
Guido Heumer*
Heni Ben Amor
Bernhard Jung
VR and Multimedia Group

Institute of Informatics

TU Bergakademie Freiberg

Bernhard-von-Cotta Strasse 2

09599 Freiberg, Germany

Presence, Vol. 17, No. 2, April 2008, 121–142

© 2008 by the Massachusetts Institute of Technology

Grasp Recognition for
Uncalibrated Data Gloves: A
Machine Learning Approach

Abstract

This paper presents a comparison of various machine learning methods applied to
the problem of recognizing grasp types involved in object manipulations performed
with a data glove. Conventional wisdom holds that data gloves need calibration in
order to obtain accurate results. However, calibration is a time-consuming process,
inherently user-specific, and its results are often not perfect. In contrast, the present
study aims at evaluating recognition methods that do not require prior calibration
of the data glove. Instead, raw sensor readings are used as input features that are
directly mapped to different categories of hand shapes. An experiment was carried
out in which test persons wearing a data glove had to grasp physical objects of dif-
ferent shapes corresponding to the various grasp types of the Schlesinger taxon-
omy. The collected data was comprehensively analyzed using numerous classifica-
tion techniques provided in an open-source machine learning toolbox. Evaluated
machine learning methods are composed of (a) 38 classifiers including different
types of function learners, decision trees, rule-based learners, Bayes nets, and lazy
learners; (b) data preprocessing using principal component analysis (PCA) with vary-
ing degrees of dimensionality reduction; and (c) five meta-learning algorithms under
various configurations where selection of suitable base classifier combinations was
informed by the results of the foregoing classifier evaluation. Classification perfor-
mance was analyzed in six different settings, representing various application scenar-
ios with differing generalization demands. The results of this work are twofold:
(1) We show that a reasonably good to highly reliable recognition of grasp types
can be achieved—depending on whether or not the glove user is among those
training the classifier—even with uncalibrated data gloves. (2) We identify the best
performing classification methods for the recognition of various grasp types. To
conclude, cumbersome calibration processes before productive usage of data gloves
can be spared in many situations.

1 Introduction

A desirable goal for many applications of immersive VR is the support of
natural virtual object manipulations that closely resemble the manipulation of
real objects. Natural object manipulations are, for example, fundamental in
virtual prototyping for accurate simulation of the operation or assembly of vir-

*Correspondence to guido.heumer@informatik.tu-freiberg.de.

Heumer et al. 121



tual product models (Zachmann & Rettig, 2001). Simi-
larly, the imitation of a VR user’s manipulation of vir-
tual objects has been proposed as a means for
programming assembly robots by demonstration
(Aleotti & Caselli, 2006) and for generating virtual
character animations that faithfully reproduce the user’s
interactions with scene objects (Jung, Amor, Heumer,
& Weber, 2006). To support such natural manipula-
tions, it is crucial that the VR system is able to differen-
tiate between various types of human grasping.

VR-based manipulations of virtual objects are com-
monly facilitated through data glove-type input devices,
such as Immersion’s Cyberglove. In order to recognize
a user-performed grasp, the sensor readings of the data
glove have to be processed, analyzed, and matched to
one of a set of known grasp types. Typically, before us-
ing the data gloves, a time-consuming calibration phase
is needed in order to account for differences in hand
size and proportion when mapping from raw sensor
readings to joint angles of the user’s hand. How an op-
timal calibration can be achieved is still an unsettled
question. The more accurate methods rely on external
vision systems, which themselves need to be calibrated.
Due to the complicated procedure, an accurate calibra-
tion of data gloves is often not possible, particularly in
settings that demand immediate availability for new user
groups, such as public installations.

A main motivation for the work described here is
therefore to find out whether it is possible to recognize
a range of hand shape types during manipulations di-
rectly from raw sensor input without the intermediate
joint angle representations. If successful, the cumber-
some calibration phase could be spared, enabling an
immediate productive use of data gloves in immersive
VR systems in many situations where reliable classifica-
tion of hand shapes (rather than exact reconstruction of
joint angle values) is sufficient for the application.

A second motivation for this work is to evaluate the
performance of different classification methods. The aim
is to identify the classifier (or combination of classifiers)
that is best suited for the problem domain of grasp rec-
ognition from raw data glove sensor data. One justifica-
tion for this endeavor results from the so-called “no free
lunch” (NFL) theorems in machine learning (Wolpert

& Macready, 1997). The NFL theorems state that aver-
aged over all possible problems, all learning algorithms
perform equally. As a consequence, there cannot be one
classification technique that is optimal for all classifica-
tion tasks. However, when restricting the classification
problem to a particular domain, there might well be a
classifier (or a combination of classifiers) that outper-
forms all others. This leads to the conclusion that select-
ing a good classifier should be based on an empirical
evaluation in the respective problem domain. Following
this reasoning, we systematically evaluated a wide range
of machine learning techniques for this problem do-
main.

We have experimented with a total of 38 standalone
classifiers, five meta-classifiers each combining several
base classifiers, and principal component analysis for
dimension reduction as a data preprocessing step in vari-
ous settings to find out which classifiers are suited best
for this type of problem. The settings reflect different
possible use-cases and application scenarios. In this way,
informed decisions can be made about whether or not
to use a particular classification method in a given VR
scenario.

2 Related Work

A variety of research in the fields of medicine, ro-
botics, developmental psychology, and VR has led to
the formulation of grasp taxonomies: categorizations of
grasps based on form or function. An early taxonomy is
described in Schlesinger’s work on constructing artificial
hands (Schlesinger, 1919). He characterized which
functionalities in prosthetic hands are needed to grasp
certain objects. Building on this work, Taylor and
Schwarz (1955) defined English names for the most
important grasps investigated by Schlesinger: cylindrical,
tip, hook, palmar, spherical, and lateral grip (see Fig-
ure 1 for examples). Napier researched the basic task
requirements of grasps and differentiated between two
basic grasp types: the power grip, which clamps an ob-
ject firmly under usage of the palm, and the precision
grip, where the thumb and other fingers pinch the ob-
ject (Napier, 1956). Later, Cutkosky investigated opti-

122 PRESENCE: VOLUME 17, NUMBER 2



mal grasp operations in factories and developed a taxon-
omy for categorizing feasible grasp types in this domain
(Cutkosky, 1989).

In order to enable the computer to recognize and
match a user-performed grasp onto a corresponding
class from the taxonomy, techniques from the area of
pattern classification can be applied. In Friedrich et al.
(1999), a neural network classifier and the Cutkosky
taxonomy were used for this purpose, yielding a classifi-
cation rate of about 90% for grasps performed using a
data glove. According to Ekvall and Kragic (2005), a
hidden Markov model (HMM) based method was even
able to achieve recognition rates of close to 100% for
single user settings. However, recognition rates dropped
significantly (to about 70%) for settings with multiple
users. In Aleotti and Caselli (2006), a nearest neighbor
classifier is used in conjunction with heuristic rules. The
task of these rules is to disambiguate between similar
grasps. In this way, recognition rates of 94% for seen
users (those users who trained the system) and 82% for
unseen users (those users who worked with the system
but did not run the system themselves) were achieved.
Applying a classifier to unseen users always bears the risk
of significantly lower recognition rates. This stems from
the fact that even identical postures can produce differ-
ent sensor values when the sizes of the subjects’ hands
vary. One way to tackle this problem is to perform a
calibration process as in Kahlesz, Zachmann, and Klein
(2004). However, this process can be complex, time-
consuming, and in itself error-prone. In a recent paper
by Borst and Indugula (2005) on realistic virtual grasp-
ing, it was noted that even time-consuming calibration
procedures do not produce accurate results. Another
way to solve this problem is to use classification algo-
rithms that are able to generalize over a large set of us-
ers. However, it is still an open issue which classification
techniques can achieve such generalization as no thor-
ough comparison has been conducted so far. Another
interesting question that needs further investigation is
the performance of classification techniques in different
application scenarios; for example, applications where
new objects are grasped vs. applications where the size
and shape of all objects are known in advance.

In contrast to previous research, the work presented

in this paper does not focus on a particular classification
algorithm or a particular setting. Instead, we try to
compare the performance of a wide range of classifiers
in several settings within the domain of grasp classifica-
tion. Such a comprehensive evaluation enables us to
draw various conclusions about the applicability and the
success of classification with uncalibrated data gloves.

3 Data Acquisition

In the data acquisition phase of our study, sensor
value data was captured from several users, performing
all the grasps of Schlesinger’s taxonomy (Schlesinger,
1919) on various real objects. After recording the raw
data, a first analysis was done on the basis of a Sammon
mapping of a self-organizing map (Kaski, 1997). The
experimental setup and the results of the data analysis
are presented after a short illustration of how the hand
posture is measured by the type of data glove used.

3.1 Data Glove

The data glove used for recording was a 22-sensor
wireless Cyberglove 2 by Immersion, Inc. (see Fig-
ure 1). This type of data glove measures hand posture
through a number of resistive bend-sensing sensors that
are placed in key locations (mostly joint positions) on a
stretch fabric glove. Each of the sensors measures its
amount of bending around one axis (the flat side) in the
form of an 8-bit value between 0 and 255, which is al-
most linearly proportional to the bend angle.

It is important to note that the measured sensor val-
ues do not directly represent finger joint angle values.
For the mapping from sensor values to actual joint an-
gles, a complex calibration and conversion process is
necessary that involves several pitfalls. In the easiest case
of measuring the flexion of the interphalangeal joints, a
direct linear conversion from one sensor value to a joint
angle can be performed. This involves an offset value
(sensor value for which the joint angle is zero) and a
gain factor (a multiplicative term to convert the bend
value to rad/deg). Even for this simplest method of

Heumer et al. 123



mapping, offset and gain values have to be determined
for each single sensor in a tedious process. The situation
becomes even more complicated for joints that have
more than one degree of freedom and thus influence
more than one sensor. Due to cross-couplings between
the sensors, more complex forms of calibration are nec-
essary to achieve a satisfactory fidelity. In Kahlesz et al.
(2004), some recent calibration techniques are summa-
rized. Since our objective was to spare any calibration
process, the raw sensor readings, as transmitted by the
Cyberglove 2, were used directly as a feature vector for
hand posture classification.

