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This article describes our open-source software for predicting the intention of a user
physically interacting with the humanoid robot iCub. Our goal is to allow the robot to infer
the intention of the human partner during collaboration, by predicting the future intended
trajectory: this capability is critical to design anticipatory behaviors that are crucial in
human–robot collaborative scenarios, such as in co-manipulation, cooperative assembly,
or transportation. We propose an approach to endow the iCub with basic capabilities of
intention recognition, based on Probabilistic Movement Primitives (ProMPs), a versatile
method for representing, generalizing, and reproducing complex motor skills. The robot
learns a set of motion primitives from several demonstrations, provided by the human via
physical interaction. During training, we model the collaborative scenario using human
demonstrations. During the reproduction of the collaborative task, we use the acquired
knowledge to recognize the intention of the human partner. Using a few early observations
of the state of the robot, we can not only infer the intention of the partner but also complete
the movement, even if the user breaks the physical interaction with the robot. We evaluate
our approach in simulation and on the real iCub. In simulation, the iCub is driven by the
user using the Geomagic Touch haptic device. In the real robot experiment, we directly
interact with the iCub by grabbing and manually guiding the robot’s arm. We realize two
experiments on the real robot: one with simple reaching trajectories, and one inspired by
collaborative object sorting. The software implementing our approach is open source and
available on the GitHub platform. In addition, we provide tutorials and videos.

Keywords: robot, prediction, intention, interaction, probabilistic models

1. INTRODUCTION

A critical ability for robots to collaborate with humans is to predict the intention of the partner.
For example, a robot could help a human fold sheets, move furniture in a room, lift heavy objects,
or place wind shields on a car frame. In all these cases, the human could begin the collaborative
movement by guiding the robot, or by leading the movement in the case that both human and robot
hold the object. It would be beneficial for the performance of the task if the robot could infer the
intention of the human as soon as possible and collaborate to complete the task without requiring
any further assistance. This scenario is particularly relevant formanufacturing (Dumora et al., 2013),
where robots could help human partners in carrying a heavy or unwieldy object, while humans could
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guide the robot without effort in executing the correct trajectory
for positioning the object at the right location.1 For example, the
human could start moving the robot’s end effector toward the goal
location and release the grasp on the robot when the robot shows
that it is capable of reaching the desired goal location without
human intervention. Service and manufacturing scenarios offer
a wide set of examples where collaborative actions can be initi-
ated by the human and finished by the robot: assembling objects
parts, sorting items in the correct bins or trays, welding, moving
objects together, etc. In all these cases, the robot should be able to
predict the goal of each action and the trajectory that the human
partner wants to do for each action. To make this prediction, the
robot should use all available information coming from sensor
readings, past experiences (prior), human imitation and previous
teaching sessions, or collaborations. Understanding andmodeling
the human behavior, exploiting all the available information, is the
key to tackle this problem (Sato et al., 1994).

To predict the human intention, the robot must identify the
current task, predict the user’s goal, and predict the trajectory
to achieve this goal. In the human–robot interaction litera-
ture, many keywords are associated with this prediction ability:
inference, goal estimation, legibility, intention recognition, and
anticipation.

Anticipation is the ability of the robot to choose the right thing
to do in a current situation (Hoffman, 2010). To achieve this goal,
the robot must predict the effect of their action, as studied with
the concept of affordances (Sahin et al., 2007; Ivaldi et al., 2014b;
Jamone et al., 2017). It also must predict the human intention,
which means estimating the partner’s goal (Wang et al., 2013;
Thill and Ziemke, 2017). Finally, it must be able to predict the
future events or states, e.g., being able to simulate the evolution
of the coupled human–robot system, as it is frequently done in
model predictive control (Ivaldi et al., 2010; Zube et al., 2016) or
in human-aware planning (Alami et al., 2006; Shah et al., 2011).

It has been posited that having legible motions (Dragan and
Srinivasa, 2013; Busch et al., 2017) helps the interacting partners
in increasing the mutual estimation of the partner’s intention,
increasing the efficiency of the collaboration.

Anticipation requires thus the ability to visualize or predict
the future desired state, e.g., where the human intends to go to.
Predicting the user intention is often formulated as predicting the
target of the human action, meaning that the robot must be able
to predict at least the goal of the human when the two partners
engage in a joint reaching action. To make such prediction, a
common approach is to consider each movement as an instance
of a particular skill or goal-directed movement primitive.

In the past decade, several frameworks have been proposed
to represent movements primitives, frequently called skills, the
most notable being Gaussian Mixture Models (GMM) (Khansari-
Zadeh and Billard, 2011; Calinon et al., 2014), Dynamic Move-
ment Primitives (DMP) (Ijspeert et al., 2013), Probabilistic
DynamicMovement Primitive (PDMP) (Meier and Schaal, 2016),

1Currently, this scenario is frequently addressed in manufacturing by robots and
lifters; in the future, we imagine that humanoid robots could also be used for such
task, for assisting workers in environments where robots cannot be installed on a
fixed base, such as in some aircraft manufacturing operations (Caron and Kheddar,
2016).

and ProbabilisticMovement Primitives (ProMP) (Paraschos et al.,
2013a). For a thorough review of the literature, we refer the inter-
ested reader to Peters et al. (2016). Skill learning techniques have
been applied to several learning scenarios, such as playing table
tennis, writing digits, and avoiding obstacles during pick and place
motions. In all these scenarios, the humans are classically provid-
ing the demonstrations (i.e., realizations of the task trajectories)
by either manually driving the robot or through teleoperation,
following the classical paradigm of imitation learning. Some of
them have been also applied to the iCub humanoid robot: for
example, Stulp et al. (2013) usedDMPs to adapt a reachingmotion
online to the variable obstacles encountered by the robot arm,
while Paraschos et al. (2015) used ProMPs to learn how to tilt a
grate including torque information.

Among the aforementioned techniques, ProMPs stand out as
one of the most promising techniques for realizing intention
recognition and anticipatory movements for human–robot col-
laboration. They have the advantage, with respect to the other
methods, of capturing by design the variability of the human
demonstrations. They also have useful structural properties, as
described by Paraschos et al. (2013a), such as co-activation, cou-
pling, and temporal scaling. ProMPs have already been used in
human–robot coordination for generating appropriate robot tra-
jectories in response to initiated human trajectories (Maeda et al.,
2016). Differently from DMPs, ProMPs do not need the infor-
mation about the final goal of the trajectory, which is something
that DMPs use to set an attractor that guarantees convergence
to the final goal.2 Also, they perform better in presence of noisy
measurements or sparse measurements, as discussed in Maeda
et al. (2014).3 In a recent paper, Meier and Schaal (2016) proposed
a method called PDMP (Probabilistic Dynamic Movement Prim-
itive). This method improves DMP with probabilistic properties
to measure the likelihood that the movement primitive is exe-
cuted correctly and to perform inference on sensor measurement.
However, The PDMPs do not have a data-driven generalization
and can deviate arbitrarily from the demonstrations. These last
differences can be critical for our humanoid robot (for example,
if it collides with something during the movement, or if during
the movement it holds something that can fall down due to a bad
trajectory, etc.). Thus, the ProMPsmethod ismore suitable for our
applications.

In this article, we present our approach to the problem of
predicting the intention during human–robot physical interaction
and collaboration, based on Probabilistic Movement Primitives
(ProMPs) (Paraschos et al., 2013a), and we present the associated
open-source software code that implements the method for the
iCub.

To illustrate the technique, the exemplifying problem we tackle
in this article is to allow the robot to finish a movement initiated
by the user that physically guides the robot arm. From the first
observations of the joint movement, supposedly belonging to a

2There may be applications where converging to a unique and precise goal could
be a desirable property of the robot’s movement. However, it is an assumption that
prevents us to generalize themethod for different actions, and this is another reason
why we prefer ProMPs.
3We refer the interested reader to Maeda et al. (2014) for a thorough comparison
between DMPs and ProMPs to be used for interaction primitives and prediction.
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movement primitive of some task, the robotmust recognize which
kind of task the human is doing, predict the “future” trajectory,
and complete the movement autonomously when the human
releases the grasp on the robot.4

To achieve this goal, the robot first learns the movement prim-
itives associated with the different actions/tasks. We choose to
describe these primitives with ProMPs, as they are able to capture
the distribution of demonstrations in a probabilistic model, rather
than with a unique “average” trajectory. During interaction, the
human starts physically driving the robot to perform the desired
task. At the same time, the robot collects observations of the task.
It then uses the prior information from the ProMP to compute a
prediction of the desired goal together with the “future” trajectory
that allows it to reach the goal.

A conceptual representation of the problem is shown in
Figure 1. In the upper part of this figure, we represent the
training step for one movement primitive: the robot is guided
by the human partner to perform a certain task, and several
entire demonstrations of the movement that realizes the task are
collected. Both kinematics (e.g., Cartesian positions) and dynam-
ics (e.g., wrenches) information are collected. The N trajectories
constitute the base for learning the primitive, that is learning
the parameters ω of the trajectory distribution. We call this
learned distribution the prior distribution. If multiple tasks are to
be considered, then the process is replicated such that we have
one ProMP for every task. The bottom of the figure represents
the inference step. From the early observations5 of a movement
initiated by the human partner, the robot first recognizes which
ProMP best matches the early observations (i.e., it recognizes the

4To avoid disambiguation, in our method, tasks are encoded by primitives that are
made of trajectories: this is a very classical approach for robot learning techniques
and in general techniques based on primitives. Of course this is a simplification,
but it allows representing a number of different tasks: pointing, reaching, grasping,
gazing, etc.
5 In this article, we denote by early observations the first portion of a movement
observed by the robot, i.e., from t = 0 to acurrent t.

primitives that the human is executing, among the set of known
primitives). Then, it estimates the future trajectory, given the
early observations (e.g., first portion of a movement) and the
prior distribution, computing the parameters ω* of the posterior
distribution. The corresponding trajectory can be used by the
robot to autonomously finish the movement, without relying on
the human.

In this article, we describe both the theoretical framework and
the software that is used to perform this prediction. The software
is currently implemented in Matlab and C++; it is open source,
available on github:

https://github.com/inria-larsen/icubLearningTrajectories
and it has been tested both with a simulated iCub in Gazebo and
the real iCub. In simulation, physical guidance is provided by the
Geomagic Touch6; on the real robot, the human operator simply
grabs the robot’s forearm.

We also provide a practical example of the software that realizes
the exemplifying problems. In the example, the recorded trajec-
tory is composed of both the Cartesian position and the forces
at the end effector. Notably, in previous studies (Paraschos et al.,
2015), ProMPs were used to learn movement primitives using
joint positions. Here, we use Cartesian positions instead of joints
positions to exploit the redundancy of the robotic arm in perform-
ing the desired task in the 3D space. At the control level of the
iCub, this choice requires the iCub to control its lower-level (joint
torque) movement with the Cartesian controller (Pattacini et al.,
2010) instead of using the direct control at joint level. As for the
forces, we rely on amodel-based dynamics estimation that exploits
the 6 axis force/torque sensors (Ivaldi et al., 2011; Fumagalli et al.,
2012). All details for the experiments are presented in the article
and the software tutorial.

6The Geomagic Touch is a haptic device, capable of providing force feedback from
the simulation to the operator. In our experiments with the simulated iCub, we did
not use this feature. We used the Geomagic Touch to steer the arm of the simulated
robot. In that sense, we used it more as a joystick for moving the left arm.

FIGURE 1 | Conceptual use of the ProMP for predicting the desired trajectory to be performed by the robot in a collaborative task. Top: training phase, where
ProMPs are learned from several human demonstrations. Bottom: inference phase (online), where from early observations, the robot recognizes the current (among
the known) ProMP and predicts the human intention, i.e., the future evolution of the initiated trajectory.

