacts with the virtual prototype of a car. Right: The user actions are
repeated by a virtual character.

Challenges

The goal of action capture is to synthesize natural-lookinganimations of virtual
humans from example interactions of a Virtual Reality user.While this idea may
appear simple at first glance, its realization faces severalnon-trivial challenges:

1 Action Capture: A VR-based Method for Character Animation 3

1. Motion capture is not enough: Today, motion capture is a standard method for
generating natural looking animations in games and movie productions. How-
ever, when applying recorded motion data to virtual characters of different body
sizes, the resulting animations will be slightly differentin each case. The prob-
lem becomes particularly evident when the animation involves interactions with
virtual objects, i.e. the retargetting problem [Gle98]. Implementing action cap-
ture should instead comprise techniques for automatic animation retargetting. We
tackle this challenge by employing procedural animation techniques that enable
the virtual humans of displaying situationally adjustable, goal-directed behavior.

2. Inaccuracies of VR input devices: VR input devices such asposition trackers and
data gloves are sometimes hard to calibrate. Even when sufficiently calibrated,
the delivered sensor readings often do not perfectly match the user’s body and
hand movements. One way of coping with these slight, yet possibly troublesome
inaccuracies of VR input devices is to abstract from raw motion data and to rep-
resent actions at a higher level instead. For example, instead of resynthesizing
hand shapes during grasping from recorded joint angles directly, we first classify
hand shapes w.r.t. a grasp taxononmy and then animate the grasp from this sym-
bolic description. In doing so, we can also optimize contactconditions between
the virtual human’s hand and the virtual object.

3. Unnaturalness of the user interaction in VR: Due to the slight inaccuracies of VR
input devices and, even more important, the lack of convincing haptic feedback
in typical immersive VR settings, VR users often interact with virtual objects in
a somewhat cautious or even unnatural manner. When animatingvirtual humans,
we do not want to replicate jitters in the VR user’s movementswhile performing
operating procedures on a virtual prototype. Instead, the resulting animations
should appear natural and life-like. This challenge can be tackled e.g. by training
the system with statistical models of natural reach motionsand hand shapes.
Animation synthesis is then a mixed data- and model-driven process to ensure
that the generated animations are both goal-directed and natural-looking, quite
possibly exceeding the original interactions of the VR userin these respects.

Background: Imitation Learning

Action capture is a method for synthezing animations of virtual humans from in-
teractions of a human VR user in a virtual environment. To putthis in in slightly
different, more anthropomorphic terms: Action capture is amethod that equips vir-
tual humans with the ability toimitate1 the behavior of a VR user.

Learning by imitation is a powerful ability of humans (and higher animals),
which enables them to acquire new skills by observing actions of others. An instruc-
tive distinction between different stages of imitiative abilities during child develop-
ment is proposed by Meltzoff and coworkers (see [Mel96] and [RSM04]). After the
initial body babbling phase, the imitative abilities progress as follows:

1 According to Thorndike [Tho98] imitation is: “from an act witnessed learn to do an act.”

4 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

1. Imitation of Body Movements: The infant uses its body parts to imitate ob-
served body movements or facial acts.

2. Imitation of Actions on Objects: Later, infants learn to imitate the manipulation
of objects which are external to their body.

3. Inferring Intentions: In an even higher form of imitative learning, a demonstra-
tor’s goals and intentions are inferred from his observed behavior. In such a case,
even an unsuccessful act can be correctly imitated.

The name ’action capture’ owes to this distinction which is also expressed in
the formula of neuroscientist M. Arbib: action = movement + goal, i.e. actions are
always associated with a target object [Arb02]. Thus, whereas motion capture serves
to reproduce an actor’s body movements, action capture aimsto reproduce a VR-
user’s actions on objects in the virtual environment. The implementation of imitation
at the level of intentions could possibly be achieved by the application of Artificial
Intelligence techniques but is beyond the action capture framework presented here.

Recent years have seen a growing interest in technical implementations of im-
itation learning, mainly in the field of robotics as a method of ‘Programming by
Demonstration (PbD)’; the edited collections of Dautenhahn & Nehaniv [DN02] and
Billard & Siegwart [BS04] provide general overviews. Technical implementations
of imitation learning generally provide solutions for three subtasks (cf. [BK96]):

1. Observation: The demonstrator’s actions are observed, segmented, and ab-
stracted into suitable action primitives.

2. Representation: The actions are represented through an internal model.
3. Reproduction: Based on the internal model, the actions are adapted to the cur-

rent situation to reproduce an appropriate variant of the actions.

As VR-based instantiation of imitation learning, the technical realization of ac-
tion capture implements these subtasks, as will be described below.

Action Capture: The Basic Method

Action capture aims to take advantage of increasingly available, complete VR sys-
tems for the purpose of virtual character animation. Similar to motion capture, the
user’s movements are recorded by means of position trackersand data-gloves. How-
ever, not only the user’s movements are tracked but also his or her interactions with
scene objects. User movements and interactions are then abstracted to higher level
action representations. Each action is described in terms of an action primitive and
the scene objects involved. In the playback phase, these action sequences are repro-
duced by virtual characters using behavioral animation techniques (cf. e.g. [Tom05].
By resynthesizing complete actions on objects rather than mere movements, valid
animations can be reproduced for virtual characters of different sizes and body pro-
portions as well as in situations where the task environmentslighty differs from the
original recording situation, e.g. in the case of repositioned control elements.