3.2 Experimental Setup

For each of the six grasp types, four objects of var-
ious shapes were grasped. The objects were chosen in
such a way that each object naturally affords one of the
Schlesinger grasp types. Table 1 lists the objects used
for each grasp type, and Figure 1 shows pictures of
some of these objects.

For each object, two trial sequences were performed.
In the first sequence, the object was grasped five times,
with the participant’s grasping hand starting from a
fixed position on the table. During this whole sequence
the participant sat at the table. In the second sequence,
the object was again grasped five times. This time, how-
ever, the hand starting position was varied randomly, as
was the object’s orientation on the table. For larger ob-
jects, like the tool box, the participating user was stand-

ing during this sequence. The captured data consisted
of all the 22 glove sensor values representing the hand
posture at the “peak” moment of the grasp—as opposed
to a sequence of sensor values of a full grasping move-
ment. This moment means the time the participant’s
hand firmly held the object and the fingers were at rest.
The peak moment was determined manually by pressing
a button on the data glove.

The whole data acquisition process was conducted
with six participating users. Each user was adult, male,
and right-handed. In total, 6 (participants) � 24 (ob-
jects) � 10 (grasps per participant and object) � 1,440
data items were collected.

3.3 Data Visualization

Before the classifier evaluation was executed, it
proved interesting to first take a “glimpse” at the data.
This helped to get an idea of the problem difficulty, to
assess the quality of the recorded data, and to gain first
ideas about hard-to-differentiate grasp types. Typically,
the recorded data is in a higher-dimensional space—in
the case of our data glove a 22-dimensional space—
which makes human inspection difficult. For inspection
and analysis purposes it is more convenient to create a
visual representation of the experimental data. This can
be achieved through a projection of the high-dimensional
pattern space onto two dimensions. Common techniques
for such projection tasks are the self-organizing map
and Sammon mapping (Kaski, 1997).

Figure 2 shows a projection of our experimental data
using a combination of the two techniques. The projec-
tion is distance preserving, which means that points
which are close to each other in the higher dimensional
space will also be close to each other in the projection.
It can be seen that the spherical grasp forms a particular
region in the upper part of the map. This region can
neatly be separated from regions representing other
grasps, which indicates that classification of spherical
grasps is particularly easy. Although other grasp types
also occupy particular regions on the map, they are
much more intermixed. This yields complex decision
boundaries. For example, the classes tip and palmar can-
not be cleanly separated from each other. What also be-

Table 1. The Grasp Types and Corresponding Trial Objects

Grasp type Objects

Cylindrical Bottle, hammer, flower pot, coffee jug
Hook Plastic case, toolbox, backpack, bag
Lateral Floppy disk, key, ID card, CD case
Palmar Small box, matchbox, tape roller,

PDA case
Spherical Tennis ball, egg-shaped case, bowl,

mouse
Tip Nail, pencil, small eraser, PDA top

124 PRESENCE: VOLUME 17, NUMBER 2



comes visible is that cylindrical grasps are scattered
throughout the map. This observation is particularly
interesting, as it exemplifies the hard separability of the
Schlesinger grasps based on hand shape only. Specifi-
cally, we can expect classification to be more error-prone
for cylindrical grasps and that some grasp types, such as
palmar and tip, could be especially hard to distinguish.

4 Classifier Evaluation

A set of 38 different classifiers from the freely
available Weka data mining software package (Witten &
Frank, 2005) has been evaluated. If not stated other-
wise, all classifiers were run in an “out of the box” fash-
ion, that is, with default settings and without any pa-

Figure 1. Images of some of the objects used during the grasping experiments with their corresponding

grasp types.

Figure 2. Sammon mapping of a self-organizing map representing the data projected onto

a two-dimensional space.

Heumer et al. 125



rameter optimization. The examined algorithms can be
broadly divided into five categories—probabilistic meth-
ods, function approximators, lazy learners, trees, and
rule sets.

1. Probabilistic methods such as the naive Bayes clas-
sifier (Friedman, Geiger, & Goldszmidt, 1997) or Bayes
nets (Cooper & Herskovits, 1992) learn to discriminate
between classes by building probability models of each
class. Using Bayesian inference, the probability of a new
data item belonging to a particular class can be com-
puted. For example, the naive Bayes classifier learns a
model of the training data by estimating class probabili-
ties and conditional probabilities of the variables. To-
gether with the Bayes theorem, these values can be used
to compute the probability of a data item belonging to
a particular class. The only “naive” assumption (hence
the name) that is being made, is that all variables of a
data item are mutually independent.

2. Function approximators learn the parameters of a
function which takes the new data item as an input and
returns the class as an output. Well-known representa-
tives of this type of algorithm are multilayer perceptrons
and radial basis networks (Bishop, 1995). Here, the ap-
proximated function is represented by a set of intercon-
nected neurons. The back-propagation algorithm
(Haykin, 1994) can be used to train such networks in
order to minimize the squared error of approximation.
More modern variants of this class are support vector
machines (SVM; Cristianini & Shawe-Taylor, 2000) and
Gaussian processes (GP: Rasmussen & Williams, 2005).
A basic concept underlying both SVM and GP is the
concept of kernels. Linear combinations of kernels cen-
tered around training data points are used for making
predictions (Bishop, 2006). This allows the use of the
so-called kernel-trick. The basic idea behind the kernel-
trick is to replace all dot products by a kernel function
that maps the original data into a higher-dimensional
space. As a result, it is possible to perform a linear classi-
fication in the higher-dimensional space that corre-
sponds to a nonlinear classification in the original space.
The choice of a proper kernel function is therefore cru-
cial to successful classification. For SVM we used a poly-
nomial kernel and for GP we used a radial basis function
kernel.

3. Lazy learning techniques (Bontempi, Birattari, &
Bersini, 2002) postpone any type of learning until a re-
quest for classification of a new data item is received.
When such a request is received, a database of previ-
ously seen examples is searched for a set of examples,
which are closest to the new item (with respect to a
given distance metric).

4. Tree classifiers, such as decision trees (Quinlan,
1993), try to break up the classification task into a hier-
archy of simple decisions at whose end the final decision
determines the class. As the name suggests, this hierar-
chy has the form of a tree whose nodes represent local
decisions, while leaves represent the classes.

5. Finally, rule induction methods (Quinlan, Comp-
ton, Horn, & Lazarus, 1987) create sets of logical rules
for determining the class of a particular item. Ridor, or
“ripple down rule” (Richards, 2002), is a representative
algorithm from this class. Ridor requires that the data is
incrementally supplied to the training set. Data items
that conflict with previously learned rules are seen as
exceptions. These are then treated by patching the rule
locally for the particular item.

Another category, namely meta learning techniques
(Chan & Stolfo, 1997; Dietterich, 2000; Polikar,
2006), has been examined in a second evaluation stage,
guided by the results of the first one. These are tech-
niques such as boosting or bagging that aim to create
more powerful classifiers through the combination of
several simpler ones. Depending on the algorithm hier-
archies, cascades or ensembles of base classifiers are used
for classification. Since meta classifiers can be built from
essentially arbitrary combinations of simpler classifiers,
they are inherently more complicated to evaluate and a
large number of choices of base classifiers would have to
be looked at to perform a complete evaluation. For this
reason, in our evaluation of the meta schemes (see Sec-
tion 6), we concentrated on the most promising combi-
nations as determined by the evaluation of base classifier
schemes.

Some of the examined algorithms, mainly function
approximators, are originally regression methods which
are not directly usable for classification. To use them as
classifiers for our study, they were run via the “classifica-
tion via regression” method of Weka. This method bi-

126 PRESENCE: VOLUME 17, NUMBER 2



narizes the classes and builds a regression model for
each class.

4.1 Design and Method

To determine which classifier is best suited for the
domain of classifying raw sensor data, a comprehensive,
systematic classifier evaluation was performed. We ex-
amined each classification algorithm in six different set-
tings, formed by a permutation of the values of two sit-
uational variables (see Tables 2 and 3), putting different
generalization demands on the classifiers.

One variable (objects) determined whether the ob-
jects grasped in the test set were seen, that is, grasp ex-
amples with these objects were used for training, versus
unseen, where no grasp examples with these objects
were used during training. Note that even in the seen
case, training and test sets were always disjoint. This
means a grasp example used during training was never
used for testing as well. However, due to the nature of
our data acquisition phase, it can be assumed that in the
seen case for each test item a number of rather similar
items could be found in the training set.

The other variable (user) determined the user group,
that is, which set of users’ grasp examples were taken for
training. For this variable, three different cases were in-
vestigated: individual and group, where training data of
only one user or the full group of users, respectively,
were used for training and testing; and a third case, un-
seen, where data of all users except one was used for
training, and data of the held-out user was used for test-
ing. The property of disjoint training and test sets also
holds true in all three cases.

For each of the six settings, several pairs of disjoint train-
ing and test sets were generated by splitting the complete
data in an adequate way. This was done in one of two
ways. One way was by holding out a certain number of
randomly chosen data examples, while ensuring that each
grasp type, user, and object gets represented by the same
amount of data items in the training set (stratification).
The other way of splitting was done in a semantic fashion,
by, for example, holding out a certain user of the training
set and putting only data of this user into the test set. The
method of splitting was specific to each setting and is ex-
plained in more detail below.

Each classifier was trained and tested with each pair

Table 2. Investigated Values of the Variable Objects

Value Meaning Example scenario

Seen Classifier trained and tested with the same
set of objects

Applications with a given, fixed set of objects,
e.g., a tool set

Unseen Classifier trained and tested with differ-
ent sets of objects

Applications where scene objects change or
are of modifiable form, e.g., CAD

Table 3. Investigated Values of the Variable User

Value Meaning Example scenario

Individual Classifier trained and tested with a specific user Single operator system
Group Classifier trained with a group of users and tested

with a group member
Work group

Unseen Classifier trained with several users but tested
with a user not in the group

Public installation, e.g., game

Heumer et al. 127



(or data split), and the average rate of correct classifica-
tions for each classifier over all these tests was deter-
mined. The feature- (or input-) vector for classification
consisted of all 22 sensor values which were not
weighted. The output of the classifier was an index
value, indicating one of the six grasp types. Note that
since all data items were taken from valid examples of
the different grasp types, there was no rejection class.
The right answer was always one of the six Schlesinger
grasp types.