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 453

https://github.com/inria-larsen/icubLearningTrajectories
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Dermy et al. Prediction of Intention during Interaction with iCub

To summarize, the contributions of this article are as follows:

• the description of a theoretical framework based on ProMPs for
predicting the human desired trajectory and goal during physi-
cal human–robot interaction, providing the following features:
recognition of the current task, estimation of the task duration,
and prediction of the future trajectory;

• an experimental study about how multimodal information can
be used to improve the estimation of the duration/speed of an
initiated trajectory;

• the open-source software to realize an intention recognition
application with the iCub robot, both in simulation and on the
real robot.

The article is organized as follows. In Section 2, we review the
literature about intentions in Human–Robot Interaction (HRI),
probabilistic models for motion primitives, and their related soft-
ware. In Section 3, we describe the theoretical tools that we
use to formalize the problem of predicting the intention of the
human during interaction. Particularly, we describe the ProMPs
and their use for predicting the evolution of a trajectory given
early observations. In Section 4, we overview the software orga-
nization and the interconnection between our software and the
iCub’s main software, both for the real and simulated robot.
The following sections are devoted to presenting our software
and its use for predicting intention. We choose to present three
examples of increasing complexity, with the simulated and real
robot. We provide and explain in detail a software example for
a 1-DOF trajectory in Section 5. In Sections 6 and 7, we present
the intention recognition application with the simulated and real
iCub, respectively. In the first examples with the robot, the “tasks”
are exemplified by simple reaching movements, to provide simple
and clear trajectories that help the reader understand the method,
whereas the last experiment with the robot is a collaborative object
sorting task. Section 8 provides the links to the videos showing
how to use the software in simulation and on the iCub. Finally, in
Section 10, we discuss our approach and its limitations and outline
our future developments.

2. RELATED WORK

In this article, we propose a method to recognize the intention
of the human partner collaborating with the robot, formalized
as the target and the “future” trajectory associated with a skill,
modeled by a goal-directed Probabilistic Movement Primitive. In
this section, we briefly overview the literature about intention
recognition in human–robot interaction and motion primitives
for learning of goal-directed robotic skills.

2.1. Intention during Human–Robot
Interaction
When humans and robots collaborate, mutual understanding is
paramount for the success of any shared task. Mutual under-
standing means that the human is aware of the robot’s current
task, status, goal, available information, that he/she can reasonably
predict or expect what it will do next, and vice versa. Recognizing
the intention is only one piece of the problem but still plays a
crucial part for providing anticipatory capabilities.

Formalizing intention can be a daunting task, as one may find
it difficult to provide a unique representation that explains the
intention for very low-level goal-directed tasks (e.g., reaching a
target object and grasping it) and for very high-level, complex,
abstract or cognitive tasks (e.g., change a light bulb on the ceil-
ing—by building a stair composed of many parts, climbing it
and reaching the light bulb on the ceiling, etc.). Demiris (2007)
reviews different approaches of action recognition and intention
prediction.

From the human’s point of view, understanding the robot’s
intention means that the human should find intuitive and non-
ambiguous every goal-directed robot movement or actions, and
it should be clear what the robot is doing or going to do (Kim
et al., 2017). Dragan and Srinivasa (2014) formalized the dif-
ference between predictability and legibility: a motion is legible
if an observer can quickly infer its goal, while a motion is pre-
dictable when it matches the expectations of the observer given
its goal.

The problem of generating legible motions for robots has been
addressed in many recent works. For example, Dragan and Srini-
vasa (2014) use optimization techniques to generate movements
that are predictable and legible. Huang et al. (2017) apply an
Inverse Reinforcement Learning method on autonomous cars to
select the robot movements that are maximally informative for
the humans and that will facilitate their inference of the robot’s
objectives.

From the robot’s point of view, understanding the human’s
intention means that the robot should be able to decipher the
ensemble of verbal and non-verbal cues that the human naturally
generates with his/her behavior, to identify, for a current task and
context, what is the human intention. The more information (e.g.,
measurable signals from the human and the environment) is used,
the better and more complex the estimation can be.

The simplest form of intention recognition is to estimate the
goal of the current action, under the implicit assumption that each
action is a goal-directed movement.

Sciutti et al. (2013) showed that humans implicitly attribute
intentions in form of goals to robot motions, proving that humans
exhibit anticipatory gaze toward the intended goal. Gaze was also
used by Ivaldi et al. (2014a) in a human–robot interaction game
with iCub, where the robot (human) was tracking the human
(robot) gaze to identify the target object. Ferrer and Sanfeliu
(2014) proposed the Bayesian Human Motion Intentionality Pre-
diction algorithm, to geometrically compute the most likely target
of the human motion, using Expectation–Maximization and a
simple Bayesian classifier. In Wang et al. (2012), a method called
Intention-Driven Dynamics model, based on Gaussian Process
Dynamical Models (GPDM) (Wang et al., 2005), is used to infer
the intention of the robot’s partner during a ping-pong match,
represented by the target of the ball, by analyzing the entire human
movement before the human hits the ball. More generally, mod-
eling and descriptive approaches can be used to match predefined
labels with measured data (Csibra and Gergely, 2007).

Amore complex formof intention recognition is to estimate the
future trajectory from the past observations. In a sense, to estimate
[xt+1, . . . , xt+Tfuture ] = f(xt, xt−1, . . . , xt−Tpast). This problem, very
similar to the estimate of the forward dynamicsmodel of a system,
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is frequently addressed by researchers inmodel predictive control,
where being able to “play” the system evolving in time is the
basis for computing appropriate robot controls.When a trajectory
can be predicted by an observer from early observations of it,
we can say that the trajectory is not only legible, but predictable.
A systematic approach for predicting a trajectory is to reason in
terms of movement primitives, in such a way that the sequence of
points of the trajectory can be generated by a parametrized time
model or a parametrized dynamical system. For example, Palinko
et al. (2014) plan reaching trajectories for object carrying that are
able to convey information about the weight of the transported
object. More generally, in generative approaches (Buxton, 2003),
latent variables are used to learn models for the primitives, both
to generate and infer actions. The next subsection will provide
more detail about the state-of-the-art techniques for generating
movement primitives.

In Amor et al. (2014), the robot first learns Interaction Prim-
itives by watching two humans performing an interactive task,
using motion capture. The Interaction Primitive encapsulates the
dependencies between the two human movements. Then, the
robot uses the Interaction Primitive to adapt its behavior to its
partner’s movement. Their method is based on Dynamics Motor
Primitives (Ijspeert et al., 2013), where a distribution over the
DMP’s parameters is learned. Notably, in this article, we did not
follow the same approach to learn Interaction Primitives, since
there is a physical interaction that makes the user’s and the robot’s
movements as one joint movements. Moreover, there is no latency
between the partner’s early movement and the robot’s, because
the robot’s arm is physically driven by the human until the latter
breaks the contact.

Indeed, most examples in the literature focus on kinematic
trajectories, corresponding to gestures that are typically used in
dyadic interactions characterized by a coordination of actions
and reactions. Whenever the human and robot are also inter-
acting physically, collaborating on a task with some exchange of
forces, then the problem of intention recognition becomes more
complex. Indeed, the kinematics information provided by the
“trajectories” cannot be analyzed without taking into account the
haptic exchange and the estimation of the “roles” of the partners
in leading/following each other.

Estimating the current role of the human (master/slave or
leader/follower) is crucial, as the role information is necessary
to coherently adapt the robot’s compliance and impedance at the
level of the exchanged contact forces. Most importantly, adapting
the haptic interaction can be used by the robot to communicate
when it has understood the human intent and is able to finish
the task autonomously, mimicking the same type of implicit non-
verbal communication that is typical of humans.

For example, in Gribovskaya et al. (2011), the robot infers
the human intention utilizing the measure of the human’s forces
and by using Gaussian Mixture Models. In Rozo Castañeda et al.
(2013), the arm impedance is adapted by a Gaussian Mixture
Model based on measured forces and visual information. Many
studies focused on the robot’s ability to act only when and how its
user wants (Carlson and Demiris, 2008; Soh and Demiris, 2015)
and to not interfere with the partner’s forces (Jarrassé et al., 2008)
or actions (Baraglia et al., 2016).

In this article, we describe our approach to the problem of rec-
ognizing the human intention during collaboration by providing
an estimate of the future intended trajectory to be performed by
the robot. In our experiments, the robot does not adapt its role
during the physical interaction but simply switches from follower
to leader when the human breaks contact with it.

2.2. Movement Primitives
Movement Primitives (MPs) are a well established paradigm for
representing complex motor skills. The most known method
for representing movement primitives is probably the Dynamic
Movement Primitives (DMPs) (Schaal, 2006; Ijspeert et al., 2013;
Meier and Schaal, 2016). DMPs use a stable non-linear attractor in
combination with a forcing term to represent the movement. The
forcing term enables to follow specificmovement, while the attrac-
tor asserts asymptotic stability. In a recent paper,Meier and Schaal
(2016) proposed an extension to DMPs, called PDMP (Proba-
bilistic Dynamic Movement Primitive). This method improves
DMP with probabilistic properties to measure the likelihood that
the movement primitive is executed correctly and to perform
inference on sensor measurement. However, the PDMPs do not
have a data-driven generalization and can deviate arbitrarily from
the demonstrations. This last difference can be critical for our
applications with the humanoid robot iCub, since uncertainties
are unavoidable and disturbances may happen frequently and
destabilize the robot movement (for example, an unexpected col-
lision during the movement). Thus, the ProMPs method is more
accurate for our software.

Ewerton et al. (2015), Paraschos et al. (2013b), and Maeda et al.
(2014) compared ProMPs and DMPs for learning primitives and
specifically interaction primitives. With the DMP model, at the
end of the movement, only a dynamic attractor is activated. Thus,
it always reaches a stable goal. The properties allowed by both
methods are temporal scaling of the movement, learning from a
single demonstration, and generalizing to new final position.With
ProMPs, we have in addition the ability to do inference (thanks to
the distribution), to force the robot to pass by several initial via
points (the early observations), to know the correlation between
the input of the model, and to co-activate some ProMPs. In our
study, we need these features, because the robot must determine a
trajectory that passes by the early observations (beginning of the
movement where the user guides physically the robot).

A Recurrent Neural Networks (RNN) approach (Billard and
Mataric, 2001) used a hierarchy of neural networks to simulate
the activation of areas in human brain. The network can be
trained to infer the state of the robot at the next point in time,
given the current state. The authors propose to train the RNN by
minimizing the error between the inferred position of the next
time step and the ground truth obtained from demonstrations.

Hidden Markov Models (HMMs) for movement skills were
introduced by Fine et al. (1998). This method is often used to
categorize movements, where a category represents a movement
primitive. This method also allows to represent the temporal
sequence of a movement. In Nguyen et al. (2005), they use
learned Hierarchical Hidden Markov Model (HHMMs) to rec-
ognize human behaviors efficiently. In Ren and Xu (2002), they
present the Primitive-based Coupled-HMM (CHMM) approach,
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for human natural complex action recognition. In this approach,
each primitive is represented by a Gaussian Mixture Model.

Adapting Gaussian Mixture Models is another method used to
learn physical interaction with learning. In Evrard et al. (2009),
they use GMMs and Gaussian Mixture Regression to learn, in
addition to the position (joint information), force information.
Using this method, a humanoid robot is able to collaborate in one
dimension with its partner for a lifting task. In this article, we will
also use (Cartesian) position and force information to allow our
robot to interact physically with its partner.

A subproblem of movement recognition is that robots need to
estimate the duration of the trajectory to align a current trajectory
with learned movements. In our case, at the beginning of the
physical Human–Robot Interaction (pHRI), the robot observes a
partial movement guided by its user. Given this partial movement,
the robot must first estimate what the current state of the move-
ment is to understand what its partner intent is. Thus, it needs to
estimate the partial movement’s speed.