1 Action Capture: A VR-based Method for Character Animation 5

Overview of this contribution

Section 1.2 presents a general framework for action captureincluding its setting
and a system architecture for its implementation. Also, we briefly describe our ap-
proach adding interaction capabilties to virtual worlds, including a method for re-
alitic virtual grasping. Section 1.3 describes techniquesfor analyzing the VR user’s
movements and manipulations of scene objects. In Section 1.4, we introduce an
XML-based format for representing action sequences extracted from user interac-
tions. Section 1.5 describes a method for generating animations of virtual characters
from action representations using behavioral animation techniques. Finally, we dis-
cuss the proposed action capture method in Section 1.6.

1.2 Action Capture Framework

Action capture is a VR-based method for recording the actions of a human VR user
and later reproducing these actions by virtual characters.For the present purposes,
with ‘actions’ we refer to manipulations of scene objects. Actions are decomposable
into action primitives which correspond to basic behaviorsof the virtual characters.

Representation

Observation Reproduction

 Raw Motion Data

 Actions

 Interaction Events Behaviors

 Motor Primitives

- Grasp Classification
- Segmentation
- Base Interaction

Recognition

Data and Knowledge Bases

Grasp
Taxonomy

Base
Interaction
Taxonomy

Interaction
Database

Annotated
Scene

PLDPM
Models

Action
Recognition

Action Reproduction

Motion Generation

Fig. 1.2 Components of a System Archtecture for Action Capture

6 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

1.2.1 Action Capture Setting

Thesettingfor action capture consists of:

• Virtual environment: which supports its interactive manipulation by a human
user. I.e. the virtual environment contains interactive objects which e.g. can be
picked up and displaced, buttons that can be pushed, knobs for turning etc.

• Human demonstrator (teacher): who performs an action or a sequence of actions
in the virtual environment. The human teacher’s actions aretypically tracked us-
ing standard VR input devices such as position trackers and data gloves although
in principle alternative methods e.g. based on visual inputare also possible.

• Virtual character (learner): who observes the teacher’s actions and learns to re-
peat them. The virtual character’s body is assumed to be similar to the teacher’s
body, i.e. humanoid. This assumption ensures a more or less straightforward
mapping of the teacher’s body parts to the virtual character’s body, thus simpli-
fying the solution to the correspondence problem. The virtual character’s body
size and proportions may however differ from the human VR user.

1.2.2 A prototypical Implementation of Action Capture

The action capture concept presented in the preceding section has been implemented
in a prototypical system. Figure 1.2 illustrates the main functional components of
the system which are:

1. Action observation and analysis: during which the teacher’s movements and in-
teractions with scene objects are tracked, segmented, and classified as action
primitives (basic interactions).

2. Action representation: Observed action primitives are combined and stored as
high-level representations of the action or action sequence. Actions are repre-
sentated in symbolic form and are thus amenable to manual postprocessing by a
human editor. Action representations may also contain style information.

3. Action reproduction: where the action’s representationis mapped to goal-directed
behaviors of the virtual character. Behaviors are responsible for calculating con-
tact conditions between the virtual character’s hand and scene objects for the
animation of object manipulaitions. They are executed by calling the lower-level
motor programs which serve to animate the virtual character.

All components in the architecture refer to several common data and knowledge
bases, including a grasp taxonomy, interaction databases,semantic object annota-
tions, statistical motion models etc. These main components of the system architec-
ture are described in more detail in the following sections.

1 Action Capture: A VR-based Method for Character Animation 7

Annotated Object Model

An important prerequisite for an Action Capture-ready Virtual Environment are ob-
jects that actions can be performed on. The kind of actions referred to here includes
amongst others 6DOF displacement (pick and place) and manipulations on control
actuators such as pushing/pulling levers, pressing buttons, turning knobs, moving
sliders, etc. This exceeds the possibilites that a purely graphical representation of
objects offers (in the sense of classical 3D models) by far. To implement the func-
tionalities of these objects, a host of functional components need to be integrated
into the VR application. Besides graphical rendering thereis a need for collision de-
tection, dynamics simulation, sound generation, etc. Eachof these functional com-
ponentes often has its own database with possibly incompatible object representa-
tions, such as scenegraph vs. flat object collections of dynamics engines.

To facilitate the design and management of virtual reality scenes and to pro-
vide a mechanism for declaration of higher-level information for scene objects, the
concept ofannotated objectshas been introduced. This XML-based representation
structure incorporates all information about types of scene objects in a common
database. Such information includes graphical model, typename, component ref-
erences, grasp affordance information, physical parameters, collision proxies, joint
definitions, etc. A central annotated objects management component handles the in-
stantiation and destruction of objects and provides each functional component of the
VR application with the information relevant to its specificfunctionality.