Classifier performance was measured in the percent-
age of correct classifications. When two classifiers had
the same average performance, the classifier with the
smaller standard deviation was considered better. Addi-
tionally, for each setting, a set of best classifiers was es-
tablished by selecting all classifiers that performed not
significantly differently than the best classifier. To deter-
mine the significance of differences between classifiers, a
McNemar’s test was used with p � .05. For an overview
on significance tests for classifier evaluation, see Dietter-
ich (1998). To obtain an additional measure for classi-
fier performance, a stratified 10-fold cross-validation on

the complete data set was performed for each classifier.
This is considered a standard method of predicting the
error rate of learning techniques (Witten & Frank,
2005). To cross-validate a data set, it is split into k
(where k is 10 in this case) subsets. Then, k tests are
conducted where the kth subset is used as the test set
for the classifier and the other k–1 subsets are used as
the training data. The total classification rate is then
computed as the average of the classification rates of all
k tests. Stratified means that it is ensured that each class
is properly represented in the k subsets. The results of
the cross-validation were also regarded as part of the
overall classifier performance.

The number of data splits into test and training set
and the respective set sizes per split are summarized for
all settings in Table 4. Also, a rough indication of how
the test set was formed is given in the middle column.
More detail about the settings and the exact method of
how test and training set were generated are given in
the following subsections. Readers not interested in this
level of detail might want to skip to the presentation of
results in Section 4.2.

Table 4. Splitting of Data into Test and Training Sets for the Different Settings*

Setting (user, objects) Data splitting
Training
set

Test
set

#1 - individual, seen
objects

Six (per user) times six splits of data of one user. Test
set—two random examples per object.

192† 48†

#2 - individual, unseen
objects

Six (per user) times eight splits (two series of four) of data
of one user. Test set—one random object per grasp
type.

180† 60†

#3 - group, seen objects Six splits—as in #1 but data of all users. Test set—two
random examples per object and user.

1,152 288

#4 - group, unseen
objects

Eight splits as in #2 but data of all users. 1,080 360

#5 - unseen, seen
objects

Six splits (one per user). Test set—all data of one user. 1,200 240

#6 - unseen, unseen
objects

Twelve splits (two series of six). Test set—from user splits
(as in #5) hold out one random object per grasp type.

900 60

*For each of the six users an experiment with the given set sizes has been performed and the results have been averaged.
†Given number refers to number of data examples per user.

128 PRESENCE: VOLUME 17, NUMBER 2



4.1.1 Individual User, Seen Objects. In this
setting, data of only one user is regarded and the same
set of objects is used for testing and training. This corre-
sponds to an application, where the system is trained for
a specific user (and this user only) and all objects to be
interacted with are known in advance. In comparison
with conventional (calibrated) classification, this would
correspond to a perfect glove calibration being available
for a particular user and an additional training session
having been performed, where all objects later to be
interacted with are trained into the system.

To generate disjoint training and test sets for this set-
ting, all data of one user was taken and split evenly into
two sets, so that the respective numbers of examples for
each grasp and object stayed the same. Since 10 data
samples for each object were recorded—five with a fixed
starting position and five with a variable starting posi-
tion—two samples of each object (one with each type of
starting position) were chosen for the test set (48 data
items), while the others formed the training set (192
data items). Overall, six splits were generated in this
way, by randomly choosing the test items. This process
has been repeated for each of the users, thus resulting in
6 � 6 data splits. The performance of the individual
user tests was averaged over all users.

4.1.2 Individual User, Unseen Objects. Again,
data of only one user is regarded; however, tests were
always performed with unseen objects, that is, no data
examples of the objects used for the tests have been
used for training. This corresponds to an application
where the system was trained for a specific user; how-
ever, the objects used during the interaction are not
previously known.

Training and test sets were generated by randomly
choosing one object per grasp type and using the exam-
ples of these objects as the test set, whereas the data of
the other objects was used as the training set. This way,
for each user, a series of eight splits was generated, so
that each object of one grasp type was used exactly
twice for testing. The training sets consisted of 180 data
items, whereas the test sets were 60 items. The combi-
nations between grasp types, that is, which object of
each grasp type was chosen, were random. It was en-

sured, however, that each permutation only occurred
once. As in Section 4.1.1 (individual user, seen objects),
the results were averaged over all users.

4.1.3 Seen Group of Users, Seen Objects.
Similar to Section 4.1.1 (individual user, seen objects),
the difference is that data examples of all users were
used for training and testing. This corresponds to an
application that is set up to work with a certain group of
users and the objects used for interaction are known in
advance. Note that this setting, similar to the settings
below, is already beyond the scope of calibration-based
approaches as it is not necessary to specify which user is
currently using the system.

Data splitting was done as in the individual user case,
but with data of all users instead of one. Additionally, it
was ensured that the same number of examples from
each user was chosen. For each object and user combi-
nation, two examples were randomly held out for the
test set (288 data items), while the remaining examples
formed the training set (1,152 data items).

4.1.4 Seen Group of Users, Unseen Objects.
This setting is similar to Section 4.1.2 (individual user,
unseen objects). However, data of all users were used
for training and testing instead of data from just one
user. This corresponds to an application that is set up to
work with a certain group of users and the objects used
for interaction are not known in advance.

Training and test sets were generated by creating
eight splits, wherein each split data of one randomly
picked object (per grasp type) forms the test set (360
data items), whereas data from the remaining objects
comprises the training set (1,080 data items). Again, it
was ensured that no permutation was repeated and that
each object was part of the test sets exactly twice.

4.1.5 Unseen Users, Seen Objects. In this set-
ting, all data of the test user was held out of the training
set, that is, the classifier did not see any data item from
the test user during training. This corresponds to an
application where the system was trained with data from
a group of users and another (previously unseen user)
then uses the system, for example, in public installa-

Heumer et al. 129



tions, demo showcases, and so on. All objects used dur-
ing tests were seen before by the classifier (grasped by
other users) during training, that is, for this type of ap-
plication the objects of the interaction need to be
known in advance.

Here, for each user a pair of datasets was generated,
where the training set contained sensor data from all
users except this one (1,200 data items), and the test set
consisted of all data from this user (240 data items).
Since data was acquired from six different users, this
resulted in six different disjoint splits.

4.1.6 Unseen Users, Unseen Objects. In this
setting neither the objects nor the user involved in test-
ing were seen by the classifier during training. This cor-
responds to applications where the users and interaction
objects are not known in advance. This setting puts
high demands on the classifier’s generalization capabili-
ties, but can satisfy the broadest range of use cases.

For generating test sets and training sets, the data was
first split into disjoint sets for each user as in Section
4.1.5. Then, for each of these user splits, two random
object splits were generated, where for each grasp type
one object was picked. Data from this object was re-
moved from the training set, whereas only the data of
this object remained in the test set. This resulted in 12
data splits overall with a test set size of 60 data items
and a training set size of 900 data items.

4.2 Results

For every classification algorithm evaluated in each
data split of each setting, the percentage of correctly
classified examples has been determined. Due to space
limitations this is too much information to be presented
here. Hence, the results have been summarized by de-
termining average classification rates for each setting
and the corresponding standard deviation, and can be
seen in Table 5. Each setting is represented by two col-
umns (average and standard deviation). Following the
cross-validation results, in the next two columns are the
average performance over all settings and the standard
deviation of this total average. In the final column, the
average runtime per test of each classification algorithm

is given in milliseconds. This value is of course depen-
dent on the used hardware and for this reason is only to
be seen as a relative comparison between the several
algorithms. Dark gray table cells indicate for each set-
ting the classifier with the highest accuracy; table cells
shaded in light gray indicate classification methods of
which the accuracies vary only insignificantly (according
to a McNemar’s test) from the best performing classi-
fier. The interested reader can find the complete results
of the study as well as the captured data on the Web
under http://vr.tu-freiberg.de/grasping/. In the fol-
lowing, the results for each of the settings are summa-
rized.

● Individual User, Seen Objects. With 99.48%
achieved by the KStar algorithm, a highly reliable
classification rate can be reached for the case where
the objects grasped are known in advance and the
user trained in the system individually. A not signif-
icantly worse performance can be obtained with
IB1, LibSVM, Gaussian processes, RBF network,
multilayer perceptron, SMO, LMT, simple logistic,
random forest, and several regression techniques.
Since Gaussian processes (9.3 ms per test) and
KStar (28.5 ms) have a relatively long runtime, in
more time critical applications IB1 (2.4 ms) would
be the next-best choice or, if an even shorter run-
time is needed, multilayer perceptron (0.1 ms).

● Individual User, Unseen Objects. In the case
where the objects grasped are not known (and
trained in) in advance, more generalization ability is
needed, and the classification rate drops down to
84.45%. The best classification rate was achieved
with SMO, which also has a relatively short run-
time. Not significantly worse were Gaussian pro-
cesses, IB1, LibSVM, and multilayer perceptron.

● Group of Users, Seen Objects. In the case where
a whole group of users trained the system and an
unspecified member of the group uses it, a classifi-
cation rate of 98.79%, almost as good as for the
single user case, can be achieved. The best perfor-
mance was achieved by KStar, followed by IB1, and
LibSVM, which would be the best choice if a short

130 PRESENCE: VOLUME 17, NUMBER 2



Table 5. Results of the Classifier Evaluation with Best Classifier in Setting and Not Significantly Different and Therefore
Additional Best Classifiers

Classifier
Classifier
category

Individual
user,
seen object

Individual
user,
unseen object

Group,
seen object

Group,
unseen object

Unseen user,
seen object

Unseen user,
unseen object Cross

validation
Avg.