Fitts’ law models the movement duration for goal-directed
movements. This model is based on the assumption that the
movement duration is a linear function of the difficulty to achieve
a target (Fitts, 1992). In Langolf et al. (1976), they show that by
modifying the target’s width, the shape of the movement changes.
Thus, it is difficult to apply Fitt’s law when the size of the target
can change. In Langolf et al. (1976) and Soechting (1984), they
confirm this idea by showing that the shape of the movement
changes with the accuracy required by the goal position of the
movement.

Dynamics Time Warping (DTW) is a method to find the cor-
relation between two trajectories that have different durations,
in a more robust way than the Euclidean distance. In Amor
et al. (2014), they modify the DTW algorithm to match a par-
tial movement with a reference movement. Many improvements
over this method exist. In Keogh (2002), they propose a robust
method to improve the indexation. The calculation speed of DTW
is improved using different methods, such as FastDTW, Lucky
Time Warping, or FTW. An explanation and comparison of these
methods are presented in Silva and Batista (2016), where they add
their own computation speed improvement by using a method

called Pruned Warping Paths. This method allows the deletion
of unlikely data. However, a drawback of this well-known DTW
method is they do not preserve the global trajectory’s shape.

In Maeda et al. (2014), where they use a probabilistic learning
of movement primitives, they improve the duration estimation
of movements by using a different time warping method. This
method is based on a Gaussian basis model to represent a time
warping function and, instead of DTW, it forces a local align-
ment between the twomovements without “jumping” some index.
Thus, the resulting trajectories are more realistic, smoother, and
this method preserves the global trajectories’ shapes.

For inferring the intention of the robot’s partner, we use Prob-
abilistic Movement Primitives (ProMPs) (Paraschos et al., 2013a).
Specifically, we use the ProMP’s conditioning operator to adapt
the learned skills according to observations. The ProMPs can
encode the correlations between forces and positions and allow
better prediction of the partner’s intention. Further, the phase of
the partner’s movement can be inferred, and therefore the robot
can adapt to the partner’s velocity changes. ProMPs are more
efficient for collaborative tasks, as shown in Maeda et al. (2014),
where in comparison to DMPs, the root-mean square error of the
predictions is lower.

2.3. Related Open-Source Software
One of the goals of this article is to introduce an open-source
software for the iCub (but potentially for any other robot), where
the ProMP method is used to recognize human intention dur-
ing collaboration, so that the robot can execute initiated actions
autonomously. This is not the first open-source implementation
for representing movement primitives: however, it has a novel
application and a rationale that makes it easy to use with the iCub
robot.

In Table 1, we report on the main software libraries that one
can use to learn movement primitives. Some have been also used
to realize learning applications with iCub, e.g., Lober et al. (2014)
and Stulp et al. (2013) or to recognize human intention. However,
the software we propose here is different: it provides an imple-
mentation of ProMPs used explicitly for intention recognition and
prediction of intended trajectories. It is interfaced with iCub, both

TABLE 1 | Open-source software libraries implementing movement primitives and their application to different known robots.

Software/library Method Code link Language Robot Reference

Dynamical System Modulation for
Robot Adaptive Learning via Kinesthetic
Demonstrations

GMR Hersch et al. (2008) Matlab Hoap3 Micha and Aude (2008)

pbdlib-matlab HMM, GMM, and others Calinon (2015) Matlab Baxter Calinon (2016)
DMP learning with GMR DMP and GMR Calinon et al. (2012a) Matlab or C Coman Calinon et al. (2012b)
Stochastic Machine Learning Toolbox Kernel Functions, Gaussian

Processes, Bayesian Optimization
Lober (2014) C++ or Python –

pydmps DMP DeWolf (2013) Python Sarcos Ijspeert et al. (2013)
Dynamical Systems approach to Learn
Robot Motions

GMM and SEDS Khansari (2011) Matlab iCub Khansari-Zadeh and Billard
(2011, 2012)

Function Approximation, DMP, and
Black-Box Optimization (dmpbbo)

DMP Stulp (2014) Python or C++ iCub Stulp et al. (2013), Lober et al.
(2014)

Learning Motor Skills from Partially
Observed Movements Executed at
Different Speeds

ProMP Ewerton (2016) Matlab or Python – Ewerton et al. (2015)

icubLearningTrajectories ProMP Dermy (2017) Matlab and C++ iCub –
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real and simulated, and addresses in the specific case of physical
interaction between the human and the robot. In short, it is a first
step toward adding intention recognition ability to the iCub robot.

3. THEORETICAL FRAMEWORK

In this section, we present the theoretical framework that we
use to tackle the problem of intent recognition: we describe the
ProMPs and how they can be used to predict trajectories from
early observations.

In Section 2, we formulate the problem of learning a primitive
for a simple case, where the robot learns the distribution from
several demonstrated trajectories. In Section 3.3, we formulate
and provide the solution to the problem of predicting the “future”
trajectory from early observations (i.e., the initial data points). In
Section 3.4, we discuss the problemof predicting the timemodula-
tion, i.e., predicting the global duration of the predicted trajectory.
This problem is non-trivial, as by construction the demonstrated
trajectories are “normalized” in duration when the ProMP is
learned.7 In Section 3.5, we explain how to recognize, from the
early observations, to which of many known skills (modeled by
ProMPs) the current trajectory belongs. In all these sections, we
tried to present the theoretical aspects related to the use of ProMPs
for the intention recognition application.

Practical examples of these theoretical problems are presented
and explained later in sections 5–7. Section 5 explains how to use
our software, introduced in Section 4, for learning one ProMP for
a simple set of 1-DOF trajectories. Section 6 presents an example
with the simulated iCub in Gazebo, while Section 7 presents an
example with the real iCub.

3.1. Notation
To facilitate understanding of the theoretical framework, we first
introduce the notations we use in this section and throughout the
remainder of the article.

3.1.1. Trajectories
• X(t) ∈ R3, X(t)= [x(t), y(t), z(t)]T: the x/y/z-axis Cartesian

coordinate of the robot’s end effector.
• F(t) ∈ R6, F(t)= [fx, fy, fz, mx, my, mz]T: the wrench contact

forces, i.e., the external forces and moments measured by the
robot at the contact level (end effector).

• ξ(t) ∈ RD: the generic vector containing the current value or
state of the trajectories at time t. It can be monodimensional
(e.g., ξ(t)= [z(t)]), or multidimensional (e.g., ξ(t)= [X(t),
F(t)]T), depending on the type of trajectories that we want to
represent with the ProMP.

• Ξ = Ξ[1:tf] = [ξ(1), . . . , ξ(tf)]T ∈ RD·tf is an entire trajectory,
consisting of tf samples or data points.

• Ξi[1:tfi] is the i-th demonstration (trajectory) of a task, consisting
of tfi samples or data points.

3.1.2. Movement Primitives
• k∈ [1 : K]: the k-th ProMP, among a set of K ProMPs that

represent different tasks/actions.

7 In some tasks, e.g., reaching, it is reasonable to assume that the difference of
duration of the demonstrated trajectories is negligible; however, in other tasks, the
duration of the demonstrated trajectories may vary significantly.

• nk: number of recorded trajectories for each ProMP.
• Sk = {Ξ{k,1}, . . . ,Ξ{k,nk}}: set of nk trajectories for the k-th

ProMP.
• ξ(t) = Φtω + ϵξ is the model of the trajectory with:

• ϵξ ∼ N (0, β): expected trajectory noise.
• Φt ∈ RD×D·M: radial basis functions (RBFs) used to model

trajectories. It is a block diagonal matrix.

– M: number of RBFs.

– ψji(t)= e
−(t−ci)2

2h∑M
m=1 e

−(t−cm)2

2h

: i-th RBF for all inputs j∈ [1 :D].

It must be noted that the upper term comes from a Gaussian
1√
2πh

e
−(t−ci)2

2h , where ci and h are, respectively, the center
and variance of the i-th Gaussian. In our RBF formulation,
we normalize all the Gaussians.

• ω ∈ RD·M: time-independent parameter vector weighting
the RBFs, i.e., the parameters to be learned.

• p(ω) ∼ N (µω,Σω): normal distribution computed from a
set {ω1, . . . ,ωn}. It represents the distribution of the modeled
trajectories, also called prior distribution.

3.1.3. Time Modulation
• s̄: number of samples used as reference to rescale all the trajec-

tories to the same duration.
• Φαit ∈ RD×D·M: the RBFs rescaled to match the Ξi trajectory

duration.
• αi = s̄

tfi : temporal modulation parameter of the i-th trajectory.
• α = Ψδno ωα + ϵα is the model of the function mapping δno

into the temporal modulation parameter α, with:

– Ψ: a set of RBFs used to model the mapping between δno and
α;

– δno is the variation of the trajectory during the first no
observations (data points); it can be δno = ξ(no) − ξ(1) if
the entire trajectory variables (e.g., Cartesian position and
forces) are considered, or more simply δno = X(no) −
X(1) if only the variation in terms of Cartesian position is
considered;

– ωα: the parameter vector weighting the RBFs of the Ψ
matrix.

3.1.4. Inference
• Ξo = [Xo, Fo]T = [ξo(1), . . . , ξo(no)]T: early-trajectory

observations, composed of no data points.
• Σo

ξ : noise of the initiated trajectory observation.
• α̂: estimated timemodulation parameter of a trajectory to infer.
• t̂f = s̄

α̂ : estimated duration of a trajectory to infer.
• Ξ∗ = [ξo(1), . . . , ξo(no), ξ∗(no+1), . . . , ξ∗(tf)]: ground truth

of the trajectory for the robot to infer.
• Ξ̂ = [X̂, F̂]T = [ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(̂tf)]

T: the
estimated trajectory.

• p(ω̂) ∼ N (µ̂ω, σ̂ω): posterior distribution of the parameter
vector of a ProMP using the observation Ξo.

• k̂: index of the recognized ProMP from the set of K known
(previously learned) ProMPs.
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3.2. Learning a Probabilistic Movement
Primitive (ProMP) from Demonstrations
Our toolbox to learn, replay and infer the continuation of trajec-
tories is written in Matlab and available at:

https://github.com/inria-larsen/icubLearningTrajectories/tree/
master/MatlabProgram

Let us assume the robot has recorded a set of n1 trajectories:
{Ξ1, . . . ,Ξn1}, where the i-th trajectory is Ξi = {ξ(1), . . . , ξ(tfi)}.
ξ(t) is the generic vector containing all the variables to be learned
at time t, with the ProMP method. It can be monodimensional
(e.g., ξ(t)= [z(t)] for the z-axis Cartesian coordinate), or multi-
dimensional (e.g., ξ(t)= [X(t), F(t)]T). Note that the duration of
each recorded trajectory (i.e., tfi ) may be variable. To find a com-
mon representation in terms of primitives, a time modulation is
applied to all trajectories, such that they have the same number of
samples s̄ (see details in Section 3.4). Such modulated trajectories
are then used to learn a ProMP.

A ProMP is a Bayesian parametric model of the demonstrated
trajectories in the following form:

ξ(t) = Φtω + ϵξ, (1)

where ω ∈RM is the time-independent parameter vector weight-
ing the RBFs, ϵξ ∼ N (0, β) is the trajectory noise, and Φt is a
vector of M radial basis functions evaluated at time t:

Φt = [ψ1(t), ψ2(t), . . . ., ψM(t)]

with 
ψi(t) = 1∑M

j=1 ψj(t)
exp

{
−(t−c(i))2

2h

}
c(i) = i/M
h = 1/M2.