In addition to rigid bodies with physical properties, a system for articulated ob-
jects has been implemented. Such objects normally consist of a fixed fitting and one
or more actuator components. The actuators are attached to the fitting by joints with
varying degrees of freedom, joint constraints and with the support for discrete states.
The actuators’ behavior is fully simulated by a dynamics engine and thus reacts re-
alistically to forces exerted by the user’s virtual hand model as well as to enviroment
influences such as object-object collisions, gravity, etc.This object model forms a
solid and versatile basis for direct user interactions in realistic virtual prototyping
scenarios.

Realistic Virtual Grasping

A central functional component for VR applications involving direct manual object
manipulation is the virtual hand model of the user. It forms the bridge between the
real world and the virtual scene without which there would beno adequate way for
the user to manually interact with scene objects. The virtual hand model has several
functions to fulfill:

• Represent the real hands of the user as accurately as possible. This is done by
employing a skeletal model with bone lengths adjusted to therespective bone
lengths of the VR user’s real hands. The joint rotations of the VR user’s fin-
gers are detected with various tracking devices, e.g. Immersion Cybergloves or
A.R.T. Fingertrackers, and mapped to the joint angles of thehand model. The

8 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

wrist positions, i.e. the root positions of the hands, of theuser are tracked via
6DOF trackers and determines translation and orientation of the hand model in
the virtual environment accordingly.

• Detect collisions between the virtual hand model’s fingers and the virtual ob-
jects.For this purpose we employ collision sensors which are attached to key
locations on the bones of the virtual hand model. These sensors consist of ge-
ometrical primitives (spheres, boxes, cylinders etc.) andthus facilitate efficient
collision detection. Each sensor is assigned to a specific position on a specific
finger or palm segment. Thus, when a collision of a sensor and ascene object
occurs it is precisely clear which part of the hand model touched the object. This
provides further cues for grasp classification, c.f. section 1.3.2, and drives the
grasping heuristics. The grasping heuristics determines when an object has been
completely grasped by the user and thus is attached to the user hand movements.
The release of objects is determined similarly.

• Determine the outcome of hand-object collisions.In grasped state, the grasped
object just follows the hand motions. For all other hand-object collisions, forces
are determined based on contact points, contact normals andintersection depth
of the collision. These forces are applied to the object and allow slight manipu-
lations of objects even in ungrasped state, such as pushing,or manipulations of
the articulated control actuators.

For the description of the bone structure of the hand model weuse the Cal3D format
and a model that adheres to the HANIM standard for humanoid models. For the
description of the collision sensors and their placement onthe hand model a custom
XML formalism has been developed. Figure 1.2.2 shows a screenshot of the hand
model with sensors and an excerpt of the XML sensor definitionfile.

Fig. 1.3 left: Virtual hand model with collision sensors. right: Example sensor definition in XML.

1 Action Capture: A VR-based Method for Character Animation 9

1.3 Observation: Interaction Analysis

The analysis process of user interactions works through several levels of abstraction.
It starts with the raw data collected from the input devices tracking the user. From
this raw data atomic basic interactions are extracted by a segmentation and classifi-
cation process. Information about these basic interactions is passed on in the form
of interaction eventsto higher levels of the application, such as the action recogni-
tion component. This component detects semantically meaningful actions from the
user interactions with scene objects and represents them ina high-level description
formalism which in turn links back to the lower data layers for reference. This ac-
tion representation can be used for persistence and serves as the central interface for
exchange between the observation and the action reproduction component.

1.3.1 Motion Level

On this level, data from the various tracking hardware is collected in a continuous
fashion. In a typical scenario of the Virtual Workers project, the user is head tracked
via stereo vision goggles with markers. The arms are trackedat several key loca-
tions, such as shoulders, elbows and wrists through 6DOF-markers. And the finger
movements are tracked through either Cyberglove or opticalfingertracking systems.
From all the collected data, a virtual representation of theuser’s posture over time is
generated (currently limited to the upper body), thereforethis level of analysis can
also be referred to as themotion capturelevel.

All input devices together produce a continuous and extensive stream of hetero-
geneous data. To enable persistence and to facilitate the recording and playback pro-
cess, an interaction database module has been implemented.This database collects
all data created in the motion capture process in the form of various channels and
stores it in a central datastore. All data is explicitly assigned to its specific recording
session. These recording sessions can further be annotatedwith meta information,
such as the interacting user, the virtual scene, optional video footage, etc. This al-
lows for reproduction of individual recording sessions as well as analysis on a larger
scale, across session boundaries, such as training data collection for classification
algorithms, principal component analysis, etc.

1.3.2 Basic Interaction Level

The goal of this level is to detect a specified set of basic interactions from the con-
tinuous stream of data coming from the motion level. All basic interactions have
one specific aspect that is modified by the respective type of interaction, such as
hand-object distance, hand-object contact, forces, prehension, and object position
or orientation. Currently, the following types of basic interactions are distinguished:

10 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

• reach - The movement of the user hand towards a scene object. This can be
along a relatively straight line as well as via a complex approach trajectory. The
modified aspect is the distance between the user hand and the object and the
outcome is that the user hand is able to touch the object.