Total
Runtime
(ms/test)Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

Gaussian
processes†

Functions 98.85 0.75 84.27 4.81 97.69 0.84 87.12 4.47 84.44 7.32 77.08 10.42 97.71 89.59 8.51 9.29309

LibSVM Functions 98.61 0.73 82.40 4.16 98.32 0.41 82.36 8.55 82.78 7.19 77.36 13.27 97.64 88.50 9.25 0.28886

IB1 Lazy 99.25 0.94 83.75 4.20 98.73 0.90 84.14 5.06 80.07 6.26 66.39 8.70 98.54 87.27 12.33 2.42996

Multilayer
perceptron

Functions 98.15 1.31 82.92 5.40 97.11 0.52 80.87 6.04 81.18 4.96 69.45 13.64 96.94 86.66 10.96 0.12979

SMO Functions 97.57 2.00 84.45 3.37 93.46 0.67 81.60 7.62 81.74 7.17 71.53 13.44 93.75 86.30 9.11 0.11020

KStar Lazy 99.48 1.12 80.73 6.10 98.79 0.84 81.42 3.58 77.29 5.73 65.42 6.97 98.40 85.93 13.21 28.50922

LMT Trees 97.51 1.57 80.66 4.27 95.49 1.14 76.63 6.83 77.98 6.00 65.00 17.75 95.07 84.05 12.25 0.12069

SimpleLogistic Functions 97.51 1.57 80.59 4.22 93.35 0.92 78.72 7.95 76.53 7.72 68.06 17.25 92.64 83.91 10.75 0.07320
Random-

Forest
Trees 97.05 1.20 75.87 6.50 96.82 0.99 74.69 6.42 79.10 7.16 64.17 15.20 97.22 83.56 13.40 0.08329

PLS classifier† Functions 97.40 0.75 81.11 3.01 89.99 1.08 75.49 6.39 74.31 11.34 64.30 7.67 88.96 81.65 11.29 2.30492

Linear
regression†

Functions 97.46 0.95 80.63 2.98 89.93 1.05 75.63 6.33 73.89 11.65 64.72 8.07 88.89 81.59 11.22 0.13315

Pace
regression†

Functions 96.93 1.38 80.97 3.08 89.93 1.14 75.45 6.53 74.17 12.34 62.92 7.18 88.61 81.28 11.51 0.12524

M5P† Trees 93.87 1.62 71.60 6.33 94.73 0.97 74.90 6.59 77.71 8.41 60.28 7.75 94.10 81.03 13.49 0.13256

Logistic Functions 96.01 2.27 74.55 3.56 93.06 1.18 76.18 5.99 73.89 8.26 59.58 16.41 91.88 80.74 13.31 0.10961

RBFNetwork Functions 98.38 1.62 71.46 7.45 90.86 1.00 72.46 8.38 76.04 11.06 63.89 16.58 90.90 80.57 12.76 0.18796

M5Rules† Rules 93.93 1.73 70.42 7.21 94.10 1.34 73.16 5.26 75.21 5.74 56.81 12.24 93.33 79.57 14.54 0.21269

PART Rules 91.50 2.55 68.44 4.88 92.02 2.16 69.27 7.21 73.20 11.38 54.03 16.66 92.57 77.29 15.02 0.07973

NNge Rules 91.44 1.73 70.31 5.59 91.09 1.47 66.01 8.23 69.93 11.64 57.22 13.80 92.92 76.99 14.53 0.27263

BFTree Trees 91.84 2.62 68.92 4.53 90.74 1.55 68.68 5.74 70.56 11.09 54.44 15.06 89.72 76.41 14.45 0.04293

SimpleCart Trees 91.26 2.71 68.82 4.49 90.97 1.24 68.44 5.75 71.25 11.86 53.06 15.70 89.79 76.23 14.74 0.05025

J48 Trees 92.65 2.77 69.41 5.19 90.40 1.98 67.71 6.41 69.24 10.43 53.61 13.12 90.42 76.21 15.01 0.07617

BayesNet Bayes 95.31 3.19 68.92 5.66 85.71 1.15 64.55 6.05 69.72 10.01 58.47 12.50 83.61 75.18 13.22 0.13315

REPTree Trees 87.68 3.24 69.48 8.46 87.96 1.26 67.50 6.81 66.39 12.23 57.08 14.22 87.71 74.83 12.73 0.07993

NBTree Trees 93.75 2.17 68.44 8.99 89.00 1.55 68.65 8.94 60.63 7.07 52.22 13.05 90.14 74.69 16.25 0.14601

Ridor Rules 91.09 3.65 66.01 5.38 89.70 2.14 65.80 6.41 63.82 12.72 56.11 18.15 89.58 74.59 14.91 0.06964

JRip Rules 86.57 2.77 63.13 5.12 90.45 1.95 67.71 6.47 69.86 7.26 49.72 14.51 88.68 73.73 15.32 0.06331

NaiveBayes Bayes 92.94 3.82 72.19 4.16 76.62 1.61 62.95 5.47 68.96 13.42 58.47 17.77 76.39 72.65 11.18 0.29420

VFI Misc 91.90 2.60 67.43 2.88 81.08 1.15 61.94 8.12 66.74 11.43 56.81 15.42 80.35 72.32 12.44 0.15175

Naive Bayes
multinomial

Bayes 84.61 4.27 66.22 4.87 72.34 0.87 59.24 6.96 66.32 14.63 53.75 18.64 72.29 67.82 9.99 0.08132

Random tree Trees 85.07 3.26 56.53 3.33 81.48 2.58 59.93 5.65 58.05 5.61 47.78 13.60 84.03 67.55 15.46 0.07756

FLR Misc 94.16 1.25 72.16 4.41 70.02 4.06 55.90 10.33 60.14 13.57 51.39 15.24 68.06 67.40 14.07 0.10862

Isotonic
regression†

Functions 79.57 2.54 58.37 9.85 67.94 1.71 53.92 8.00 61.53 4.17 50.56 13.73 65.97 62.55 9.72 0.10189

Complement
naive Bayes

Bayes 71.70 9.21 60.59 8.60 62.56 1.60 53.78 4.70 60.07 8.77 54.86 14.88 62.85 60.92 5.93 0.08230

Hyper pipes Misc 89.76 2.79 61.77 4.77 63.20 2.54 48.54 11.19 55.07 10.26 46.53 14.93 60.90 60.82 14.33 0.09556

Decision table Rules 81.31 2.52 48.61 6.24 74.31 1.77 50.73 5.07 49.79 7.34 41.39 10.37 73.54 59.95 15.86 0.09596

Simple linear
regression†

Functions 74.94 3.63 61.11 5.37 59.49 1.84 53.96 9.08 57.29 6.27 50.28 8.13 59.79 59.55 7.76 0.11772

SMOreg† Functions 89.99 5.03 76.25 5.31 42.30 1.21 42.12 4.24 42.01 10.07 41.39 8.90 42.01 53.72 20.47 0.11337

OneR Rules 53.19 6.02 41.25 6.28 42.94 2.53 29.23 5.40 32.43 7.88 29.86 9.63 42.92 38.83 8.75 0.07459

*Results in dark gray shading indicate the best classifier in setting. Results in light gray shading indicate they are not significantly different from the best classifier in the
setting, and are therefore additional best classifiers.
†Algorithms marked with a dagger are regression techniques that have been run via the classification via regression method.

Heumer et al. 131



test runtime is important. Gaussian processes also
did not perform significantly worse.

● Group of Users, Unseen Objects. Again, for un-
seen objects the classification rate drops, in this case
to 87.12%. The best classifier in this setting clearly
was Gaussian processes with all other classifiers per-
forming significantly worse.

● Unseen Users, Seen Objects. For the case where
the user is unseen to the system but the objects are
known in advance, a similar classification rate as for
the unseen objects cases is achieved. With 84.44%,
again Gaussian processes performed best, followed
by the not significantly worse SMO, LibSVM, and
multilayer perceptron classifiers.

● Unseen Users, Unseen Objects. In this case where
the user as well as the objects are unseen, the classi-
fication rate drops further down to 77.36%,
achieved by the LibSVM classifier. Gaussian pro-
cesses achieved a similar result (77.08%) while hav-
ing a lower standard deviation. This performance
drop reflects the rather high demand on generaliza-
tion abilities of the classifiers. Both Gaussian pro-
cesses and LibSVM performed significantly better
than the other classifiers in this setting.

In the column labeled “Total,” the average value
of the average performances in the different settings is
denoted. This is an indication of how well a classifier
performs overall, hence the table has been sorted by this
value. The Gaussian processes algorithm leads the table
with 89.59% classification rate. The total standard devia-
tion indicates how strongly classifier performance varies
over the different settings. Note that this is not the aver-
age of the standard deviations for the various settings.
The average performances of the best classifiers for each
setting are also displayed comparatively in Figure 3.

Average classifier runtimes (per test) have been deter-
mined by summarizing the runtimes for all tests and
dividing them by the number of tests. They are given in
the last column. As can be seen, most runtimes stay
within the same order of magnitude. The only excep-
tions are the Gaussian processes classifier and the lazy
learners, which have a relatively long runtime, since a lot
of training examples need to be considered during the

tests. This runtime difference will also further increase
with larger training set sizes.

For further analysis, the confusion matrix of all classi-
fication results for the best classifier, that is, Gaussian
processes, was investigated. Each entry in this matrix
shows the number of recognized categories when a cer-
tain grasp is shown to the classifier. For a better under-
standing of the matrix, these numbers were normalized
by dividing by the total number of examples for a cer-
tain grasp type. The resulting confusion matrix is pre-
sented in Table 6.

The entries in the diagonal of the matrix represent
the percentage of grasps which were identified correctly.
Since, as has been shown, the Gaussian processes classi-
fier performs quite well, these values are reasonably
high. The other values in the matrix describe the per-
centage of misclassification between the shown and clas-
sified grasp category. They indicate probable difficulties
when distinguishing between certain grasps. As already
hinted by the data analysis (Sammon mapping) in Sec-
tion 3.3, the distinction between cylindrical and hook
grasps as well as between tip and palmar grasps is prob-
lematic. In contrast, spherical and lateral grasps are very
well distinguishable from all the other grasp types. The
aggregated confusion matrices for other classifiers that
perform well across all settings, for example, IB1, show

Figure 3. Comparison of average performance of best classifiers for

each setting.

132 PRESENCE: VOLUME 17, NUMBER 2



similar patterns. This indicates a problem-inherent diffi-
culty, rather than classifier-specific difficulty, when try-
ing to differentiate between the grasp type pairs identi-
fied above.

4.3 Discussion

It has been shown that grasp recognition based on
uncalibrated data glove sensor input can be performed
in a very reliable way, with recognition rates of about
98%, in specific scenarios where the group of users of
the system and the objects that are used during interac-
tion are known in advance. Each user would then need
to train the system by performing grasps for each object
occurring in the scenario.