(2)

Note that all the ψ functions are scattered across time.
For each Ξi trajectory, we compute the ωi parameter vector to

have ξi(t) = Φtωi + ϵξ . This vector is computed to minimize
the error between the observed ξi(t) trajectory and its model
Φtωi+ϵξ . This is done using the LeastMean Square algorithm, i.e.:

ωi = (Φ⊤
t Φt)−1Φ⊤

t ξi(t). (3)

To avoid the common issue of the matrix ΦT
t Φt in equation (3)

not being invertible, we add a diagonal term and perform Ridge
Regression:

ωi = (Φ⊤
t Φt + λ)−1Φ⊤

t ξi(t), (4)

where λ = 10−11 · 1D·M×D·M is a parameter that can be tuned by
looking at the smallest singular value of the matrix ΦT

t Φt.
Thus, we obtain a set of these parameters: {ω1, . . . ,ωn},

upon which a distribution is computed. Since we assume Normal
distributions, we have:

p(ω) ∼ N (µω,Σω) (5)

with µω =
1
n

n∑
i=1

ωiii (6)

and Σω =
1

n − 1

n∑
i=1

(ωiii − µω)⊤(ωiii − µω). (7)

The ProMP captures the distribution over the observed trajec-
tories. To represent this movement primitive, we usually use the
movement that passes by the mean of the distribution. Figure 2
shows the ProMP for a 1-DOF lifting motion, with a number of
reference samples s̄ = 100 and number of basis functions M= 5.

This example is included in our Matlab toolbox as
demo_plot1DOF.m. The explanation of this Matlab script is
presented in Section 5. More complex examples are also included
in the scripts demo_plot*.m.

3.3. Predicting the Future Movement from
Initial Observations
Once the ProMP p(ω) ∼ N (µω,Σω) of a certain task has been
learned,8 we can use it to predict the evolution of an initiated
movement. An underlying hypothesis is that the observed move-
ment follows to this learned distribution.

8That is, we computed the p(ω) distribution from the dataset {ω1, . . . , ωn},
where each ωi is an estimated parameter computed from the trajectory demon-
strations.

FIGURE 2 | The observed trajectories are represented in magenta. The corresponding ProMP is represented in blue. The following parameters are used: s̄ = 100 for
the reference number of samples, M= 5 for the number of RBFs spread over time, and h= 0.04

(
= 1

M2

)
the variance of the RBFs.
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Suppose that the robot measures the first no observations of the
trajectory to predict (e.g., lifting the arm). We call these observa-
tionsΞo = [ξo(1),…, ξo(no)]. The goal is then to predict the evolu-
tion of the trajectory after these no observations, i.e., find {ξ̂(no +
1), . . . , ξ̂(̂tf)}, where t̂f is the estimation of the trajectory duration
(see Section 3.4). This is equivalent to predicting the entire Ξ̂
trajectory where the first no samples are known and equal to the
observations: Ξ̂ = {ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(t̂tf)}.
Therefore, our prediction problem consists of predicting Ξ̂ given
the Ξo observations.

To do this prediction, we start from the learned prior distribu-
tion p(ω), and we find the ω̂ parameter within this distribution
that generates Ξ̂. To find this ω̂ parameter, we update the learned
distribution p(ω̂) ∼ N (µ̂ω, Σ̂ω) using the following formulae:

{
µ̂ω = µω + K

(
Ξo − Φ[1:no] µω

)
Σ̂ω = Σω − K

(
Φ[1:no] Σω

)
,

(8)

where K is a gain computed by the following equation:

K = ΣωΦ⊤
[1:no]

(
Σo
ξ + Φ[1:no]ΣωΦ⊤

[1:no]

)−1
. (9)

Equations (8) and (9) can be computed through the marginal
and conditional distributions (Bishop, 2006; Paraschos et al.,
2013a), as detailed in Appendix A.

Figure 3 shows the predicted trajectory for the liftingmotion of
the left arm of iCub. The different graphs show inferred trajecto-
ries when the robot observed no = 10, 30, 50, and 80% of the total
trajectory duration. This example is also available in the toolbox as
demo_plot1DOF.m. The nbData variable changes the percentage
of known data. Thus, it will be visible how the inference improves
according to this variable. An example of predicted trajectories of
the arm lifting in Gazebo can be found in a provided video (see
Section 8).

FIGURE 3 | The prediction of the future trajectory given early observations,
exploiting the information of the learned ProMP (Figure 2). The plots show
the predicted trajectories after 10, 30, 50, and 80% of observed data points.

3.4. Predicting the Trajectory Time
Modulation
In the previous section, we presented the general formulation
of ProMPs, which makes the implicit assumption that all the
observed trajectories have the same duration and thus the same
sampling.9 That is why the duration of the trajectories generated
by the RBF is fixed and equal to s̄. Of course, this is valid only for
synthetic data and not for real data.

To be able to address real experimental conditions, we now
consider the variation of the duration of the demonstrated tra-
jectories. To this end, we introduce a time modulation parameter
α that maps the actual trajectory duration tf to s̄: α = s̄/tf. The
normalized duration s̄ can be chosen arbitrarily; for example it
can be set to the average of the duration of the trajectories, e.g.,
s̄ = mean(tf1, . . . , tfK). Notably, in the literature sometimes α is
called phase (Paraschos et al., 2013a,b). The effect ofα is to change
the phase of the RBFs, which are scaled in time.

The time modulation of the i-th trajectory Ξi is computed by
αi = s̄

tfi . Thus, we have α · t ∈ [1 : s̄]. Thus, the improved ProMP
model is as follows:

ξt = Φαtω + ϵt, (10)

where Φαt is the RBFs matrix evaluated at time αt. All the M
Gaussian functions of the RBFs are spread over the same number
of samples s̄. Thus, we have the following:

Φαt = [ψ1(αt), ψ2(αt), . . . ., ψM(αt)].

During the learning step, we record a set of α parameters:
Sα= {α1,…,αn}. Then, using this set, we can replay the learned
ProMP with different speeds. By default (e.g., when α= 1), the
speed allows to finish the movement in s̄ samples.

During the inference, the time modulation α of the partially
observed trajectory is not known. Unless fixed a priori, the robot
must estimate it. This estimation is critical to ensure a good
recognition, as shown in Figure 4: the inferred trajectory (repre-
sented by the mean of the posterior distribution in red) does not
have the same duration as the “real” intended trajectory (which
is the ground truth). This difference is due to the estimation
error of the time modulation parameter. This estimation α̂ by
default is computed as the mean of all the αk observed during the
learning:

α̂ =
∑
αk

nk
. (11)

However, using the mean value for the time modulation is
an appropriate choice only when the primitive represents goal-
directed motions that are very regular, or for which we can rea-
sonably assume that differences in the duration can be neglected
(which is not a general case). Inmany applications, this estimation
may be too rough.

Thus, we have to find a way to estimate the duration of the
observed trajectory, which corresponds to accurately estimating
the timemodulation parameter α̂. To estimate α̂, we implemented

9Actually, we call here duration what is in fact the total number of samples for the
trajectory.
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FIGURE 4 | This plot shows the predicted trajectory given early observations
(data points, in black), compared to the ground truth (e.g., the trajectory that
the human intends to execute with the robot). We show the prior distribution
(in light blue) and the posterior distribution (in red), which is computed by
conditioning the distribution to match the observations. Here, the posterior
simply uses the average α computed over the α1,…,αK of the K
demonstrations. Without predicting the time modulation from the
observations and using the average α, the predicted trajectory has a duration
that is visibly different from the ground truth.

four different methods. The first is the mean of all the αk, as in
equation (11). The second is the maximum likelihood, with

α̂ = argmaxα∈Sαk
{loglikelihood(Ξo, µωk , σωk , αk)}. (12)

The third is the minimum distance criterion, where we seek
the best α̂ that minimizes the difference between the observed
trajectory Ξo

t and the predicted trajectory for the first no data
points:

α̂ = argminα∈Sαk

{ no∑
t=1

|Ξo
t − Φαtµωk |

}
. (13)

The fourth method is based on a model: we assume that there
is a correlation between α and the variation of the trajectory δno
from the beginning until the time no. This “variation” δno can be
computed as the variation of the position, e.g., δno = X(no)−X(1),
or the variation in the entire trajectory, δno = Ξ(no) − Ξ(1), or
any other measure of progress, if this hypothesis is appropriate
for the type of task trajectories of the application.10 Indeed, the α
can be linked also to the movement speed, which can be roughly
approximated by Ẋ = δX

tf

(
Ξ̇ = δΞ

tf

)
. We model the mapping

between δno and α by the following equation:

α = Ψ(δno)
⊤ωα + ϵα, (14)

where Ψ are RBFs, and ϵα is a zero-mean Gaussian noise. During
learning, we compute the ωα parameter, using the same method
as in equation (3). During the inference, we compute α̂ =
Ψ(δno)

Tωα.

10 In our case, this assumption can be appropriate, because the reaching trajectories
in our application are generally monotonic increasing/decreasing.

A comparison of the four methods for estimating α on a test
study with iCub in simulation is presented in Section 6.6.

There exist othermethods in the literature for computingα. For
example, Ewerton et al. (2015) propose amethod thatmodels local
variability in the speed of execution. In Maeda et al. (2016), they
use a method that improves Dynamic Time Warping by imposing
a smooth function on the time alignment mapping using local
optimization. These methods will be implemented in the future
works.

3.5. Recognizing One among Many
Movement Primitives
Robots should not learn only one skills but many: different skills
for different tasks. In our framework, tasks are represented by
movement primitives, precisely ProMP. So it is important for the
robot to be able to learn K different ProMPs and then be able to
recognize from the early observations of a trajectory which of the
K ProMPs the observations belong to.

During the learning step of a movement primitive k∈ [1 :
K], the robot observes different trajectories Sk = {Ξ1,…,Ξn}. For
each ProMP, it learns the distribution over the parameters vec-
tor p(ω) ∼ N (µωk ,Σωk), using equation (3). Moreover, the
robot records the different phases of all the observed trajectories:
Sαk = {α1k,…,αnk}.

After having learned these K ProMPs, the robot can use this
information to autonomously execute a task trajectory. Since we
are targeting collaborative movements, performed together with a
partner at least at the beginning, we want the robot to be able to
recognize from the first observations of a collaborative trajectory
which is the current task that the partner is doing and what is the
intention of the partner. Finally, we want the robot to be able to
complete the task on its own, once it has recognized the task and
predicted the future trajectory.

Let Ξo = [Ξ1 . . .Ξno ]
T be the early observations of an initiated

trajectory.
From these partial observations, the robot can recognize the

“correct” (i.e., most likely) ProMP k̂ ∈ [1 : K]. First, for each
ProMP k∈ [1 : K], it computes the most likely phase (time
modulation factor) α̂k (as explained in Section 3.4), to obtain
the set of ProMPs with the most likely duration: S[µωk ,α̂k] =
{(µω1 , α̂1), . . . , (µωK , α̂K)}.

Then we compute the most likely ProMP k̂ in S[µωk ,α̂k] accord-
ing to some criterion.One possibleway is tominimize the distance
between the early observations and themean of the ProMP for the
first portion of the trajectory:

k̂ = arg min
k∈[1:K]

[
1
no

no∑
t=1

|Ξt − Φα̂kt µωk |

]
. (15)

In equation (15), for each ProMP k∈ [1 : K], we compute
the average distance between the observed early-trajectory Ξt
and the mean trajectory of the ProMP Φα̂ktµωk , with t= [1 : no].
The most likely ProMP k̂ is selected by computing the mini-
mum distance (arg min). Other possible methods for estimating
the most likely ProMPs could be inspired by those presented
in the previous section for estimating the time modulation, i.e.,
maximum likelihood or learned models.
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Once identified the k̂-th most likely ProMP, we update its
posterior distribution to take into account the initial portion of
the observed trajectory, using equation (8):

µ̂ωk̂
= µωk̂

+ K
(
Ξo − Φα̂k̂[1:no]µωk̂

)
Σ̂ωk̂

= Σωk̂
− K

(
Φα̂k̂[1:no]Σωk̂

)
K = Σωk̂

Φ⊤
α̂k̂[1:no]

(
Σξo + Φα̂k̂[1:no]Σωk̂

Φ⊤
α̂k̂[1:no]

)−1

(16)
with α̂k̂[1 : no] = α̂k̂ t (in matrix form), with t∈ [1 : no].