• grasp - Refers to the full prehensile enclosure of the object by theuser hand.
Grasping can happen by various different grasp types which are detected through
a classification process w.r.t. a given grasp taxonomy. The modified aspect is
the contact between the user hand and the object with the outcome that the user
firmly holds the object and is able to move it to another location, or, in the case of
actuators, manipulate the actuator components according to its degrees of free-
dom.

• touch - The same as grasp, but does not result in object prehension.Also modifies
contact between the user hand and the object with the outcomethat a light non-
prehensile contact has been established that allows, e.g.,pushing.

• release - The counterpart tograsp. Also modifies hand-object contact with the
outcome that the object is released from prehension by the user hand. It is then
again subject to other influential factors, such as gravity or reset forces.

• push - This includes any exertion of forces on the object in a non-grasped state.
The outcome of the forces depends on the nature of the object.In the case of a
freely movable rigid body it normally leads to a position change. In the case of
articulated objects it depends on the specific degrees of freedom of the actuator.
Normally it leads to a translation of the actuator componentalong one of the
actuator axes without moving its fitting. The pressing of a button would be a
classic example.

• pull - This is similar to push but requires object prehension and normally is di-
rected opposite to the shoulder-hand vector. The pulling ofa lever or the opening
of a drawer is a typical example.

• displace - Refers to the movement of the object as a whole and is thus restricted
to freely movable rigid bodies. Also requires object prehension. The modified
aspect is the object’s location and orientation in space.

• turn - This is a special case of pulling or pushing, restricted to control actuators
with rotational degrees of freedom. The modified aspect is the orientation of the
actuator component relative to its fitting.

A first step in the detection of basic interactions is the segmentation of hand
movement data. Hand trajectories are recorded and segmented when pauses in
movement occur. These pauses normally denote the end of one interaction and the
possible beginning of a new one. Another step is the reactionto collision informa-
tion from the hand sensors. Whenever a collision of a hand sensor with an annotated
object has been detected, contact has been made with the object and possibly a pre-
hensile grasp has occured. A grasp heuristics is applied to determine this, based on
which points of the hand make contact with the object. For example, contact with the
thumb and the index finger at their volar aspects are a strong indicator for a prehen-
sile grasp. When a prehensile grasp occurs, its grasp type is classified based on the
hand posture information from the tracking devices; see [HBAJ08] or [HBAWJ07]
for details on the classification process.

1 Action Capture: A VR-based Method for Character Animation 11

Further, forces are generated based on the intersection depth of the hand sensors
with the objects in direction of their contact normals. These forces can lead to ei-
ther pushes, pulls or turns, depending on the type of contactand the type of object
involved. Displacement occurs when the whole hand is moved while an object is
grasped.

Another important functionality is to make the informationabout detected ba-
sic interactions available to other components of the application in a flexible way.
For this reason, the concept ofinteraction eventshas been introduced. These events
are posted via a dispatcher/subscriber system (observer pattern). Any system com-
ponent can send interaction events to the dispatcher, e.g. when one of the basic
interactions has been detected. The dispatcher in turn passes the events on to the
registered listener components which can react accordingly based on their respec-
tive functionality. This way, senders and receivers of interaction events need not
know of each other in software engineering terms. Example functionalities for event
receivers are visualization, persistence (to file or to database) and most importantly
action recognition.

Interaction events have a type, based on the basic interaction encapsulated. In
terms of structure, interaction events consist of a type independent header and type
dependent contents. The header contains type identifier andtiming information
(timestamp and duration). The type dependent part containsdetails about the ba-
sic interactions described in the event. Agraspevent, for instance, contains hand
configuration, hand position, an identifier of the grasped object, contact points be-
tween hand and object, detected grasp type, etc. Areachevent contains the hand
motion trajectory, end position, etc. In addition to hand-related events, control actu-
ators send information about changes of their internal state. These can be of varying
degree of detail and reach from just the final state via discrete intermediate states to
a complete state history for every frame. The latter allows for an exact in-effect re-
production of the performed manipulation even when the playback component does
not have a dynamics simulation.

For persistence and to allow for manual analysis, an XML format for interaction
events has been developed. This format can be stored and retrieved to file or database
and contains all details in human-readable form. See figure 1.4 for an examplegrasp
event.

1.4 Representation of Actions

One possibility to animate a virtual human would be to use interaction events gen-
erated from raw tracking data directly as animation input. However, especially for
testing purposes it should also be possible to author an animation description quickly
with an appropriate editor, e. g. an XML editor. A basis interaction description
would not be a good choice to solve this task since it tends to become too com-
plex to be human-readable for long interaction event sequences. For this reason, an
abstraction from the interaction event level is required. We provide this abstraction

12 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

<event timestamp="9.7555" type="grasp" duration="0.92">

<low-level>

<sensor-data numsensors="22">124 116 146 93 150 175 111 151 140 125

178 105 145 89 174 87 163 114 95 85 148 61</sensor-data>

<joint-angle joint-id="r_index1">73.27 -0.04 0.99 0.06</joint-angle>

...