For cases where either potential users are unknown or
the grasped objects are not determined in advance, with
a recognition rate of about 85%, an acceptable perfor-
mance can be achieved on the condition that occasional
misclassification is not critical. This might be the case,
for example, in public gaming or other entertainment
installations, or for applications where repetition of mis-
classified grasps is feasible.

From the average performance of the examined classi-
fiers, a list of classification algorithms that are best
suited for the examined problem domain has been com-
piled. The overall best performing learning method
turned out to be Gaussian processes. This method, orig-
inally a regression method, was made usable as a classi-
fier through classification via regression. In two of the
six considered settings, Gaussian processes performed

significantly better than all other classifiers. In the other
settings, Gaussian processes did not perform signifi-
cantly worse than the best classifiers in the respective
settings. Some other classifiers also showed good perfor-
mance across all settings, such as IB1, support vector
machines (LibSVM), and multilayer perceptron. Of
these, the latter two classifiers allow for considerably
faster classification with the multilayer perceptron par-
ticularly excelling with respect to classification speed.

Additionally, the complete classifier rating suggests
that some classifier categories are suited better for the
given problem domain than others. For example, the
examined lazy learners performed generally well, while
Bayesian classifiers in all cases yielded unsatisfactory re-
sults. In the midfield, decision tree learners tended to
fare somewhat better than rule-based classifiers.

The learners labeled as “misc” in the Weka suite gen-
erally ended up near the bottom of the ranking. Func-
tion learners come in a wide variety of types. While
some function learners yielded some of the worst classi-
fication rates, function learners also occupy four of the
top five positions in our ranking.

The results presented so far were acquired through
the direct application of various classification methods
available in the Weka data mining suite to raw sensor
data of a data glove. The modern machine learning rep-
ertoire, however, includes a number of well-understood
further techniques for data preprocessing and methods
for combining classifiers that are commonly used to in-
crease the performance of basic classification methods.
The following sections report on the results of the appli-

Table 6. The Normalized Overall Confusion Matrix for Gaussian Processes*

Tip Cylindrical Spherical Palmar Hook Lateral

Tip 0.9592 0.0040 0.0007 0.0285 0.0071 0.0006
Cylindrical 0.0085 0.9321 0.0057 0.0120 0.0400 0.0018
Spherical 0.0030 0.0012 0.9918 0.0030 0.0000 0.0010
Palmar 0.0156 0.0047 0.0012 0.9785 0.0000 0.0000
Hook 0.0003 0.0245 0.0002 0.0000 0.9710 0.0040
Lateral 0.0029 0.0002 0.0002 0.0000 0.0016 0.9951

*Row � shown example, column � classified as.

Heumer et al. 133



cation of such techniques that are also available in the
Weka suite, to our problem domain, grasp recognition
from raw data glove sensor data.

5 Classifier Evaluation II: The Effect of
Principal Component Analysis

Raw sensor data as recorded from the data glove
might contain correlated, redundant and insignificant
information. Typically, such information poses difficul-
ties to machine learning algorithms leading to a de-
creased generalization ability and performance. Thus, it
might be wise to first preprocess the recorded sensor
data in order to extract uncorrelated features and re-
move hidden noise. Principal component analysis (PCA,
also known as Karhunen-Loeve transform) is a classical
method from statistics that is often used for preprocess-
ing data in the machine learning context. PCA reduces
the dimensionality of a dataset while retaining as much
of the variance, and thus information, as possible. PCA
has successfully been applied to other classification
problems, such as face recognition (Turk & Pentland,
1991), speech processing (Lima et al., 2005), and hu-
man motion analysis (Bowden, 2000).

To investigate the effects of PCA on the results of the
classifiers, we performed a repeated evaluation in which
the sensor data was preprocessed before classification.
Two experiments were carried out, one with a PCA
with 12 principal components, retaining 95% of the
original variance of the data, and one with 17 principal
components, retaining 99% of the variance. The number
of principal components indicates the dimensionality of
the feature space onto which the original data is pro-
jected. Thus, the dimensionality was reduced from 22
dimensions to 12 and 17 dimensions, respectively. For
each data split in each setting, the principal components
were computed based on the training set. After training,
the data points of the test set were then projected onto
the principal components of the training set, and the
trained classifier was evaluated based on these trans-
formed test sets. The applied process ensured that no
test data was used for the computation of principal com-
ponents.

Table 7 shows the classification results after a PCA
using 12 principal components. The comparison with
previous classification results shows that LibSVM falls
behind several ranks in the table. Apart from this fact,
the general impression of the classifier performances
stayed the same with Gaussian processes, IB1, multilayer
perceptron, and SMO leading the field. With respect to
the average classification rate, no big improvement can
be measured. However, given that the dimensionality is
reduced from 22 dimensions to 12, it is interesting to
note that the performance did not deteriorate. In the
unseen user, unseen object setting, we even observe an
increase in classification performance for some of the
classification schemes. For example, the classification
rate of the IB1 classifier increases from 66.39% to
70.56%. This indicates that PCA is particularly effective
in domains where high generalization is needed. Al-
though the runtime was reduced for most classifiers, it
must also be taken into account that each data point to
be classified has to be projected to the PCA space first.
The time needed for this task is not included in the run-
time measurements. Table 8 shows the results when
performing PCA with 17 principal components. Here,
LibSVM regains some of its classification accuracy and
ranks fourth behind Gaussian processes, IB1 and multi-
layer perceptrons. Further comparisons with Table 7
reveal that it is generally unclear as to which number of
dimensions is better suited for classification. Apart from
LibSVM, there is no other case where increasing the
dimensionality led to a consistent improvement in per-
formance for all settings.

The above results show that while preprocessing the
data with PCA does not yield large changes in the over-
all performance of the evaluated classifiers, it can still
lead to a measurable improvement in specific settings.
Especially in settings where a high amount of generali-
zation is needed (such as public installations) it might
be helpful to preprocess the data. Another advantage of
PCA is the reduced classification times. When using
high-dimensional data and slow classifiers (such as
Gaussian processes) this can help to increase the clas-
sification speed while retaining a high recognition
rate.

134 PRESENCE: VOLUME 17, NUMBER 2



6 Classifier Evaluation III: Combining
Classifiers

An active research area in the field of machine
learning is concerned with the creation of classifier en-
sembles which combine several base classifiers into a
larger meta-classifier (see, e.g., Dietterich, 2000; or Po-
likar, 2006). The general idea is that a group of classifi-
ers may be able to collectively compensate for the weak-
nesses of the individual classifiers it is composed of. For
example, a classifier ensemble made up of different types
of classifiers may be more robust against the biases in-
herent to particular learning algorithms. Another idea is
to construct ensembles composed of different instances
of the same classification scheme, however trained with

slightly varying data sets; in this way the sensitivities of
certain learning algorithms to the extent and order of
the training examples may be balanced. In order to clas-
sify a new datum, a classifier ensemble combines the
outputs of its base classifiers in some way, in the sim-
plest case by majority vote. Some of the more com-
monly used schemes for the construction of meta-learn-
ers include voting, bagging, boosting, and stacking, but
various others have been proposed. Although theoreti-
cal results such as the no free lunch theorems (cf. Sec-
tion 1) indicate that classifier ensembles are not guaranteed
to perform better than simpler classification methods, in
practice, they have shown promising results.

Clearly, an exhaustive empirical investigation of all
meta-learning algorithms with all possible configura-

Table 7. Results of the Classifier Evaluation with PCA-Transformed Data (12 Dimensions) with Best Classifier per Setting*

Classifier

Classifier

category

Individual

user,

seen

object

Individual

user,

unseen

object

Group,

seen

object

Group,

unseen

object

Unseen user,

seen object

Unseen user,

unseen object
Cross

validation

Avg.

Total
Runtime

(ms/test)Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

Gaussian
processes†

Functions 98.15 1.83 85.87 5.11 95.14 1.37 84.65 6.98 85.07 6.92 75.56 13.88 94.86 88.47 7.94 6.33804

IB1 Lazy 98.44 1.18 85.42 4.97 98.26 0.73 83.99 5.71 78.06 4.42 70.56 11.90 98.06 87.54 11.10 1.41995

SMO Functions 97.57 1.86 84.41 3.68 92.13 1.18 78.92 6.83 83.40 7.28 73.89 12.74 90.83 85.88 8.17 0.11396

Multilayer
perceptron

Functions 98.21 1.25 81.43 3.21 94.79 0.54 78.71 5.53 80.35 5.63 68.47 9.99 93.89 85.12 10.77 0.12286

LMT Trees 97.46 0.97 79.65 4.15 94.97 0.57 79.10 4.47 77.22 10.73 71.25 14.98 94.93 84.94 10.54 0.10981

LibSVM Functions 98.73 1.21 77.26 4.02 98.15 0.65 78.65 3.43 80.49 10.16 60.97 13.13 97.78 84.58 14.27 0.20398

Simple
logistic

Functions 97.34 1.18 81.39 3.61 89.99 1.02 79.41 8.40 78.68 9.56 71.25 13.14 90.35 84.06 8.88 0.08409

Logistic Functions 96.24 2.40 76.11 6.66 90.22 1.38 76.74 8.70 77.36 8.94 73.89 12.02 90.21 82.97 8.95 0.11930

Random
forest

Trees 95.89 1.19 76.15 4.84 95.08 1.11 76.98 5.25 73.82 7.01 67.08 13.39 95.35 82.91 12.15 0.08369

KStar Lazy 97.22 0.79 77.64 4.03 97.74 1.00 79.69 6.40 68.96 7.82 59.58 11.08 97.01 82.55 15.27 59.59145

Pace
regression†

Functions 95.20 2.61 81.43 4.36 87.44 1.38 74.55 5.61 78.26 10.53 66.39 15.81 86.53 81.40 9.45 0.12326

Linear
regression†

Functions 95.14 2.23 81.74 4.50 87.27 1.29 74.93 6.07 77.85 11.00 66.53 15.64 86.25 81.39 9.33 0.12781

RBF network Functions 96.70 0.75 76.25 3.87 90.92 1.21 75.04 4.76 75.28 17.72 61.67 17.77 90.14 80.86 12.20 0.17925

M5P† Trees 92.94 1.62 70.66 1.48 92.71 1.22 75.31 4.05 74.44 8.37 64.72 13.27 92.64 80.49 11.98 0.11930

M5 Rules† Rules 91.84 1.18 70.38 2.85 91.67 0.73 73.68 4.29 73.61 12.63 62.22 13.19 91.94 79.33 12.28 0.20180

Naive Bayes Bayes 95.49 1.88 78.37 5.24 86.06 1.86 72.08 3.91 73.68 18.28 58.06 20.47 86.32 78.58 12.17 0.22891

NNge Rules 90.92 1.93 70.80 4.75 92.25 2.04 72.43 6.75 70.00 9.57 58.19 9.78 90.83 77.92 13.38 0.21150

Bayes net Bayes 89.30 3.35 66.29 4.39 86.34 2.26 68.82 4.88 70.42 13.40 60.97 19.58 85.56 75.39 11.37 0.12821

*Best classifier per setting in dark gray shading.