Finally, the inferred trajectory is given by the following equa-
tion:

∀t ∈ [1 : t̂f], ξ̂(t) = Φt µ̂ωk̂

with the expected duration of the trajectory t̂f = α̂k s̄. The robot is
now able to finish themovement executing themost likely “future”
trajectory Ξ̂ = [ξ̂no+1 . . . ξ̂tf ]

T.

4. SOFTWARE OVERVIEW

In this section, we introduce our open-source software with an
overview of its architecture. This software is composed of two
main modules, represented in Figure 5.

While the robot is learning the Probabilistic Movement Prim-
itives (ProMPs) associated with the different tasks, the robot is
controlled by its user. The user’s guidance can be eithermanual for
the real iCub, or through a haptic device for the simulated robot.

A Matlab module allows replaying movement primitives or
finishing a movement that has been initiated by its user. By using
this module, the robot can learn distributions over trajectories,
replay movement primitives (using the mean of the distribution),

recognize the ProMP that best matches a current trajectory, and
infer the future evolution (until the end target) of this trajectory.

A C++ module forwards to the robot the control that comes
either from the user or from the Matlab module. Then, the robot
is able to finish a movement initiated by its user (directly or
through a haptic device) in an autonomous way, as shown in
Figure 1.

We present the C++ module in Section 6.2 and the theoretical
explanation of theMatlabmodule algorithms in Section 3. A guide
to run this last module is first presented in Section 5 for a simple
example, and in Section 6 for our application, where a simu-
lated robot learns many measured information of the movements.
Finally, we present results on the real iCub application in Section 7.

Our software is available through the GPL license, and publicly
available at:

https://github.com/inria-larsen/icubLearningTrajectories.

Tutorial, readme, and videos can be found in that repository.
First, the readme file describes how to launch simple demon-
strations of the software. Videos present these demonstrations to
simplify the understanding. In the next sections, we detail the
operation of the demo program for a first case of 1-DOF primitive,
followed by the presentation of the specific applications on the
iCub (first simulated and then real).

5. SOFTWARE EXAMPLE: LEARNING A
1-DOF PRIMITIVE

In this section, we present the use of the software to learn ProMPs
in a simple case of 1-DOF primitive. This example only uses the
MatlabProgram folder, composed of:

FIGURE 5 | Software architecture and data flows. The robot’s control is done either by the user’s guidance (manually or through a haptic device) represented in blue,
or by the Matlab module, in purple. The C++ module handles the control source to command the robot, as represented in black. Moreover, this module forwards
information that comes from the iCub.
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• A sub-folder called “Data,” where there are trajectory sets used
to learn movement primitives. These trajectories are stored in
text files with the following information:

– input parameters: # input1 # input2 [. . .]
– input parameters with time step: # timeStep # input1 #

input2 [. . .]
– recordTrajectories.cpp program recording: See Section 6.3 for

more information.

• A sub-folder called “used_functions.” It contains all the func-
tions used to retrieve trajectories, compute ProMPs, infer tra-
jectories, and plot results. Normally, using this toolbox does not
require understanding these functions. The first lines of these
functions give an explanation of their functioning and precise
what are the input(s) and output(s) parameters.

• Matlab scripts called “demo_*.m.” They are simple examples of
how to use this toolbox.

The script demo_plot1DOF.m, can be used to compute a
ProMP and to continue an initiated movement. The ProMP
is computed from a dataset stored in a “.mat” file, called
traj1_1DOF.mat. In this script, variables are first defined to make
the script specific to the current dataset:

Variable assignation Commentary

DataPath=
‘Datatraj1_1DOF.mat’;

Can be either “.mat” or “.txt”. In the current
demo, you can also write DataPath= ‘Data/traj1’
if you want to use the text files of this dataset.

typeRecover= ‘.mat’ Or .txt, it depends on your choice of data file.

inputName= {‘z[m]’}; Label of your input(s). Here z represents the
z-axis Cartesian coordinate.

s_ref= 100; Number of samples used as reference to rescale
all the trajectories to the same duration.

nbInput= 1; Dimension of the generic vector containing the
state of the trajectory.

M= 5; Number of radial basis functions per input.

expNoise= 0.00001; Expected trajectory noise.

percentData=20; Percent of observed data during the inference.

The variables include the following:

• DataPath is the path to the recorded data. If the data are
stored in text files, this variable contains the folder name where
text files are stored. These text files are called “recordX.txt,”
with X∈ [0: n− 1] if there are n trajectories. One folder is
used to learn one ProMP. If the data are already loaded from
a “.mat” file, write the whole path with the extension. The
data in “.mat” match with the output of the Matlab function
loadTrajectory.

• nbInput=D is the dimension of the input vector ξt.
• expNoise= Σo

ξ is the expected noise of the initiated trajec-
tory. The smaller this variable is, the stronger the modification
of the ProMP distribution will be, given new observations.

We will now explain more in detail the script. To recover data
recorded in a “.txt” file, we call the function:

t{1}= loadTrajectory(PATH, nameT, varargin)

Its input parameters specify the path of the recorded data,
the label of the trajectory. Other information can be added by
using the varargin variable (for more detail, check the header
of the function with the help comments). The output is an object
that contains all the information about the demonstrated tra-
jectories. It is composed of nbTraj, the number of trajectory;
realTime, the simulation time; and y (and yMat), the vector
(and matrix) trajectory set. Thus, t{1}.y{i} contains the i-th
trajectory.

The Matlab function drawRecoverData(t{1},
inputName,'namFig', nFig, varargin) plots in a Matlab
figure (numbered nFig) the dataset of loaded trajectories. An
example is shown in Figure 2, on the left. Incidentally, the
different duration of the trajectories is visible: on average, it is
1.17± 0.42 s.

To split the entire dataset of demonstrated trajectories t{1}
into a training dataset (used for learning the ProMPs) and a test
dataset (used for the inference), call the function

[train, test]= partitionTrajectory(t{1},
partitionType, percentData, s_ref)

where if partitionType= 1, only one trajectory is in the
test set and the others are placed in the training set, and if
partitionType> 1 it corresponds to the percentage of trajec-
tories that will be included in the training set.

The ProMP can be computed from the training set by using the
function:

promp= computeDistribution(train, M, s_ref, c, h)

The output variable promp is an object that contains all the
ProMP information. The first three input parameters have been
presented before: train is the training set, M is the number of
RBFs, and s_ref is the number of samples used to rescale all the
trajectories. The last two input parameters c and h shape the RBFs
of the ProMP model: c∈ RM is the center of the Gaussians and
h∈ R their variance.

To visualize this ProMP, as shown in Figure 2, call the function:

drawDistribution(promp, inputName, s_ref)

For debugging purposes and to understand how to tune the
ProMPs’ parameters, it is interesting to plot the overlay of the basis
functions in time. Choosing an appropriate number of basis func-
tions is important, as too few may be insufficient to approximate
the trajectories under consideration, and too many could result in
overfitting problems. To plot the basis functions, simply call:

drawBasisFunction(promp.PHI, M)

where promp.PHI is a set of RBFs evaluated in the normalized
time range t ∈ [1 : s̄].

Figure S1 in Supplementary Material shows at the top the basis
functions before normalization, and at the bottom the ProMP
modeled from these basis functions. From left to right, we change
the number of basis functions. When there are not enough basis
functions (left), the model is not able to correctly represent the
shape of the trajectories. In the middle, the trajectories are well
represented by the five basis functions. With more basis func-
tions (right), the variance of the distribution decreases because
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the model is more accurate. However, arbitrarily increasing the
number of basis functions is not a good idea, as itmay not improve
the accuracy of the model and worse it may cause overfitting.

Once the ProMP is learned, the robot can reproduce the move-
ment primitive using the mean of the distribution. Moreover, it
can now recognize a movement that has been initiated in this
distribution and predict how to finish it. To do so, given the
early no observations of a movement, the robot updates the prior
distribution to match the early observed data points: through
conditioning, it finds the posterior distribution, which can be used
by the robot to execute the movement on its own.

The first step in predicting the evolution of the trajectory is
to infer the duration of this trajectory, which is encoded by the
time modulation parameter α̂. The computation of this inference,
which was detailed in Section 3.4, can be done by using the
function:

[expAlpha, type, x]= inferenceAlpha(promp,
test{1}, M, s_ref, c, h, test{1}.nbData,. . .
expNoise, typeReco)

where typeReco is the type of criteria used to find the expected
time modulation (“MO,” “DI,” or “ML” for model, distance or
maximum likelihood methods); expAlpha = α̂ is the expected
time modulation; type is the index of the ProMP from which
expAlpha has been computed, which we note in this article as
k. To predict the evolution of the trajectory, we use equation (8)
from Section 3.3. In Matlab, this is done by the function:

infTraj= inference(promp, test{1}, M, s_ref, c,
h,. . . test{1}.nbData, expNoise, expAlpha).

where test{1}.nbData has been computed during the
partitionTrajectory step. This variable is the number of
observations no, representing the percentage of observed data
(percentData) of the test trajectory (i.e., to be inferred) that
the robot observes. infTraj= Ξ̂ is the inferred trajectory.
Finally, to draw the inferred trajectory, we can call the function
drawInference(promp, inputName, infTraj, test1,
s_ref).

It can be interesting to plot the quality of the predicted tra-
jectories as a function of the number of observations, as done in
Figure 3.

Note that when we have observed a larger portion of the trajec-
tory, the prediction of the remaining portion is more accurate.

Nowwewant tomeasure the quality of the prediction. LetΞ∗ =
[ξo(1), . . . , ξo(no), ξ∗(no + 1), . . . , ξ∗(t∗f )] be the real trajectory
expected by the user. To measure the quality of the prediction, we
can use:

• The likelihood of having the Ξ* trajectory given the updated
distribution p(ω̂).

• The distance between the Ξ* trajectory and the Ξ̂ inferred
trajectory.

However, according to the type of recognition typeReco used
to estimate the time modulation parameter α from the early
observations, a visible mismatch between the predicted trajectory
and the real one can be visible even when a lot of observations
are used. This is due to the error of the expectation of this time

FIGURE 6 | The prediction of the future trajectory given no = 40% of early
observations from the learned ProMP computed for the test dataset
(Figure 2). The plots show the predicted trajectory, using different criteria to
estimate the best phases of the trajectory: using the average time modulation
(equation (11)); using the distance criteria (equation (13)); using the maximum
log-likelihood (equation (12)); or using a model of time modulation according
to the time variation (equation (14)).

TABLE 2 | Information about trajectories’ duration.

Traj. samples α = s̄
Iterations , s̄ = 100 Duration [s]

Min 83 1.2048 0.83
Max 115 0.8696 1.15
Mean 100 1 0.99
SD 9 11.1111 0.09

modulation parameter. In Section 3.4, we present the different
methods used to predict the trajectory duration. These methods
select the most likely α̂ according to different criteria: distance;
maximum likelihood; model of the α variable11; and average of
the observed α during learning.

Figure 6 shows the different trajectories predicted after
no = 40% of the length of the desired trajectory is observed,
according to the method used to estimate the time modulation
parameter.

On this simple test, where the variation time is little as shown
in Table 2, the best result is accomplished by the average of time
modulation parameter of the trajectories used during the learning
step. Inmore complicated cases, when the timemodulation varies,
the other methods will be preferable as seen in Section 3.5.

6. APPLICATION ON THE SIMULATED
iCub: LEARNING THREE PRIMITIVES

In this application, the robot learnsmultiple ProMPs and is able to
predict the future trajectory of a movement initiated by the user,
assuming the movement belongs to one of the learned primitives.