<joint-angle joint-id="r_thumb3">42.75 0 1 0</joint-angle>

<object-ids>cockpit_steering_wheel-1</object-ids>

<hand-transform>0.720147 -0.39539 -0.570134 0

0.616856 0.741028 0.265258 0

0.317605 -0.542716 0.77755 0

-0.228399 -0.400599 1.2676 1</hand-transform>

<hand-side>right</hand-side>

</low-level>

<high-level>

<taxonomy>Schlesinger</taxonomy>

<category>Cylindrical</category>

</high-level>

</event>

Fig. 1.4 Example XML representation of an interaction event (grasp).

in the form of an action description language. Moreover, such a language offers
the possibility to easily rework or change recorded interaction event sequences after
transforming them (automatically) into a high-level action description.

Regarding the fact that we want to automatically generate natural-looking anima-
tions from an action description, the inclusion of references to underlying interaction
event sequences should be allowed (see section 1.3). In thisway, basic interaction
data can also be used by an animation synthesis tool. However, the description must
retain the power to enable the derivation of plausible animations even if links to the
underlying interaction description layer are not included.

The specification of the action format includes different aspects such as (ma-
nipulated) objects, different action types, action composition, synchronization and
timing. The action description language is defined by an XML-Schema. In the fol-
lowing, single aspects of our action description language will be explained in more
detail.

Objects

Objects can be divided into several classes:fixed objects, movable objectsandar-
ticulated objects(e.g. control actuators). Fixed objects cannot be moved. However,
they can be touched. Movable objects can be moved arbitrarily (e.g. a ball). Artic-
ulated objects have specific movement constraints. For example, aslidable object
is an articulated object which can only be moved along one axis and has a max-
imum and a minimum position. Another special kind of an articulated object is a

1 Action Capture: A VR-based Method for Character Animation 13

so calleddiscrete state objectwhich represents an articulated object with defined
discrete states.

Properties, constraints and discrete states of objects (such as the minimum and
maximum position of a slider or theON andOFF states of a toggle button) can
be defined in annotated object documents (see section 1.2.2)which are referenced
by the corresponding objects. The XML code below shows two example object
definitions.

<MovableObject id="Hammer" annotation="hammer.xso"/>

<DiscreteStateObject id="CarRadioOnOffButton" annotation="button.xso"/>

Actions

An action describes the interaction between the user hand and a particular ob-
ject. Conceptually, an action consists of different phases: reaching (approaching
the object),graspingor touching, object manipulation(optional) andreleasingthe
object. Different action types can be distinguished:constrained move actions, un-
constrained move actionsand actions which don’t result in an object displacement
(touch actions). Some action types can be only performed using a special kind of
object. For instance, theconstrained actionsubtypeshift can be only performed
using aslidable object(a subtype of anarticulated object). Unconstrained move
actions can result in a change of the position and/or orientation of amovable object.
Specializedunconstrained moveaction types aretranslate, pick and placeandturn.
The example code below illustrates the definition of apick and placeaction.

<PickAndPlace

targetPosition="5 5 2" targetObject="Hammer"

reachDuration="0.5" interactionDuration="2"

graspType="CYLINDRICAL"/>

As mentioned, actions can be derived from a sequence of interaction events. For
instance, atouch actionsimply consists of a reach, a grasp or touch and a release
event while apick and placeaction comprises a reach and a grasp event, some
displace events and a release event.

Action Composition

Actions can be grouped together using anaction unit. An action unit contains a se-
quence of actions which are executed with a single hand or twohands cooperatively.
In order to enable an appropriate description of action units, three different kinds of
action units were predefined:right hand, left handandbimanual. The term action
unit was inspired by Kendon [Ken04] who analogously uses thetermgesture unitto
describe a sequence of gestures.

14 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

<RightHand startTime="2" relaxDuration="2">

<Touch targetObject="CarRadioOnOffButton"

reachDuration="1" interactionDuration="0.5"

graspType="TIP"/>

<Touch targetObject="CarRadioChannelSeekButton"

reachDuration="0.5" interactionDuration="1"

graspType="TIP"/>

</RightHand>

Fig. 1.5 Example XML representation of an action unit containing two consecutive actions.

Timing

Actions and action units are so calledtime containers. A time container has its own
internal relative timeline. Properties related to timing of an action unit arestart time
and relaxation duration. The start time is the point of time when the first action
of the unit starts after the unit was entered. All actions of the action unit are then
executed consecutively in the order defined in the corresponding action language
instance document. After the last action has completed, theaction unit enters the
relaxation phase. Therelaxation durationof an action unit therefore describes the
time required to return to the hand’s relaxation position.

An action has two timing related attributes:reach durationand interaction du-
ration. Thereach durationrepresents the time required to position the hand on the
target object (reaching phase). During the reaching phase the hand is also preshaped
to perform a grasp. The reaching phase has finished if a stablegrasp has been estab-
lished. The grasp type can be defined explicitly by using the action propertygrasp
kind. If no grasp type was specified, the animation player has to decide which grasp
type can be applied in order to generate a plausible animation.