†Algorithms marked with a dagger are regression techniques that have been run via the classification via regression method.

Heumer et al. 135



tions of base classifiers would lead to a combinatorial
explosion and is thus beyond the scope of the present
study. Instead, the following discussion will be restricted
to some well-known meta-learning algorithms provided by
the Weka data mining suite. The selection of base classifi-
ers is guided by the results of Section 4, that is, classifier
ensembles are built from base classifiers that already proved
their usefulness as standalone-learners in the domain of
grasp recognition with uncalibrated data gloves.

6.1 Voting, Stacking, Bagging, and
Boosting

A conceptually very simple method for construct-
ing classifier ensembles is to query several base classifiers

and determine the final classification by majority vote.
Weka’s voting meta-learning scheme provides a simple
method for the design of ensembles composed of classi-
fiers of different types. For example, a voting committee
may combine a lazy learner, a neural network, and a
decision tree. When assembling a voting committee, a
careful selection of suitable base classifiers is called for.
For example, an ensemble of base classifiers that per-
form well individually is likely to perform better than an
ensemble of poorly performing base classifiers. Stacking
(stacked generalization), like simple voting, is a meta-
learning scheme that combines several base classifiers of
different types (Wolpert, 1992). The final output of a
stacking ensemble is, however, not determined by a sim-

Table 8. Results of the Classifier Evaluation with PCA-Transformed Data (17 Dimensions) with Best Classifier per Setting*

Classifier

Classifier

category

Individual

user,

seen

object

Individual

user,

unseen

object

Group,

seen

object

Group,

unseen

object

Unseen user,

seen object

Unseen user,

unseen object
Cross

validation

Avg.

Total
Runtime

(ms/test)Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

Gaussian
processes†

Functions 98.90 0.67 84.27 5.72 98.38 0.68 85.10 6.07 85.14 4.99 76.81 11.29 97.50 89.44 8.74 7.69112

IB1 Lazy 99.08 0.68 82.85 4.36 98.50 0.84 82.95 4.28 79.79 6.00 68.89 6.75 98.33 87.20 11.69 1.89617

SMO Functions 98.03 1.02 82.88 5.41 93.35 1.02 81.04 7.73 83.27 6.98 73.06 11.84 93.61 86.46 8.80 0.12801

LibSVM Functions 98.78 1.35 77.61 4.07 98.67 0.64 80.87 4.89 82.64 10.56 65.83 11.20 99.75 86.31 13.08 0.25503

Multilayer
perceptron

Functions 97.75 1.26 79.62 3.56 95.78 0.71 77.81 4.93 79.03 5.19 66.67 16.25 95.63 84.61 11.85 0.13374

LMT Trees 97.40 1.31 80.28 3.55 95.43 1.15 76.63 4.77 77.29 7.35 69.03 14.45 94.65 84.39 11.25 0.10862

Simple
logistic

Functions 97.40 1.31 80.35 3.51 92.07 0.89 78.99 6.85 76.18 11.40 68.89 18.25 91.04 83.56 10.17 0.08864

Random
forest

Trees 96.64 0.68 74.69 3.20 95.89 0.60 76.46 7.88 75.70 8.76 64.72 10.96 95.21 82.76 12.91 0.09022

Logistic Functions 96.18 1.54 74.17 6.74 92.01 0.73 77.71 7.02 76.94 9.70 67.36 13.47 90.83 82.17 10.79 0.12247

KStar Lazy 97.11 0.92 71.98 4.20 98.27 1.12 76.67 6.24 65.77 8.20 59.45 9.68 97.85 81.01 16.52 87.02180

M5P* Trees 93.00 1.65 71.08 2.43 92.94 0.93 75.24 6.24 75.35 6.95 64.03 13.95 93.33 80.71 12.18 0.13770

Linear
regression†

Functions 96.12 1.72 80.69 5.79 87.15 0.49 73.51 8.34 76.39 11.27 62.92 15.51 85.76 80.36 10.73 0.14364

Pace
regression†

Functions 96.07 2.09 80.52 5.67 87.10 0.64 72.81 7.21 76.32 10.78 62.64 15.27 85.90 80.19 10.88 0.13038

RBF network Functions 95.95 0.87 71.46 3.13 91.84 0.84 73.27 8.72 72.92 18.66 57.36 19.67 92.43 79.32 14.30 0.18894

M5 rules† Rules 91.73 1.54 69.55 2.99 92.42 1.01 74.03 4.93 72.71 9.49 61.25 15.70 91.67 79.05 12.72 0.20893

Naive Bayes Bayes 95.37 1.78 74.93 5.55 88.48 1.75 71.36 3.97 71.60 18.56 55.28 22.10 87.64 77.81 13.63 0.25166

NNge Rules 89.30 2.31 69.38 5.97 90.11 2.40 70.00 8.31 70.21 11.56 56.11 15.62 90.69 76.54 13.53 0.28530

PART Rules 87.97 1.53 66.36 3.62 89.24 0.82 70.59 4.09 69.24 6.29 57.08 16.52 89.03 75.64 13.00 0.09141

Bayes Net Bayes 89.30 3.35 66.29 4.39 86.81 2.67 68.99 5.34 69.37 12.60 59.17 20.06 86.46 75.20 12.04 0.13196

*Best classifier per setting in dark gray shading.

†Algorithms marked with a dagger are regression techniques that have been run via the classification via regression method.

136 PRESENCE: VOLUME 17, NUMBER 2



ple voting mechanism. Instead, a second-level classifier is
trained on the outputs of the base classifiers and used to
make a final decision on the overall classification. In this
way, the meta-classifier can gain knowledge about specific
strengths and weaknesses of the base classifiers and apply
this knowledge when a classification on new data has to be
made. For the design of a stacking ensemble, the same
decisions as with voting committees have to be made, that
is, number and type of base classifiers. In addition, a suit-
able second-level classifier has to be selected.

Bagging (Breiman, 1996) and boosting (Freund &
Schapire, 1997) are methods for constructing meta-
learners in which all base classifiers are of the same type.
These base classifiers are however trained with slightly
different data sets in order to avoid overfitting. The idea
behind bagging and boosting stems from the observa-
tion that the models learned by some machine learning
algorithms may depend critically on the presented train-
ing data. For example, learning from two different train-
ing sets may result in the construction of totally differ-
ent decision trees even if both training sets are highly
representative of the problem domain. To circumvent
this problem, bagging (bootstrap aggregating) and
boosting generate a number of new training sets from
the original examples. For each of the new training sets,
specialized base classifiers are trained. The final classifi-
cation of bagging and boosting ensembles is determined
by a majority vote of the base classifiers.

The difference between bagging and boosting meth-
ods lies in the way that new training sets are generated
from the original data. In the bagging method, new
training sets are generated from the original one by re-
placing some randomly chosen examples with duplicates
of other examples in the training set. The base classifiers
are then trained independently, each on a particular
training set. In boosting methods, in contrast, the new
training sets are generated sequentially. Here, the con-
struction of a new training set is informed by the perfor-
mance of a base classifier trained on the previously gen-
erated data set. For example, in the AdaBoost method
(Freund & Schapire, 1997), the examples in the train-
ing sets are weighted where for the first iteration all ex-
amples are assigned equal weight. After a first base clas-
sifier has been trained, the weights of the examples are

adjusted such that misclassified examples obtain a higher
importance than correctly classified examples. There-
fore, in the second iteration, a classifier is trained that
specializes on the hard cases of previously misclassified
examples. Similarly, the following iterations will focus on
previously misclassified examples. In this way, boosting
methods tend to build ensembles of classifiers with varying
expertise in different areas of the problem domain.

6.2 Design and Method

The meta classifier schemes examined in our evalu-
ation can be categorized in two groups. The first group
consists of schemes that focus on one base algorithm and
try to improve this algorithm’s performance. In our case
these were bagging, AdaBoostM1, and MultiBoostAB.
The other group combines several different algorithms
to a committee. Here, we examined stacking and vot-
ing. Each of these groups was evaluated with a different
strategy to limit the search space and to examine only
the most promising combinations. The exact strategies
of evaluation for each of the two groups are outlined in
the following subsections.

6.2.1 Boosting and Bagging of Individual
Classifiers. Since schemes such as boosting or bagging
take single methods and try to improve these, we fo-
cused on learning algorithms that already produced
good results in our problem domain. More specifically,
with respect to the results summarized in Table 5, we
chose all classifiers that performed best in one of the
settings and additionally those that did not perform sig-
nificantly worse (as indicated by McNemar’s test).
Hence, the evaluated base algorithms were Gaussian
processes, LibSVM, KStar, LMT, random forest,
IB1, multilayer perceptron, SMO, simple logistic,
PLSClassifier, linear regression, M5P, logistic, and
RBFNetwork. The examined meta schemes AdaBoostM1,
bagging, and MultiBoostAB were evaluated with each
of these algorithms as base classifiers in turn.

The settings and data splits were the same as for the
base classifier evaluation described in Section 4.1. The
results of this evaluation are summarized in Table 9 and
will be discussed below.

Heumer et al. 137



6.2.2 Classifier Ensembles of Different Algo-
rithms. For combining several base classifiers in a meta
scheme, a virtually infinite number of possible combina-
tions exists. To make our evaluation as efficient as possi-
ble we focused on the search for decision experts that
recognize specific classes particularly well or are espe-
cially successful in the distinction between problematic
cases. In Heumer, Ben Amor, Weber, and Jung (2007)
we already recommended OneR, REPTree, and
BayesNet for future examination as decision experts for
the cases of tip vs. palmar and cylindrical vs. hook. For
the present study, we combined these algorithms with
other classifiers that showed a high overall performance
into committees of three and five classifiers. These clas-
sifiers were combined using the meta schemes stacking
and voting. As a second-level classifier for stacking the
best five classifiers of Table 5 were examined.