11 In this model, we assume that we can find the time modulation parameter
according to the global variation of the position during the no first observed data.
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FIGURE 7 | Left: the three colored targets that the robot must reach from the starting point; the corresponding trajectories are used to learn three primitives
representing three skills. Right: the Cartesian position information of the demonstrated trajectories for the three reaching tasks.

Based on this prediction, it can also complete the movement once
it has recognized the appropriate ProMP.

We simplify the three actions/tasks by reaching three differ-
ent targets, represented by three colored balls in the reachable
workspace of the iCub. The example is performed with the simu-
lated iCub in Gazebo. Figure 7 shows the three targets, placed at
different heights in front of the robot.

In Section 6.1, we formulate the intention recognition problem
for the iCub: the problem is to learn the ProMP from trajectories
consisting of Cartesian positions in 3D12 and the 6Dwrench infor-
mation measured by the robot during the movement. In Section
6.2, we describe the simulated setup of iCub in Gazebo, then in
Section 6.3, we explain how trajectories are recorded, including
force information, when we use the simulated robot.

6.1. Predicting Intended Trajectories by
Using ProMPs
The model is based on Section 3, but here we want to learn more
information during movements. We record this information in a
multivariate parameter vector:

∀t, ξt =
[
Xt
Ft

]
∈ R9,

where Xt ∈ R3 is the Cartesian position of the robot’s end effector
and Ft ∈ R6 the external forces and moments. In particular,
Ft contains the user’s contact forces and moments. Let us call
dim(ξt)=D, the dimension of this parameter vector.

The corresponding ProMP model is as follows:

ξt =
[
Xt
Ft

]
= Φαtω + ϵt,

where ω ∈ RD·M is the time-independent parameter vector,

ϵt =
[
ϵXt

ϵFt

]
∈ RD is the zero-mean Gaussian i.i.d. observation

12Note that in that particular example we do not use the orientation because we
want the robot’s hand to keep the same orientation during the movement. But
in principle, it is possible to learn trajectories consisting of the 6D/7D Cartesian
position and orientation of the hand, to make the robot change also the orientation
of the hand during the task.

noise, and Φαt ∈ RD×D·M a matrix of Radial Basis Functions
(RBFs) evaluated at time αt.

Since we are in the multidimensional case, this Φαt block
diagonal matrix is defined as follows:

Φαt = BlockdiagonalMatrix(ϕ1, . . . , ϕD) ∈ RD×D·M.

It is a diagonal matrix of D Radial Basis Functions (RBFs),
where each RBF represents one dimension of the ξt vector and it is
composed ofM Gaussians, spread over same number of samples s̄.

6.1.1. Learning Motion Primitives
During the learning step of each movement primitive k∈ [1 :
3], the robot observes different trajectories Sk = {Ξ1,…,Ξn}k, as
presented in Section 6.3.

For each trajectory Ξi[1:tfi] = [ξi(1), . . . , ξi(tfi)]
T, it computes

the optimal ωki parameter vector that best approximates the
trajectory.

We saw in Section 3.5 how these computations are done. In our
software, we use matrix computation instead of tfi iterative ones
done for each observation t (as in equation (3)). Thus, we have
the following:

ωki =
(
Φ⊤
α[1:tfi]Φα[1:tfi]

)−1
Φ⊤
α[1:tfi] ∗ Ξi[1:tfi] (17)

with Φα[1:tfi] = [Φα1,Φα2 . . . ,Φαtfi ]
T.

6.1.2. Prediction of the Trajectory Evolution from
Initial Observations
After having learned the three ProMPs, the robot is able to fin-
ish an initiated movement on its own. In Sections 3.3–3.5, we
explained how to compute the future intended trajectory given the
early observations.

In this example, we add specificities about the parameters to
learn.

Let Ξo =
[
Xo

Fo
]

= [Ξ1 . . .Ξno ]
T be the early observations of the

trajectory.
First, we only consider the partial observations: Xo =

[X1 . . .Xno ]
T. Indeed, we assume the recognition of a trajectory

is done with Cartesian position information only, because the
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same movement can be done and recognized with different force
profiles than the learned ones.

From this partial observation Xo, the robot recognizes the
current ProMP k̂ ∈ [1 : 3], as seen in Section 3.5. It also computes
an expectation of the time modulation t̂f, as seen in Section 3.4.
Using the expected value of the time modulation, it approximates
the trajectory speed and its total time duration.

Second, we use the total observation Ξo to update the ProMP,
as seen in Section 3.3. This computation is based on equation (18),
but here again, we use the following matrix computation:

µ̂ωk = µωk + K
(
Ξo − Φα[1:no]µωk

)
Σ̂ωk = Σωk − K

(
Φα[1:no]Σωk

)
K = ΣωkΦ

T
α[1:no]

(
Σξo + Φα[1:no]ΣωkΦ

T
α[1:no]

)−1
.

From this posterior distribution, we retrieve the inferred Ξ̂ =
{ξ̂1, ..., ξ̂̂tf} trajectory, with:

∀t ∈ [1 : t̂f], ξ̂t =
[
X̂t
F̂t

]
= Φαtµ̂ωk .

Note that the inferred wrenches F̂t, here, correspond to the
simulated wrenches in Gazebo. In this example, there is little use
for them in simulation; the interest for predicting also wrenches
will be clearer in Section 7, with the example on the real robot.

6.2. Setup for Simulated iCub
For this application, we created a prototype in Gazebo, where the
robot must reach three different targets with the help of a human.
To interact physically with the robot simulated in Gazebo, we used
the Geomagic touch, a haptic device.

The setup consists of the following:

• the iCub simulation in Gazebo, complete with the
dynamic information provided by wholeBodyDynamicsTree
(https://github.com/robotology/codyco-modules/tree/master/
src/modules/wholeBodyDynamicsTree) and the Cartesian
information provided by iKinCartesianController;

• the Geomagic Touch, installed following the instructions
in https://github.com/inria-larsen/icub-manual/wiki/
Installation-with-the-Geomagic-Touch, which not only
install the SDK and the drivers of the GeoMagic but also point
to how to create the yarp drivers for the Geomagic;

• a C++ module (https://github.com/inria-larsen/icubLearning
Trajectories/tree/master/CppProgram) that connects the out-
put command from the Geomagic to the iCub in Gazebo and
eventually enables recording the trajectories on a file. A tutorial
is included in this software.

The interconnection among the different modules is repre-
sented inFigure 5, where theMatlabmodule is not used. The tip of
the Geomagic is virtually attached to the end effector of the robot:

xgeo → xicub_hand.

When the operator moves the Geomagic, the position of the
Geomagic tip xgeo is scaled (1:1 by default) in the iCub workspace
as xicub_hand, and the Cartesian controller is used to move the iCub

hand around a “home” position, or default starting position:

xicub_hand = hapticDriverMapping(x0 + xgeo),

where hapticDriverMapping is the transformation applied by the
haptic device driver, which essentially maps the axis from the
Geomagic reference frame to the iCub reference frame. By default,
no force feedback is sent back to the operator in this application,
as we want to emulate the zero-torque control mode of the real
iCub, where the robot is ideally transparent and not opposing any
resistance to the human guidance. A default orientation of the
hand (“katana” orientation) is set.

6.3. Data Acquisition
The dark button of the Geomagic is used to start and stop
the recording of the trajectories. The operator must click and
hold the button during the whole movement and release the but-
ton at the end. The trajectory is saved on a file called recordX.txt
for the X-th trajectory. The structure of this file is:

1 #time #xgeo #ygeo #zgeo #fx #fy #fz #mx #my #mz #x_icub_hand
#y_icub_hand #z_icub_hand

2 5.96046e−06 −0.0510954 −0.0127809 −0.0522504 0.284382
−0.0659538 −0.0239582 −0.0162418 −0.0290078 −0.0607215
−0.248905 −0.0872191 0.0477496$

A video showing the iCub’s arm moved by a user through the
haptic device in Gazebo is available in Section 8 (tutorial video).
The graph in Figure 7 represents some trajectories recorded with
the Geomagic, corresponding to lifting the left arm of the iCub.

Demonstrated trajectories and their corresponding forces can
be recorded directly from the robot, by accessing the Cartesian
interface and the wholeBodyDynamicsTree module.13

In our project on Github, we provide the acquired dataset
with the trajectories for the interested reader who wishes to test
the code with these trajectories. Two datasets are available at
https://github.com/inria-larsen/icubLearningTrajectories/tree/
master/MatlabProgram/Data/: the first dataset called “heights” is
composed of three goal-directed reaching tasks, where the targets
vary in height; the second dataset called “FLT” is composed of
trajectories recorded on the real robot, whose armsmove forward,
to the left and to the top.

A Matlab script that learns ProMPs with such kinds of datasets
is available in the toolbox, called demo_plotProMPs.m. It con-
tains all the following steps.

To load the first “heights” dataset with the three trajectories,
write:

1 t{1}= loadTrajectory('Data/heights/bottom', 'bottom', 'refNb',
s_bar, 'nbInput', nbInput, . . . 'Specific', 'FromGeom');

2 t{2}= loadTrajectory('Data/heights/top', 'top', 'refNb',
s_bar, 'nbInput', nbInput, . . . 'Specific', 'FromGeom');

3 t{3}= loadTrajectory('Data/heights/middle', 'forward',
'refNb', s_bar, 'nbInput', nbInput, . . . 'Specific',
'FromGeom');

13 In our example, we do not use the simulated wrench information as it is very noisy.
However, we provide the code and show how to retrieve it and use it, in case the
readers should not have access to the real iCub.
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Figure 7 shows the three sets of demonstrated trajectories. In
the used dataset called “heights,” we have recorded 40 trajectories
per movement primitive.

6.4. Learning the ProMPs
We need to first learn the ProMPs associated with the three
observed movements. First, we partition the collected dataset into
a training set and test dataset for the inference. One random
trajectory for the inference is used:

1 [train{i}, test{i}] = partitionTrajectory(t{i}, 1, percentData,
s_bar);

The second input parameter specifies that we select only one
trajectory, randomly selected, to test the ProMP.

Now, we compute the three ProMPs with:

1 promp{1} = computeDistribution(train{1}, M, s_bar, c, h);
2 promp{2} = computeDistribution(train{2}, M, s_bar, c, h);
3 promp{3} = computeDistribution(train{3}, M, s_bar, c, h)

We set the following parameters:

• s_bar= 100: reference number of samples, which we note in
this article as s̄.

• nbInput(1)= 3; nbInput(2)= 6: dimension of the generic
vector containing the state of the trajectories. It is com-
posed of 3D Cartesian position and 6D forces and wrench
information.14

• M(1)= 5; M(2)= 5: number of basis functions for each
nbInput dimension.

• c= 1/M;h= 1/(M*M): RBF parameters (see equation (2)).
• expNoise= 0.00001: the expected data noise.We assume this

noise to be very low, since this is a simulation.
• percentData= 40: this variable specifies the percentage of the

trajectory that the robot will be observed, before inferring the
end.

These parameters can be changed at the beginning of the
Matlab script.

Figure 8 shows the three ProMPs of the reaching movements
toward the three targets. To highlight the most useful dimen-
sion, we only plot the z-axis Cartesian position. However, each
dimension is plotted by the Matlab script with:

1 drawRecoverData(t{1}, inputName, 'Specolor', 'b', 'namFig', 1);
2 drawRecoverData(t{1}, inputName, 'Interval', [4 7 5 8 6 9],

'Specolor', 'b', 'namFig', 2);
3 drawRecoverData(t{2}, inputName, 'Specolor', 'r', 'namFig', 1);
4 drawRecoverData(t{2}, inputName, 'Interval', [4 7 5 8 6 9],

'Specolor', 'r', 'namFig', 2);
5 drawRecoverData(t{3}, inputName, 'Specolor', 'g', 'namFig', 1);
6 drawRecoverData(t{3}, inputName, 'Interval', [4 7 5 8 6 9],

'Specolor', 'g', 'namFig', 2);

14Note that in our example wrenches are separated from the Cartesian position,
because they are not used to recognize the index of the current ProMP during the
inference.