Theinteraction durationis the time required for the actual hand-object-interaction
(interaction phase). To model the interaction process especially of constrained move
actions more precisely, target object states and corresponding fractions of the in-
teraction duration can be defined (e.g. moving a gear shift lever through different
gears). The interaction phase ends with releasing the object.

A right hand type action unit containing a sequence of twotouchactions is de-
scribed by the XML example code in figure 1.5.

Synchronization

Synchronization aspects in our action description language were inspired by the
Synchronized Multimedia Integration Language (SMIL [Wor08]). Several action
units can be grouped together using anaction unit composite. Like actions and ac-
tion units, action unit composites are also time containers.

There are two different types of action unit composites:parallel andsequential.
In contrast to the execution of action units contained in a sequential composite, in

1 Action Capture: A VR-based Method for Character Animation 15

a parallel composite all action units are, just as the name says, executed in parallel.
The processing of an action unit composite ends if the last (in sequential composites)
or longest action unit (in parallel composites) is completed.

1.5 Reproduction of Actions

So far, we described how interactions of a real human are analysed and how the
performed actions are stored in a XML-representation. For the intended applica-
tion, it is vital that stored actions can also be replayed by virtual humans. This calls
for animation synthesis algorithms which can generate convincing human-like ani-
mations. Synthesis algorithms need to take the environmental context into account
in which a particular action in performed. For example, if the position of a button
to be pressed has changed since recording the data, then, of course, the animation
needs to be adapted to the new position of the button. The approach for animation
synthesis in Action Capture also follows the imitation learning methodology intro-
duced earlier. Grasp shapes, kinematic configurations or trajectories recorded from
the human user are taken as input data to machine learning algorithms resulting in
statistical models of postures and motions. The learning algorithms can be trained
on-line using the data of the current user, or off-line by querying the data of vari-
ous users from the interaction database. Models are later used to control the virtual
humans by imitating the learned behavior. In the following we summarize the main
results from [BAHJV08], [BADV+08], [BAWHJ07].

1.5.1 Learning Behaviors with PLDPM

Creating a repertoire of motor skills for a virtual human is achallenging and often
labour intensive task. Modern machine learning techniquescan help to overcome
this problem. In Action Capture, machine learning is used toextract important in-
formation about kinematic synergies and constraints of thehuman body, which are
stored in a so-calledProbabilistic Low-Dimensional Posture Model(PLDPM). Fig-
ure 1.6 shows an example of PLDPM-Learning for a grasp behavior. First, data
about human grasping is acquired using an optical “fingertracking” system. The
hand poses are stored as rotations of finger joints (3 ball joints per finger, i.e. 45
degrees of freedom in total). This data is then processed by amanifold learning
technique, such as PCA, ISOMAP [TdSL00] or LLE [RS00] in order to get a low-
dimensional subspace representing the recorded grasps. Manifold learning refers to
a set of dimensionality reduction techniques that can project high-dimensional data
onto low-dimensional manifolds. This is particularly helpful when working with
human postures, due to the high number of degrees of freedom and the interdepen-
dency between joints. Each point in a low-dimensional manifold represents a human
grasp and can, hence, be projected back into the original space of joint rotations. No-

16 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

tice, that a finite set of demonstrated postures allows us to extract a continous space
with an unlimited number of possible interpolations and extrapolations. In addition
to dimensionality reduction, we need a model of the anatomical constraints of the
human hand. Such a model is needed in order to discriminate between anatomi-
cally feasible and unfeasible postures. This can be achieved by learning a Gaussian
Mixture Model (GMM) based on the projected grasps in the low-dimensional man-
ifold. The GMM estimates the probability density function of the grasps. This func-
tion can later be used to determine the probability of a graspbeing similiar to the
demonstrated grasps. Grasps that have low probability are likely to be anatomically
infeasible.

Fig. 1.6 Fingertracking data is used to learn a Probabilistic Low-Dimensional Posture Model for
grasping. The learned model can later be used to synthesize realistic grasps for arbitrary 3D objects.

Learned PLDPMs are used to synthesize character postures according to the
intended goal and by taking into account the environment. Inthe above example
PLDPMs are used for grasp optimization. The goal of grasp optimization is to find
a natural looking hand shape leading to a stable grasp on a user-provided 3D object.
This is realized by searching for a point in the lower-dimensional posture model,
which optimizes a providedgrasp metric. Various metrics and quality measures
for grasps have been proposed in the robotics literature [MF96], many of which
are based on physical properties of the object and the performed grasp. In pre-
vious research, we showed that even simple metrics can produce realistic grasps
[BAHJV08].

PLDPMs are not confined to the synthesis of postures, but can also synthesize
full animations. For this, it is important to notice, that ananimation corresponds
to a trajectory in a PLDPM. Therefore, for synthesizing animations for virtual hu-
mans, we need to specify a trajectory in a PLDPM and project each point along the
trajectory back into the original space of joint rotations.This procedure can, for in-
stance, be used to dynamically synthesize a grasping motionfor a new object. After
a realistic grasp is optimized using the technique described above, a trajectory is
created starting at the current position of the hand in the PLDPM and ending at the
optimized position. Each point along this trajectory corresponds to a hand shape at

1 Action Capture: A VR-based Method for Character Animation 17

a given time of the animation. The described approach can be used to synthesize
a variety of complex multi-joint animations from learned examples. Crucial parts
of this approach are the input data and the metric used for optimization. While the
input data is typically some kind of motion capture, the optimization metric is a
mathematical function describing the quality of a posture or animation with respect
to the intended behavior.