Another approach, novel to the present study, was
to examine the confusion matrices of all classifiers of
the base classifier evaluation and to identify the classi-
fier that recognized each of the grasp types the most
reliably. For a perfect classifier the diagonal of the
(normalized) confusion matrix contains all ones
whereas the rest of the cells only contain zeros.

Therefore, for each column of the matrix, we looked
for the classifier that had the highest number on the
diagonal in this column. For the tip grasp this was the
HyperPipes algorithm, for cylindrical and palmar the
multilayer perceptron, for spherical the SMO, and for
hook and lateral the IB1. Of these algorithms a com-
mittee of size six (IB1 and multilayer perceptron were
each used twice as they were experts for two grasp
types) was formed and evaluated with voting and
stacking. For stacking, again, several of the best clas-
sifiers were tried as meta classifiers.

Again, the settings and data splits of the evaluation
were the same as for the base classifier evaluation. The
results of the meta scheme evaluation are presented in
the following section.

6.3 Results and Discussion

Table 9 summarizes the results of the boosting and
bagging evaluation. For each base classifier the method
that led to the highest performance is identified and the
boosted performance is given. It can be seen that the mul-
tilayer perceptron profits the most from bagging and per-
forms almost 5% better in the unseen unseen setting. Gen-

Table 9. Evaluation of Boosting and Bagging

Classifier

Classifier

category Best method

Individual

user,

seen

object

Individual

user,

unseen

object

Group,

seen

object

Group,

unseen

object

Unseen user,

seen object

Unseen user,

unseen object
Cross

validation

Avg.

Total

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

Gaussian
processes*

Functions MultiBoostAB 99.08 0.42 83.09 4.30 98.44 0.43 86.81 4.39 84.72 8.10 77.50 15.38 97.71 89.62 8.70

LibSVM Functions Bagging 98.67 0.83 82.43 3.68 98.32 0.51 83.51 7.88 82.01 7.94 77.08 13.63 97.71 88.53 9.30

Multilayer
perceptron

Functions Bagging 98.56 0.26 82.85 5.18 97.86 0.67 83.79 5.76 82.57 4.98 74.45 16.64 97.29 88.20 9.59

IB1 Lazy Bagging 99.13 0.72 83.16 5.22 98.73 0.52 85.52 5.75 79.86 6.43 69.86 18.93 98.61 87.84 11.37

LMT Trees AdaBoostM1 97.80 0.61 78.99 3.68 97.74 0.36 82.26 3.95 84.24 3.54 74.17 15.85 97.43 87.52 9.98

SMO Functions MultiBoostAB 98.50 0.61 82.99 3.21 94.91 1.38 82.15 5.26 82.22 6.79 76.67 14.87 94.10 87.36 8.30

KStar Lazy MultiBoostAB 99.25 0.74 79.83 6.38 99.25 0.51 82.92 4.47 77.92 5.33 66.53 17.03 98.47 86.31 12.90

Random
forest

Trees Bagging 98.32 1.29 76.18 6.91 98.38 0.93 77.64 7.52 83.06 7.78 71.67 14.09 98.19 86.21 11.79

M5P* Trees AdaBoostM1 97.34 1.55 76.77 4.77 97.28 0.80 79.13 7.92 80.90 7.13 74.45 12.28 97.15 86.15 10.58

Simple logistic Functions Bagging 98.04 1.14 79.20 3.43 93.98 1.52 79.31 4.77 76.80 7.83 72.36 13.19 92.71 84.63 10.02

RBF network Functions MultiBoostAB 98.44 0.90 75.45 6.96 93.98 0.56 77.33 6.35 77.22 12.52 65.28 17.69 93.68 83.05 12.31

*Regression schemes have been run with classification via regression.

138 PRESENCE: VOLUME 17, NUMBER 2



erally, the highest performance gain is observed in this
setting which has the highest generalization demands. For
the settings where base classifier performance was already
close to 100% before, almost nothing was gained. When
compared with the results in Table 5 it can be stated that
overall boosting and bagging lead to a slightly better per-
formance for all algorithms, especially in the settings with
high generalization demands. The best overall perfor-
mance was achieved by Gaussian processes improved by
MultiBoostAB with a total performance of 89.62%. How-
ever, this is only insignificantly better than in its standalone
use. The highest overall performance gain was achieved by
M5P with AdaBoostM1, which performed 5.12% better
than standalone. This classifier also achieved the highest
performance gain in a single setting, which amounted to
14.17% for the unseen, unseen case. However, none of the
improved performances of the other schemes was better
than the standalone Gaussian processes.

In terms of which of the three examined meta
schemes was the best, no general preference can be de-
termined. Instead, this depends on the underlying base
classifier. Surprisingly, the simpler bagging produces the

highest performance improvements in most cases. How-
ever, boosting produced very similar results and the dif-
ference between MultiBoostAB and AdaBoostM1 was
minimal for most of the evaluated base classifiers.

The results of the evaluation of stacking and voting
can be seen in Table 10. The 11 most successful en-
sembles have been listed in their order of total aver-
age performance. The compositions of those ensem-
bles are specified in Table 11. As can be seen, the
most successful combination was a committee of one
expert for each grasp type based on the analysis of the
confusion matrices as described in Section 6.2.2. The
highest performance was achieved by combining
these experts via voting. In the unseen, unseen case
with 75.83%, a relatively high performance has been
achieved. The total average performance of 89.30%
was comparable with that of the Gaussian processes,
but did not exceed it. Committees based on decision
experts as proposed in Heumer et al. (2007) also
achieved a solid performance, comparable to that of
some of the better base classification schemes, such as
multilayer perceptron. A real gain in performance,

Table 10. Evaluation of Stacking and Voting

Ensemble*

Meta

scheme

Individual

user,

seen

object

Individual

user,

unseen

object

Group,

seen

object

Group,

unseen

object

Unseen user,

seen object

Unseen user,

unseen object
Cross

validation

Avg.

Total

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

6ExpertsV Vote 99.36 0.74 84.59 4.89 98.67 0.41 85.69 4.47 82.57 7.20 75.83 17.23 98.40 89.30 9.43

2ExpertsOB3S
(GP)

Stacking 99.13 0.84 81.91 5.75 98.96 0.62 84.69 5.37 82.99 5.68 76.81 14.40 98.61 89.01 9.55

2ExpertsRB3V Vote 99.07 0.84 82.26 4.44 98.79 0.48 84.24 6.60 84.03 6.92 74.72 15.42 98.54 88.81 9.87

2ExpertsRB3S
(GP)

Stacking 99.08 0.47 82.15 5.00 98.96 0.44 84.62 5.87 82.36 5.51 76.11 16.21 98.40 88.81 9.71

2ExpertsOB3V Vote 99.02 1.02 81.46 5.48 98.84 0.42 83.68 6.36 82.85 6.91 73.89 18.26 98.40 88.31 10.28

2ExpertsOB3S
(SMO)

Stacking 98.90 1.06 82.37 5.74 98.50 0.36 84.69 7.51 80.83 5.51 73.75 17.22 98.89 88.28 10.36

6ExpertsS
(LibSVM)

Stacking 99.25 0.71 83.86 4.96 98.61 0.49 85.94 5.94 80.70 5.09 70.97 18.82 98.54 88.27 10.91

6ExpertsS
(MLP)

Stacking 99.02 0.92 83.16 5.28 98.67 0.41 83.96 5.83 82.08 5.20 72.64 16.76 97.99 88.22 10.37

6ExpertsS
(GP)

Stacking 99.19 0.75 84.10 4.58 98.55 0.51 84.20 6.51 81.11 6.22 71.80 17.34 98.33 88.18 10.67

2ExpertsRB3S
(MLP)

Stacking 98.73 1.15 82.95 5.17 98.50 0.92 83.99 6.19 80.83 7.20 74.17 15.76 97.99 88.17 10.08

2ExpertsOB3S
(SMO)

Stacking 98.96 1.01 82.01 5.70 98.61 0.31 84.44 6.33 80.83 5.87 73.47 16.57 98.54 88.12 10.45

*The exact composition of ensembles is denoted in Table 11.

Heumer et al. 139



however, could not be noticed and the increased cost
of a classifier ensemble is not amortized.

In conclusion, it can be stated that Gaussian pro-
cesses with their superior standalone performance re-
main the best choice of classifier for our problem do-
main. However, it could be demonstrated that an
educated choice of class experts and decision experts
is also a successful approach. The performance of a
committee of experts, each with a significantly weaker
standalone performance than Gaussian processes in
the general case, can reach a combined performance
that almost matches the performance of the latter.

7 Conclusion

We introduced a systematic approach for the eval-
uation of machine learning techniques for recognizing
grasps performed with a data glove. In particular, we
distinguish between six settings that make different as-
sumptions about the user groups and objects to be
grasped. A large number of classifiers from an open-
source data mining software library were compared to
draw informed conclusions about achievable recognition
rates in the different settings. Through this, our ap-

proach extends previous reports on classifier perfor-
mance that focused on particular classifiers and settings.

An interesting result of our evaluation is that calibra-
tion-free classification of grasps can be performed with
reasonable to high reliability for a number of different
settings. More specifically, a near to perfect classification
rate can be achieved in settings where the individual or
group of end users trains the classifier on the objects of
the target application. For cases where either potential
users are unknown or the grasped objects are not deter-
mined in advance, still an acceptable performance can
be achieved if occasional misclassification is not critical.