FIGURE 8 | The Cartesian position in the z-axis of the three ProMPs
corresponding to reaching three targets. There are 39 trajectory
demonstrations per each ProMPs with M= 5 basis functions,
c = 1

M , h = 1
M2 and s̄ = 100.

6.5. Predicting the Desired Movement
Now that we have learned the different ProMPs, we can predict
the end of a trajectory according to the early observation no. This
number is computed from the variable percentData written at
the beginning of the trajectory by: no = | percentData100 ∗ tfi|, where i is
the index of the test trajectory.

To prepare the prediction, the model the time modulation of
each trajectory is computed with:

1 w= computeAlpha(test.nbData, t, nbInput);
2 promp1.w_alpha= w1;
3 promp2.w_alpha= w2;
4 promp3.w_alpha= w3;

This model relies on the global variation of Cartesian position
during the first no observations. The model’s computations are
explained in Section 3.4.

Now, to estimate the time modulation of the trajectory, call the
function:

1 [alphaTraj, type, x] = inferenceAlpha(promp, test{1}, M, s_bar,
c, h, test{1}.nbData, expNoise, 'MO');

where alphaTraj contains the estimated time modulation α̂ and
type gives the index of the recognized ProMP. The last parameter
x is used for debugging purposes.

Using this estimation of the time modulation, the end of the
trajectory is inferred with:

1 infTraj= inference(promp, test{1}, M, s_bar, c, h,
test{1}.nbData, expNoise, alphaTraj);

As shown in the previous example, the quality of the prediction
of the future trajectory depends on the accuracy of the time

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 4516

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Dermy et al. Prediction of Intention during Interaction with iCub

modulation estimation. This estimation is computed by calling the
function:

1 %Using the model:
2 [alphaTraj, type, x] = inferenceAlpha(promp, test{1}, M, s_bar,

c, h, test{1}.nbData, expNoise, 'MO');
3 %Using the distance criteria:
4 [alphaTraj, type, x] = inferenceAlpha(promp, test{1}, M, s_bar,

c, h, test{1}.nbData, expNoise, 'DI');
5 %Using the Maximum likelihood criteria:
6 [alphaTraj, type, x] = inferenceAlpha(promp, test{1}, M, s_bar,

c, h, test{1}.nbData, expNoise, 'ML');
7 %Using the mean of observed temporal modulation during learning:
8 alphaTraj = (promp{1}.mu_alpha + promp{2}.mu_alpha+ promp{3}.

mu_alpha)/3.0;

6.6. Predicting the Time Modulation
In Section 3.4, we presented four main methods for estimating
the time modulation parameter, discussing why this is crucial
for a better estimation of the trajectory. Here, we compare the
methods on the three goals experiment. We recorded 40 trajec-
tories for each movement primitive, for a total of 120 trajectories.
After having computed the corresponding ProMPs, we tested the
inference by providing early observations of a trajectory that the
robot must finish. For that purpose, it recognizes the correct
ProMP among the three precedently learned (see Section 3.5)
and then it estimates the time modulation parameter α̂. Figure 9
represents the average error of the α̂ during inference for 10 trials
according to the number of observations (from 30 to 90% of
observed data) and according to the usedmethod. These methods
are the ones we have just presented before that we called mean
(equation (11)), maximum likelihood (equation (12)), minimum
distance (equation (13)) or model (equation (14)). Each time,
the tested trajectory is chosen randomly from the data set of
observed trajectories (of course, the test trajectory does not belong
to the training set, so it was not used in the learning step). The
method that takes the average of α observed during learning is
taken as comparison (in black). We can see that other methods
are more accurate. The maximum likelihood is increasingly more
accurate, as expected. The fourth method (model) that models the
α according to the global variation of the trajectory’s positions
during the early observations is the best performing when the
portion of observed trajectory is small (e.g., 30–50%). Since it is
our interest to predict the future trajectory as early as possible, we
adopted the model method for our experiments.

7. APPLICATION ON THE REAL iCub

In this section, we present and discuss two experiments with the
real robot iCub.

In the first, we take inspiration from the experiment of the
previous Section 6, where the “tasks” are exemplified by simple
point-to-point trajectories demonstrated by a human tutor. In this
experiment, we explore how to use wrench information and use
known demonstrations as ground truth, to evaluate the quality of
our prediction.

In the second experiment, we set up a more realistic col-
laborative scenario, inspired by collaborative object sorting. In

such applications, the robot is used to lift an object (heavy, or
dangerous, or that the human cannot manipulate, as for some
chemicals or food), the human inspects the object and then
decides if it is accepted or rejected.Depending on this decision, the
object goes on a tray or bin in front of the robot, or on a bin located
on the robot side. Dropping the objects in two cases must be done
in a different way. Realizing this application with iCub is not easy,
as iCub cannot lift heavy objects and has a limited workspace.
Therefore, we simplify the experiment with small objects and two
bins. The human simply starts the robots movement with physical
guidance, and then the robot finishes themovement on its own. In
this experiment the predicted trajectories are validated on-the-fly
by the human operator.

In a more complex collaborative scenario, tasks could be ele-
mentary tasks such as pointing, grasping, reaching, and manipu-
lating tools (the type of task here is not important, as long as it can
be represented by a trajectory).

7.1. Three Simple Actions with Wrench
Information
Task trajectories, in this example, have both position and wrench
information. In general, it is a good idea to represent collaborative
motion primitives in terms of both position and wrenches, as
this representation enables using them in the context of phys-
ical interaction. Contrarily to the simulated experiment, here
the inferred wrenches F̂t correspond to the wrenches the robot
should perceive if the partner was manually guiding the robot
to perform the entire movement: indeed, these wrenches are
computed from the demonstrations used to learn the primitive.
The predicted wrenches can be used in different ways, depend-
ing on the application. For example, if the partner breaks the
contact with the robot, the perceived wrenches will be differ-
ent. If the robot is not equipped with tactile or contact sen-
sors, this information can be used by the robot to “perceive”
the contact breaking and interpret it, for example, as the sign
that the human wants the robot to continue the task on its
own. Another use for the demonstrated wrenches is for detecting
abnormal forces while the robot is moving: this use can have
different applications, from adapting the motion to new environ-
ment to automatically detecting new demonstrations. Here, they
are simply used to detect when the partner breaks the contact
with the robot, and the latter must continue the movement on
its own.

In the following, we present how to realize the experiment
for predicting the user intention with the real iCub, using our
software. The robot must learn three task trajectories represented
in Figure 10. In red, the first trajectory goes from an initial
position in front of the robot to its left (task A). In green, the
second trajectory goes from the same initial position to the top
(task C). In blue, the last trajectory goes from the top position to
the position on the left (task B).

To provide the demonstrations for the tasks, the human tutor
used three visual targets shown on the iCub_GUI, a basic module
of the iCub code that provides a real-time synthetic and aug-
mented view of the robot status, with arrows for the external
forces and colored objects for the targets. One difficulty for novice
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FIGURE 9 | (Top left) Error of α estimation; (top right and bottom) error of trajectory prediction according to the number of known data and the method used. We
executed 10 different trials for each case.

users of iCub is to be able to drive the robot’s arm making it
perform desired complex 3D trajectories (Ivaldi et al., 2017),
but after some practice in moving the robot’s arm the operator
recorded all the demonstrations. We want to highlight that having
variations in the starting or ending points of the trajectories is
not at all a problem, since the ProMPs are able to deal with this
variability.

We will see that by using the ProMPs method and by learning
the end-effector Cartesian position, the robot will be able to
learn distributions over trajectories, recognize when a movement
belongs to one of these distributions, and infer the end of the
movement.

In this experiment, the robot received 10 demonstrated tra-
jectories per movement primitive, all provided by the same
user. We recorded the Cartesian end-effector position and the
wrenches of the robot’s left arm. Data are retrieved using
the function used_functions/retrieveRealDataWithout
Orientation.m. The output parameters of this function are three
objects (one per ProMP) that contain all the required information
to learn the ProMPs.

In this function, the wrench information are filtered using a
Matlab function called envelope.m15: for each trajectory traj
and its subMatrix M= F([1: t]):

1 [envHigh, envLow] = envelope(traj.M);
2 traj.M = (envHigh+ envLow)/2;

These three objects are saved in 'Data/realIcub.mat'. A
Matlab script called demo_plotProMPsIcub.m recovers these
data, using the function load('Data/realIcub.mat'). This
script follows the same organization as the ones we previously
explained in Sections 5 and 6. By launching this script, the recov-
ered data are plotted first.

Then, the ProMPs are computed and plotted, as presented in
Figure 11. In this figure, the distributions are visibly overlaid:

• during the whole trajectories duration for the wrench informa-
tion;

15 Information about this function can be found here: https://fr.mathworks.com/
help/signal/ref/envelope.html?requestedDomain=www.mathworks.com.
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FIGURE 10 | Top left: the iCub and the visualization of the three targets in its workspace, defining the three tasks A–B–C. Top right: Cartesian position information of
the demonstrated trajectories for the three tasks. Bottom left and right: wrench (force and moment) information of the demonstrated trajectories.

• during the 40% first samples of the trajectories for the Cartesian
position information.
After this learning step, the user chooses which ProMP to test.

Using a variable that represents the percentage of observed data
to be used for the inference, the script computes the number of
early observations no16 that will be measured by the robot. Using
this number, the robot models the time modulation parameter
α17 of each ProMP, as explained in Section 3.4. Using this model,
the time modulation of the test trajectory is estimated, and the
corresponding ProMP is identified.

Then, the inference of the trajectory’s target is performed.
Figure 12 represents the inference of the three tested trajectories
when wrench information is not used by the robot to infer the
trajectory. To realize this figure, with the comparison between
the predicted trajectory and the ground truth, we applied our
algorithm offline. In fact, it is not possible at time t to have the

16 no is not the same for each trajectory test, because it depends on the total duration
of the trajectory to be inferred.

17 Since the model uses the no parameter, its computation cannot be performed
before this step.

ground truth of the trajectory intended by the human from t+ 1
to tf: even if we would tell to the human in advance the goal that
he/she must reach for, the trajectory to reach that goal could vary.
So, for the purpose of these figures and comparisons with the
ground truth, we show here the offline evaluation: we select one
demonstrated task trajectory from the test set (not the training
set used to learn the ProMP) as ground truth, and imagine that
this is the intended trajectory. In Figure 12, the ground truth is
shown in black, whereas the portion of this trajectory that is fed to
the inference, and that corresponds to the “early observations,” is
representedwith bigger black circles.We can see that the inference
of the Cartesian position is correct, althoughwe can see an error of
about 1 s of the estimated duration time for the last trial. Also, the
wrench inference is not accurate.We can assume that it is: because
the robot infers the trajectory using only position information
without wrench information, or because the wrenches’ variation
is not correlated to the position variation. To improve this result,
we can make the inference using wrench in addition to Cartesian
position information, as shown in Figure 13. We can see in this
figure that the estimation of the trajectory’s duration is accurate.
The disadvantage is that the inference of the Cartesian position
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FIGURE 11 | The ProMPs learned by the robot from the demonstrations of Figure 10.

is less accurate because the posterior distribution computation
makes a trade-off between fitting Cartesian position and wrench
early observations. Moreover, to allow a correct inference using
wrench information, the noise expectation must be increased to
consider forces.18

To confirm these results, we analyzed the trajectory infer-
ence and α estimation considering different percentages of each
trajectory as observed data (30–90%). For each percentage, we
performed 20 tests, with and without force information.

