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Abstract— Recognition and manipulation of novel objects
in human environments are a prerequisite for many tasks of
robots. Since objects often occur in clutter, such robots should
be capable of segmenting their environment into individual
objects before attempting to learn the objects’ properties. In
this paper, we propose a probabilistic part-based approach to
interactive segmentation of cluttered scenes containing multiple
novel objects. Our experiments show that our probabilistic
approach outperforms commonly employed heuristics. Further-
more, the probability distribution over segmentations enables
principled selection of informative actions.

I. INTRODUCTION

Human environments contain a wide range of different
objects. Therefore, future humanoid robots performing tasks
in such environments will require the ability to recognize and
manipulate objects. Since novel objects may be encountered,
relying on a fixed set of annotated training data is insufficient,
as such a dataset cannot contain all objects the robot might
encounter. Therefore, it is essential that robots learn about
objects whenever they are encountered.

Many techniques for learning an object’s appearance [1–
4], require the object to be isolated from other objects
or to be segmented a priori. In cluttered environments,
however, object segmentations are not readily available.
Some computer vision approaches, like [5], try to infer a
segmentation from a single image using visual features such
as contrast, texture, and color clues. When available, 3D-
cues, such as surface normals, can also be integrated into
such approaches [6]. The underlying assumption of such
methods is that discontinuities in image features indicate
object boundaries. This assumption does not necessarily hold
in practice [7]. Hence, not all segmentation ambiguities can
be resolved from a single image [8–12].

Another approach is to look at the differences between
two or more images, or the movement in a video stream.
Movement helps to resolve segmentation ambiguities [13–
17]. Rather than waiting for movement in the environment,
robots have the possibility to cause changes in the envi-
ronment themselves [7–11, 18–21], as illustrated in Fig. 1.
Such interactive strategies make robots more autonomous
and allow them to ground the definition of objectness in
terms of their own actions [9]. Additionally, knowing which
actions was performed can help the robot to infer the correct
segmentation [21].

Although co-movement provides strong clues for segmen-
tation, there are multiple sources of uncertainty that need to
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Fig. 1: Our robot arm autonomously interacts with its envi-
ronment to segment a scene into objects.

be taken into account. Firstly, in cluttered scenes, adjacent
objects might move together, so that co-movement might
result even if parts belong to different objects. Additionally,
only a part of a non-rigid object might move when pushed.
Hence, absence of co-movement might occur even if parts
belong to the same object. Furthermore, the movement of
occluded parts is unknown, and noise and imperfections in
the vision system introduce additional uncertainty.

Therefore, we require a principled way to represent un-
certainty in the segmentation. Representing this uncertainty
allows us to robustly plan the outcome of subsequent actions,
and a measure of uncertainty can serve as a stopping crite-
rion for the segmentation phase. The real world offers an
abundance of interaction possibilities. Rather than trying all
of these possibilities at random or exhaustively, it is desirable
that our representation so far allows us to select actions
targeted at efficient exploration.

A. Contribution

In this paper, we propose a probabilistic approach to
interactive segmentation that fulfills the aforementioned re-
quirements. This approach enables us to deal with effects
such as noisy observations and co-movement of objects in a
principled way, using a minimal amount of assumptions and
hand-tuning. Specifically, we do not assume objects are rigid
bodies and avoid hand-tuned segmentation heuristics based
on object appearance, compactness, or object shape.

To make this approach viable, we first reduce the problem



by defining sub-object regions that can be tracked. How
such regions are defined, modeled, and tracked is explained
in Sec. II. In Sec. III, we define a probability distribution
over segmentations obtained by merging these local models.
We then show how, using the proposed representation, a
robot can select explorative actions that maximally reduce
its uncertainty. An overview of our approach is shown in
Fig. 2. In Sec. IV, we evaluate our approach and compare
it to two common heuristics. We present our conclusions in
Sec. V.

B. Related work

If an object occurs in different images, rather than seg-
menting using low-level visual features of a single image,
the correspondence between images can be exploited in an
approach known as co-segmentation [12, 14, 22] or co-
recognition [15]. If the background is the same across the
images, an alternative approach is to explicitly detect motion
between them [17]. Instead of comparing a pair of images
from before and after motion occurred, we might track
objects during interaction to segment them [16]. However,
occlusions caused by the robot arm limit the applicability of
this approach to interactive robot set-ups.

In interactive segmentation approaches, the robot itself
takes actions to cause movement in a scene, resulting in
movement that provides information about the correct seg-
mentation. If the workspace contains only a single object,
it can be pushed by simply sweeping the arm across the
workspace [11]. Alternatively, symmetry clues can be used
to target more precise pushes [18]. Accumulating evidence
over time leads to more precise segmentation [10].