Gaussian processes turned out to be the clearly best
performing classification method of the present study.
This classifier yielded the best recognition rate in two of
the six settings and performed only insignificantly worse
than the respective best classifiers in the other settings.
This result updates a previous study (Heumer et al.,
2007) which was based on an older version of the Weka
data mining package before the recent addition of the
Gaussian processes method. Similarly, with support vec-
tor machines (LibSVM), another new addition to Weka
was among the best performing classifiers, yielding rec-
ognition rates that are comparable to the formerly best

Table 11. Ensemble Compositions (For Stacking, the Meta Algorithm Is Listed First and the Sub-Classifiers Are Given in Parentheses)

Ensemble Composition

6ExpertsV HyperPipes, multilayer perceptron, SMO, multilayer perceptron, IB1, IB1
2ExpertsOB3S (GP) Gaussian processes (Gaussian processes, LibSVM, IB1, OneR, BayesNet)
2ExpertsRB3V Gaussian processes, LibSVM, IB1, REPTree, BaycsNet
2ExpertsRB3S (GP) Gaussian processes (Gaussian processes, LibSVM, IB1, REPTree, BayesNet)
2ExpertsOB3V Gaussian processes, LibSVM, IB1, OneR, BayesNet
2ExpertsOB3S (SMO) SMO (IB1, multilayer perceptron, SMO, REPTree, BayesNet)
6ExpertsS (LibSVM) LibSVM (HyperPipes, multilayer perceptron, SMO, multilayer perceptron, IB1,

IB1)
6ExpertsS (MLP) Multilayer perceptron (HyperPipes, multilayer perceptron, SMO, multilayer

perceptron, IB1, IB1)
6ExpertsS (GP) Gaussian processes (HyperPipes, multilayer perceptron, SMO, multilayer perceptron,

IB1, IB1)
2ExpertsRB3S (MLP) Multilayer perceptron (IB1, multilayer perceptron, SMO, REPTree, BayesNet)
2ExpertsOB3S (SMO) SMO (IB1, multilayer perceptron, SMO, OneR, BayesNet)

140 PRESENCE: VOLUME 17, NUMBER 2



reported classifier IB1. Both Gaussian processes and
support vector machines have strong foundations in sta-
tistical learning theory and are algorithmically more
complex than most other classification methods. In our
experiment, Gaussian processes proved nonetheless ca-
pable of performing about 100 classifications per second
and thus seem well suited for most VR applications. In
applications with extreme real-time demands, faster
techniques such as support vector machines and multi-
layer perceptron are better suited as they put a lighter
load on the system.

In addition to the extensive classifier evaluation, we also
experimented with further established machine learning
techniques for data preprocessing and the construction
of classifier ensembles. As a data preprocessing method,
principal component analysis was used to reduce the
dimensionality of the input vector from 22 (given by the
22 sensor readings of the Cyberglove 2) to 17 and 12,
respectively. By reducing the complexity of the problem in
this way, average classification rates only slightly worse
than the original problem could be achieved. In some set-
tings dimensionality reduction was able to slightly improve
classification rates and achieve higher generalization. With
respect to ensemble methods, we tried out various combi-
nations of base classifiers that had demonstrated good per-
formance as standalone classifiers on our problem. Gener-
ally, ensemble techniques such as boosting and stacking
helped to increase the classification rates. However, in the
case of the best performing classifier, namely Gaussian pro-
cesses, the improvement in classification accuracy was in-
significant. Still, it is interesting to note that a stacking en-
semble composed of six grasp type experts yielded results
which are comparable to those of Gaussian processes. To
summarize, the additional effort of data preprocessing and
ensemble construction did not result in a new classifier
outperforming the standalone Gaussian processes classifier
in our specific problem domain. Nonetheless, these tech-
niques might prove beneficial in other VR-related recogni-
tion problems. As indicated by the data analysis in Section
3.3, the grasps of the Schlesinger taxonomy are hard to
distinguish based on hand shape alone, for example, pal-
mar and tip. This makes classification based on uncali-
brated sensor data—and, presumably, similarly for joint
angles values—a challenging task. For our study, this had

the advantage that differences between the various classifi-
ers turned out more clearly in the analysis. To achieve bet-
ter recognition rates, the inclusion of higher level features
such as finger bending indexes or contact points will be
considered in future work. Other taxonomies with clearer
differences between classes in terms of hand poses might
also increase recognition rates.

In conclusion, we believe that the demonstrated ap-
proach of calibration-free data glove operation com-
bined with out-of-the-box application of classifiers from
a freely available data mining software package greatly
simplifies the usage of data gloves.

Acknowledgments

The authors would like to thank all involved reviewers for
their helpful comments. We also thank our former colleague
Matthias Weber for his collaboration on an earlier version of
this paper. The research described in this contribution is par-
tially supported by the DFG (Deutsche Forschungsgemein-
schaft) in the Virtual Workers project.

References

Aleotti, J., & Caselli, S. (2006). Grasp recognition in virtual
reality for robot pregrasp planning by demonstration. 2006
IEEE International Conference on Intelligent Robotics and
Automation (ICRA 2006), 2801–2806.

Bishop, C. M. (1995). Neural networks for pattern recognition.
New York: Oxford University Press.

Bishop, C. M. (2006). Pattern recognition and machine learn-
ing (Information science and statistics). New York: Springer-
Verlag.

Bontempi, G., Birattari, M., & Bersini, H. (2002). Lazy learn-
ing: A logical method for supervised learning. In New learn-
ing paradigms in soft computing (pp. 97–136). Heidelberg,
Germany: Physica-Verlag.

Borst, C. W., & Indugula, A. P. (2005). Realistic virtual
grasping. VR ’05: Proceedings of the 2005 IEEE Conference
on Virtual Reality, 91–98.

Bowden, R. (2000). Learning statistical models of human mo-
tion. In IEEE Workshop on Human Modeling, Analysis and
Synthesis (CVPR).

Heumer et al. 141



Breiman, L. (1996). Bagging predictors. Machine Learning,
24(2), 123–140.

Chan, P. K., & Stolfo, S. J. (1997). On the accuracy of meta-
learning for scalable data mining. Journal of Intelligent In-
formation Systems, 8(1), 5–28.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method
for the induction of probabilistic networks from data. Ma-
chine Learning, 9(4), 309–347.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to
support vector machines and other kernel-based learning
methods. New York: Cambridge University Press.

Cutkosky, M. (1989). On grasp choice, grasp models and the
design of hands for manufacturing tasks. IEEE Transactions
on Robotics and Automation, 5(3), 269–279.

Dietterich, T. G. (1998). Approximate statistical tests for
comparing supervised classification learning algorithms.
Neural Computation, 10(7), 1895–1924.

Dietterich, T. G. (2000). Ensemble methods in machine
learning. In MCS ’00: Proceedings of the First International
Workshop on Multiple Classifier Systems, 1–15.

Ekvall, S., & Kragic, D. (2005). Grasp recognition for pro-
gramming by demonstration tasks. In IEEE International
Conference on Robotics and Automation, 748–753.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic gen-
eralization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1), 119–137.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian
network classifiers. Machine Learning, 29(2–3), 131–163.

Friedrich, H., Grossmann, V., Ehrenmann, M., Rogalla, O.,
Zöllner, R., & Dillmann, R. (1999). Towards cognitive ele-
mentary operators: Grasp classification using neural network
classifiers. In IASTED International Conference on Intelli-
gent Systems and Control, 121–126.

Haykin, S. (1994). Neural networks: A comprehensive founda-
tion. Upper Saddle River, NJ: Prentice Hall.

Heumer, G., Ben Amor, H., Weber, M., & Jung, B. (2007).
Grasp recognition with uncalibrated data gloves—A com-
parison of classification methods. Proceedings of IEEE Vir-
tual Reality Conference, VR ’07, 19–26.

Jung, B., Amor, H. B., Heumer, G., & Weber, M. (2006). From
motion capture to action capture: A review of imitation learn-
ing techniques and their application to VR-based character
animation. Proceedings VRST 2006—Thirteenth ACM Sympo-
sium on Virtual Reality Software and Technology, 145–154.

Kahlesz, F., Zachmann, G., & Klein, R. (2004). Visual-fidelity
dataglove calibration. Computer Graphics International
(CGI), 403–410.

Kaski, S. (1997). Data exploration using self-organizing maps.
Acta Polytechnica Scandinavica, Mathematics, Computing
and Management in Engineering Series No. 82.

Lima, A., Zen, H., Nankaku, Y., Tokuda, K., Kitamura, T., &
Resende, F. G. (2005). Applying sparse KPCA for feature
extraction in speech recognition. IEICE—Transactions on
Information and Systems, E88-D(3), 401–409.

Napier, J. (1956). The prehensile movements of the human
hand. The Journal of Bone and Joint Surgery, 38b(4), 902–
913.

Polikar, R. (2006). Ensemble based systems in decision mak-
ing. IEEE Circuits and Systems Magazine, 6(3), 21–45.

Quinlan, J. R. (1993). C4.5: Programs for machine learning.
San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R., Compton, P. J., Horn, K. A., & Lazarus, L.
(1987). Inductive knowledge acquisition: A case study. Pro-
ceedings of the Second Australian Conference on Applications
of Expert Systems, 137–156.

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian pro-
cesses for machine learning (Adaptive computation and ma-
chine learning). Cambridge, MA: MIT Press.

Richards, D. (2002). Ripple down rules: A technique for ac-
quiring knowledge. In Decision Making Support Systems:
Achievements, Trends and Challenges for the New Decade
(pp. 207–226). Hershey, PA: Idea Group Publishing.

Schlesinger, G. (1919). Der Mechanische Aufbau der Künstli-
chen Glieder. In M. Borchardt et al. (Eds.), Ersatzglieder
und Arbeitshilfen für Kriegsbeschädigte und Unfallverletzte
(pp. 321–661). Berlin: Springer-Verlag.

Taylor, C., & Schwarz, R. (1955). The anatomy and mechan-
ics of the human hand. Artificial Limbs, 2(2), 22–35.

Turk, M., & Pentland, A. (1991). Face recognition using
eigenfaces. In Proceedings of IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 586–
591.

Witten, I. H., & Frank, E. (2005). Data mining: Practical
machine learning tools and techniques (2nd ed.). San Mateo,
CA: Morgan Kaufmann.

Wolpert, D. H. (1992). Stacked generalization. Neural Net-
works, 5(2), 241–259.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch
theorems for optimization. IEEE Transactions on Evolution-
ary Computation, 1(1), 67–82.

Zachmann, G., & Rettig, A. (2001). Natural and robust inter-
action in virtual assembly simulation. Eighth ISPE Interna-
tional Conference on Concurrent Engineering: Research and
Applications (ISPE/CE2001), 425–434.

142 PRESENCE: VOLUME 17, NUMBER 2