InFigure 14, each box-plot represents errors for 20 tests. On the
top, the error criterion is the average distance between the inferred
trajectory and the real one. We can see that the inference of
Cartesian end-effector trajectory ismore accurate without wrench
information. On the bottom, the error criterion is the distance
between the estimated α and the real one. We can see that using
wrench information, the estimation of the α is more accurate.
Thus, these two graphs confirmwhat we assumed fromFigures 12
and 13.

Median, mean, and variance of the prediction errors, com-
puted with the normalized root-mean-square error (NRMSE), are
reported in Table S1 in Supplementary Material. The prediction
error for the time modulation is a scalar: |αprediction −αreal|. The
prediction error for the trajectory is computed by the NRMSE of
|Ξprediction −Ξreal|.

In future upgrades for this application, we will probably use
the wrench information only to estimate the time modulation
parameter α, to have both the best inference of the intended

18 In future versions, we will include the possibility to have different noise models

for the observations, e.g., we will have Σo
Ξ =

[
ΣX 0
0 ΣF

]
. We will therefore set a

bigger covariance for the wrench information than for the position information.

trajectory and the best estimation of the time modulation param-
eter to combine the benefits of inference with and without wrench
information.

Table S1 in Supplementary Material also reports the average
time for computing the prediction of both time modulation and
posterior distribution. The computation was performed in Mat-
lab, on a single core laptop (no parallelization). While the com-
putation time for the case “without wrenches” is fine for real-time
application, using the wrench information delays the prediction
and represents a limit for real-time applications if fast decisions
have to taken by the robot. Computation time will be improved in
the future works, with the implementation of the prediction in an
iterative way.

7.2. Collaborative Object Sorting
We realized another experiment with iCub, where the robot has to
sort some objects in different bins (see Figure S2 in Supplementary
Material). We have two main primitives: one for a bin located on
the left of the robot, and one for the bin to the front. Dropping the
object is done at different heights, with a different gesture that also
has a different orientation of the hand. For this reason, the ProMP
model consists of the Cartesian position of the hand Xt = [xt, yt,
zt]∈R3 and its orientation At ∈R4, expressed as a quaternion:

ξt =
[
Xt
At

]
= Φαt ω + ϵt.

As in the previous experiment, we first teach the robot the prim-
itives by kinesthetic teaching, with a dozen of demonstrations.
Thenwe start the robotmovement: the human operator physically
grabs the robot’s arm and start the movement toward one of the
bins. The robot’s skin is used twice. First, to detect the contact
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A

B

C

FIGURE 12 | The prediction of the future trajectory from the learned ProMPs computed from the position information for the 3-targets dataset on the real iCub
(Figure 11) after 40% of observations.
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FIGURE 13 | The prediction of the future trajectory from the learned ProMPs computed from the position and wrench information for the 3-targets dataset on the real
iCub (Figure 11) after 40% of observations.
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FIGURE 14 | Trajectory prediction error (top) and time modulation estimation error (bottom) of the future trajectory with and without wrench information, for the
3-targets dataset on the real iCub (Figure 11) with respect to the number of observed data points.

when the human grabs the arm, which marks the beginning of
the observations. Second, when the human breaks the contact
with the arm, which marks the end of the observations. Using the
first portion of the observed movement, the robot recognizes the
current task that is being executed, predicts the future movement
that is intended by the human, and then executes it on its own.
In the video (see link in Section 8), we artificially introduced a
pause to let the operator “validate” the predicted trajectory, using
a visual feedback on the iCubGui. Figure S3 in Supplementary
Material shows one of the predictions made by the robot after the
human releases the arm. Of course in this case, we do not have
a “ground truth” for the predicted trajectory, only a validation of
the predicted trajectory by the operator.

8. VIDEOS

We recorded several videos that complement the tutorials. The
videos are presented in the github repository of our software:
https://github.com/inria-larsen/icubLearningTrajectories/tree/
master/Videos.

9. DISCUSSION

While we believe that our proposed method is principled and
has several advantages for predicting intention in human–robot
interaction, there are numerous improvements that can be done.
Some will be object of our future works.

9.1. Improving the Estimation of the Time
Modulation
Our experiments showed that estimating the time modulation
parameter α, determining the duration of the trajectory, greatly
improves the prediction of the trajectory in terms of difference
with the human intended trajectory (i.e., our ground truth). We
proposed four simple methods in Section 3.4, and in the iCub
experiment, we showed that the method that maps the time
modulation and the variation of the trajectory in the first no
observations provides a good estimate of the time modulation α
for our specific application. However, it is an ad hoc model that
cannot be generalized to all possible cases. Overall, the estimation
of the time modulation (or phase) can be improved. For example,
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Maeda et al. (2016) used Dynamic Time Warping, while Ewerton
et al. (2015) proposed to improve the estimation by having local
estimations of the speed in the execution of the trajectory, to
comply with cases where the velocity of task trajectory may not
be constant throughout the task execution. In the future, we plan
to explore more solutions and integrate them into our software.

9.2. Improving Prediction
Another point that needs further investigation and improvement
is how to improve the prediction of the trajectories exploit-
ing different information. In our experiment with iCub, we
improved the estimation of the time modulation using position
and wrench information; however, we observed that the noisy
wrench information does not help in improving the prediction of
the position trajectory. One improvement is to certainly exploit
more information from the demonstrated trajectories, such as
estimating the different noise of every trajectory component and
exploiting this information to improve the prediction. Another
possible improvement would consist in using contextual infor-
mation about the task trajectories. Finally, it would be interesting
to try to identify automatically the characteristic such as velocity
profiles or accelerations, which are renown to play a key role
in attributing intentions to human movements. For example, in
goal-directed tasks such as reaching, the arm velocity profile, and
the hand configuration are cues that helps us detect intentions.
Extracting these cues automatically, leveraging the estimation of
the time modulation, would probably improve the prediction of
the future trajectory. This is a research topic on its own, outside
the scope of this article, with strong links to humanmotor control.

9.3. Continuous Prediction
In Section 3.5, we described how to compute the prediction of the
future trajectory after recognizing the current task. However, we
did not explore what happens if the task recognition is wrong: this
may happen, if there are two or more task with a similar trajectory
at the beginning (e.g., moving the object from the same initial
point toward one of four possible targets), or simply because there
were not enough observed points. So what happens if our task
recognition is wrong? How to re-decide on a previously identified
task? And how should the robot decide if its current prediction
is finally correct (in statistical terms)? While implementing a
continuous recognition and prediction is easywith our framework
(one has simply to do the estimation at each time step), providing
a generic answer to these question may not be straightforward.
Re-deciding about the current task implies also changing the
prediction of the future trajectory. If the decision does not come
with a confidence level greater than a desired value, then the robot
could face a stall: if asked to continue the movement but unsure
about the future trajectory, should it continue or stop? The choice
may be application dependent. We will address these issues and
the continuous prediction in future works.

9.4. Improving Computational Time
Finally, we plan to improve the computational time for the infer-
ence and the portability of our software by porting the entire
framework in C++.

9.5. Learning Tasks with Objects
In many collaborative scenarios, such as object carrying and
cooperative assembly, the physical interaction between the human
and the robot is mediated by objects. In these cases, if specific
manipulations must be done on the objects, our method still
applies, but not only on the robot. It must be adapted to the new
“augmented system” consisting of robot and object. Typically, we
could image a trajectory for some frame or variable or point of
interest for the object and learn the corresponding task. Since
ProMPs support multiplication and sequencing of primitives, we
could exploit the properties of the ProMPs to learn the joint
distribution of the robot task trajectories and the object task
trajectories.

10. CONCLUSION

In this article, we propose a method for predicting the intention
of a user physically interacting with the iCub in a collaborative
task.We formalize the intention prediction as predicting the target
and “future” intended trajectory from early observations of the
task trajectory, modeled by Probabilistic Movement Primitives
(ProMPs). We use ProMPs because they capture the variability
of the task, in the form of a distribution of trajectories coming
from several demonstrations of the task. From the information
provided by the ProMP, we are able to compute the future tra-
jectory by conditioning the ProMP to match the early observed
data points. Additional features of our method are the estimation
of the duration of the intended movement, the recognition of the
current task among the many known in advance, and multimodal
prediction.

Section 3 described the theoretical framework, whereas
Sections 4–7 presented the open-source software that provides the
implementation of the proposedmethod. The software is available
on github, and tutorials and videos are provided.

We used three examples of increasing complexity to show how
to use our method for predicting the intention of the human
in collaborative tasks, exploiting the different features. We pre-
sented experiments with both the real and the simulated iCub.
In our experiments, the robot learns a set of motion primi-
tives corresponding to different tasks, from several demonstra-
tions provided by a user. The resulting ProMPs are the prior
information that is later used to make inferences about human
intention. When the human starts a new collaborative task, the
robot uses the early observations to infer which task the human
is executing and predicts the trajectory that the human intends
to execute. When the human releases the robot, the predicted
trajectory is used by the robot to continue executing the task on
its own.

In Section 9, we discussed some current issues and challenges
for improving the proposed method and make it applicable to a
wider repertoire of collaborative human–robot scenarios. In our
future works, our priority would be in accelerating the time for
computing the inference and finding a principled way to do con-
tinuous estimation, by letting the robot re-decide continuously
about the current task and future trajectory.
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APPENDIX

A. Detail of the Inference Formula
In this Appendix, we explain how to obtain the inference formulae
used in our software. First, let us recall the Marginal and Condi-
tional Gaussians laws.19 Given a marginal Gaussian distribution
for x and a Gaussian distribution for y given x in the following
form:

p(x) = N
(
x|µ,∆−1

)
p(y|x) = N

(
Ax + b, L−1

)
, (A1)

the marginal distribution of y and the conditional distribution of
x given y are given by the following equations:

p(y) = N
(
y|Aµ+ b, L−1 + A∆−1A⊤

)
, (A2)

p(x|y) = N
(
x|ΣA⊤L(y − b) + ∆µ,Σ

)
, (A3)

where
Σ = (∆ + ATLA)

−1
.

We computed the parameter’s marginal Gaussian distribution
from the set of observed movements:

p(ω) ∼ N (µω,Σω), (A4)

19 From the book (Bishop, 2006).

From the model Ξt = Φ[1:tf]ω + ϵΞ, we have the conditional
Gaussian distribution for Ξ given ω:

p(Ξ|ω) = N
(
Ξ|Φ[1:tf]ω,ΣΞ

)
. (A5)

Then, using equation (A2) we have the following:

p(Ξ) = N
(
Ξ|Φ[1:tf]µω,ΣΞ + Φ[1:tf]ΣωΦ⊤

[1:tf]

)
. (A6)

that is the prior distribution of the ProMP.
Let Ξo = [ξo(1), . . . , ξo(no)] be the first no observations of the

trajectory to predict with the first no elements corresponding to
the early observations.

Let Ξ̂ = [ξo(1), . . . , ξo(no), ξ̂(no + 1), . . . , ξ̂(t̂tf)] be the whole
trajectory we have to predict. We can then compute the posterior
distribution of the ProMP by using the conditional Gaussians
equation (A3):

p(ω|Ξo) = N
(
ω|µω + K(Ξo − Φ[1:no]µω),Σω

−KΦ[1:no]Σω

)
(A7)

with K = ΣωΦ⊤
[1:no]

(
ΣΞ + Φ[1:no]ΣωΦ⊤

[1:no]

)−1
. (A8)

Thus, we have the posterior distribution of the ProMP
p(ω|Ξo) = N (ω|µ̂ω, Σ̂ω) with:

µ̂ω = µω + K
(
Ξo − Φ[1:no]µω

)
Σ̂ω = Σω − K

(
Φ[1:no]Σω

)
K = ΣωΦ⊤

[1:no]

(
Σo
ξ + Φ[1:no]ΣωΦ⊤

[1:no]

)−1
.

(A9)
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