1.5.2 Learning Goal-Directed Trajectories

Trajectories are important tools for the animation of virtual humans. For example,
they can be used to represent the motion of the agent’s wrist position during a reach-
ing task. But how should the trajectory be changed, if the object the agent is trying to
reach is displaced? Also, can we dynamically add slight changes to the trajectories,
so they always look a little bit different and thus more lifelike ?

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6
x

new start

new target

(a) (b) (c) (d) (e)

Fig. 1.7 (a) Trajectories in global-space recorded from a human test-subject. (b) Trajectories in
local-space after coordinate system transformation. (c) A GMM islearned by fitting a set of Gaus-
sians. (d) A GMR is learned and new trajectory is synthesized (red). The synthesized trajectory is
retargeted based on the new start- and end-position.

A computationally efficient way to tackle this problem is theuse of a dynamic
coordinate system which is spanned between the hand of the virtual human and the
position of the target. The idea is based on recent behavioral and neurophysiolgi-
cal findings which suggest that humans make use of different coordinate systems
(CS) for planning and executing goal-directed behaviors, such as reaching for an
object[HS98]. Although the nature of such CS transformations is not yet fully un-
derstood, there is empirical support for the critical role of eye-centered, shoulder-
centered and hand-centered CS. These are used for transforming a sensory stimulus
into motor commands (visuomotor transformations). For retargeting we use a hand-
centered CS which is oriented towards the target object.

In Figure 1.7 we see the effect of transforming a set of global-space trajectories
into a hand-object CS. The variance which is due to differentgoal positions of the
reach motion was removed and the projected trajectories have higher similarity. The
new space can be regarded as a end-position invariant space of trajectories. Next, a
statistical model of the trajectories is learned. This is done using Gaussian Mixture

18 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

Regression (GMR). The learned GMR model can be queried for a new trajectory
having similiar shape to the training trajectories. Finally, the synthesized trajectory
can be retargeted to a new start- and end-position by applying a CS transformation
from local- to global-space.

1.5.3 Generating Animations from Actions

For animating virtual humans, we need to translate the high-level actions into mo-
tions, as can be seen in Figure 1.2. This is done by translating each action into a
sequence of behaviors from the virtual human’s repertoire of skills. In turn, each
behavior uses one or several motor primitives. Motor primitives are low-level pro-
grams, which modify the joint parameters of a virtual human.Basic behaviors in-
clude:

• turn head - Turns the head towards a given position or object.
• follow trajectory - Moves the wrist along a recorded or synthesized trajectory.
• grasp close - Grasps an object by closing the hand.
• grasp open - Opens the hand and brings it into an idle position.

In addition, secondary behaviors such as an ‘idle motion’ behavior are used, in order
to increase the believability of the virtual human. All behaviors can be combined to
create complex motions, where, for instance, the virtual human fixates the object
and opens his hand while reaching for it. Motion trajectories and hand shapes are
synthesized according to the environmental configuration.For example, if an object
to be grasped has been displaced, a new reach-trajectory is synthesized using GMR,
which takes the new position into account. Further, a new hand shape for grasping
the object is optimized using a learned PLDPM. Figure 1.8 shows the reproduc-
tion of actions under different environmental configurations. During the recording
of actions (left), a real user grasped the gear-shift, the steering wheel and later a
radio button. The action reproduction subsystem translates these actions into a set
of ‘follow trajectory’, ‘grasp open’ and ‘grasp close’ behaviors. The synthesized
animations are robust against changes in the environment. As can be seen in Figure
1.8 (right), the recorded actions can be reproduced in VR, even if the position of the
gear-shift and the body proportions of the virtual human change.

1.6 Conclusion

Action capture is a VR-based extension of motion capture that takes advantage of
interactive virtual environments: Whereas traditional motion capture just aims to
replay the body movements of an actor, action capture further aims to replicate the
actor’s interactions with the objects of a virtual environment. As an advantage, valid

1 Action Capture: A VR-based Method for Character Animation 19

Fig. 1.8 Left: A user performs several actions in a cockpit scenario. The motion is shown as a
white trajectory. Right: Recorded action files are used to animate virtual humans of different size
and body proportions. Animations are robust against changes in the virtual prototype; e.g. to the
right, the gear-shift has been repositioned. White lines indicate the trajectories of the right hand’s
wrist while interaction with several control elements in a car.

animations of interactions with scene objects are generated, even if the situation is
changed.

A potential drawback of generating virtual human animations from recorded VR
interactions results from the often overly cautious interactions in VR, e.g. due to
missing haptic feedback. This problem is addressed in two ways: (a) During anal-
ysis of the interaction, observed movements are generalized to action representa-
tions that rely e.g. on hand shape classifications during grasps instead of joint angle
recordings. And (b), during animation synthesis, pre-learnt statistical models of arm
trajectories and hand shapes are applied and adapted to the current situation. From
these models, goal-directed yet natural looking animations can be generated even if
the original movement in VR is somewhat jittery.

Recorded actions can be reproduced using virtual humans of different sizes and
body proportions. The resulting animations give us important insights about impor-
tant aspects of a virtual prototype, such as design or ergonomy. We believe that
action capture will prove particularly beneficial in virtual prototyping settings that
require the automated generation of animations for many variants of prototypes and
virtual humans.

The action capture method can be conceptualized as an application of imitation
learning. In analogy to a distinction made in developmentalpsychology between the

20 Bernhard Jung, Heni Ben Amor, Guido Heumer, and Arnd Vitzthum

the stages of movement and action imitation, action capturecan be seen as a next
stage in the synthesis of life-like character animations, accomplished by placing the
actor in an interactive VR environment.

Acknowledgements

The research described in this contribution is partially supported by the DFG
(Deutsche Forschungsgemeinschaft) in the Virtual Workersproject.

References

[Arb02] M. A. Arbib. The mirror system, imitation, and the evolution of language. In Dauten-
hahn and Nehaniv [DN02].

[BADV +08] H. Ben Amor, M. Deininger, A. Vitzthum, B. Jung, and G. Heumer.Example-based
synthesis of goal-directed motion trajectories for virtual humans. In5. Workshop
Virtuelle und Erweiterte Realität. GI-Fachgruppe VR/AR, 2008.

[BAHJV08] H. Ben Amor, G. Heumer, B. Jung, and A. Vitzthum. Grasp synthesis from low-
dimensional probabilistic grasp models.Computer Animation and Virtual Worlds, 19,
2008.

[BAWHJ07] H. Ben Amor, M. Weber, G. Heumer, and B. Jung. Coordinate system transforma-
tions for imitation of goal-directed trajectories in virtual humans. InVirtual Envi-
ronments 2007. IPT EGVE 2007. 13th Eurographics Symposium onVirtual Environ-
ments. Short Papers and Posters, 2007.

[BK96] P. Bakker and Y. Kuniyoshi. Robot see, Robot do: An Overview of Robot Imitation.
In AISB96 Workshop: Learning in Robots and Animals, pages 3–11, 1996.

[BS04] A. Billard and R. Siegwart, editors.Special Issue on Robot Learning from Demon-
stration, volume 47 ofRobotics and Autonomous Systems, 2004.

[DN02] K. Dautenhahn and C. Nehaniv, editors.Imitation in Animals and Artifacts. MIT
Press, 2002.

[Gle98] M. Gleicher. Retargetting Motion to New Characters.In SIGGRAPH’98 Conference
Proceedings, Computer Graphics Annual Conference Series, pages 33–42. ACM,
1998.

[HBAJ08] G. Heumer, H. Ben Amor, and B. Jung. Grasp recognition foruncalibrated data
gloves: A machine learning approach.Presence: Teleoperators& Virtual Environ-
ments, 17(2):121–142, 2008.

[HBAWJ07] G. Heumer, H. Ben Amor, M. Weber, and B. Jung. Grasp Recognition with Uncal-
ibrated Data Gloves - A Comparison of Classification Methods. InProceedings of
IEEE Virtual Reality Conference, VR ’07, pages 19–26, March 2007.

[HS98] H. Heuer and J. Sangals. Task-dependent mixtures of coordinate systems in visuomo-
tor transformations.Experimental Brain Research, 119(2), 1998.

[Ken04] Adam Kendon.Gesture: Visible Action as Utterance. Cambridge University Press,
October 2004.

[Mel96] A. N. Meltzoff. The Human Infant as Imitative Generalist: A 20-year Progress Report
on Infant Imitation with Implications for Comparative Psychology. InSocial Learning
in Animals: The Roots of Culture, pages 347–370, 1996.

[MF96] A. Moon and M. Farsi. Grasp Quality Measures in the Control of Dextrous Robot
Hands.Physical Modelling as a Basis for Control (Digest No: 1996/042), IEE Collo-
quium on, pages 6/1–6/4, 1996.

1 Action Capture: A VR-based Method for Character Animation 21

[RS00] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally
linear embedding.Science, 290(5500):2323–2326, December 2000.

[RSM04] R. Rao, A. P. Shon, and A. N. Meltzoff. A Bayesian Modelof Imitation in Infants
and Robots. InImitation and Social Learning in Robots, Humans and Animals: Be-
havioural, Social and Communicative Dimensions, 2004.

[TdSL00] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction.Science, 290(5500):2319–2323, December 2000.

[Tho98] E. L. Thorndike. Animal Intelligence: An Experimental Study of the Associative
Processes in Animals.Psychological Review Monographs, 8, 1898.

[Tom05] B. Tomlinson. From Linear to Interactive Animation: HowAutonomous Characters
Change the Process and Product of Animating.ACM Computers In Entertainment,
3(1), 2005.

[Wor08] World Wide Web Consortium.Synchronized Multimedia Integration Language (SMIL
3.0), 2008.