Movement detection by image differencing, employed by
the methods in the previous paragraph, requires a static back-
ground and textured objects. Some of these limitations can
be addressed by estimating object membership per segment
of the image, rather than per pixel [19, 21]. Alternatively,
the iterative closest point algorithm can be used to find
the number of objects that explains the movement in the
scene [9]. Yet another possibility is using the movement of
trackable features together with heuristic predictors based on
appearance, compactness, and object shape to estimate the
object membership of each of these features [7, 8, 20].

Another way to physically separate an object from back-
ground clutter is to grasp and subsequently lift it [23–27].
However, common reliable grasping methods usually require
a model of the object. Alternatives such as learned grasping
classifiers usually need the object to be segmented. Thus,
these methods cannot easily be applied to cluttered scenes
with novel objects.

Many of the discussed approaches deal with only one
object of interest, e.g. [11, 18, 21, 22]. However, cluttered
scenes contain multiple objects, that might move simulta-
neously in the same direction if they are adjacent. Such
co-movement would lead approaches such as [10, 11] to
conclude that just one object was present. Alternatively,
multiple pushes could be performed, retaining only objects
that consistently move as rigid bodies [8, 9, 15, 17]. These

Fig. 2: Every scene is processed using our part-based
approach: (1,2) Known parts are recognized using stored
appearance characteristics and new parts are extracted from
regions that have not been seen yet. (3) Movement of known
parts (shown in grey) is detected based on the distance
between their current and past locations. (4) From the de-
tected movement, a distribution of segmentations is inferred
(Sec. III). Targeted exploration can resolve ambiguities.

methods are inherently limited to rigid objects, and it is
often unclear how to handle the uncertainty stemming from
occlusions.

Several alternatives have been suggested: Multiple obser-
vations with possible conflicting information can be inte-
grated by minimizing inconsistent movement [13]. However,
this approach makes the common assumption that objects
are connected components in the input image, which is not
necessarily the case due to occlusions. The probabilistic
approach in [21] quantifies the probability that moving
segments belong to the target object based on the correlation
between the object’s movement and that of the robot arm,
but considers only a single object of interest. To deal with
non-rigid objects, Katz et al. [7] identify rigid segments and
then identify rotational or prismatic joints between them.
However, their approach cannot deal with non-rigid objects
that are not explained by one of those two kind of joints, as
for example, a bundle of clothing. Joulin et al. [12] take a
probabilistic approach to multi-class segmentation using just
visual features. Their approach requires that the number of
classes is set by hand, and not every segment corresponds to
a single object, i.e., visually similar instances of an object
class, such as ‘cars’, are assigned to a single segment.

II. DEFINING AND TRACKING SUB-OBJECT PARTS

The robot needs to represent the observed appearance
characteristics of objects. These observed characteristics
cannot be directly attributed to specific objects, because the
segmentation of the scene into objects is (initially) unknown.

Instead, in our approach, appearance characteristics are at-
tributed to local regions. Such regions (subsequently referred
to as ‘parts’) are defined by a fixed radius (6 cm.) around
the origin of a local coordinate frame. These local coordinate
frames are initialized such that they cover all point cloud
data. New parts can be added as necessary to cover regions
of the scene that become visible during interaction. As points



can be within the radius of more than one part’s center, parts
can overlap.

A. Part-based appearance model
In our part-based model, an object is recognized if the

parts of that object are detected in the environment. To this
end, all parts are described using local key points extracted
from images of the scene from multiple viewpoints. Local
key points are distinctive points with a local description that
can reliably be detected in novel views. Considering only
local key points, rather than all pixels, has the advantage of
speeding up appearance matching between scenes. Different
kinds of local key point detection and description algorithms
exist. In this paper, we use the Scale Invariant Feature
Transform (SIFT) algorithm [28] for this purpose. In case
objects without texture are present, additional features such
as the color regions in [20] could be used in addition.

The description and location of the key points, as well as
the location and orientation of the parts’ centers, are stored
to recognize the identity and pose of the parts later on.

B. Recognizing parts and detecting their movement
After the robot executes an action, it observes the effects

of its action. To this end, parts are recognized in new scenes
by matching their associated key points. Occasionally, false
matches will occur, even with powerful descriptors. Although
we do not assume objects are rigid bodies, we will assume
the objects’ parts are approximately rigid.

We therefore use the random sample consensus
(RANSAC) algorithm [29] to robustly find the homogeneous
transformation of the local coordinate frame that explains
the majority of key point matches, even when false matches
are present. In our experiments, 100 iterations of the
RANSAC algorithm sufficed to find good matches.

If a homogeneous transformation with sufficient inliers is
found, the local coordinate frame is transformed accordingly.
If the corresponding translation is larger than a threshold of
3 cm, we conclude the part has moved. Looking for pure
rotations in addition did not improve results. If no fitting
transformation is found, we conclude that the part is not
visible in the observation, for example due to occlusion of
the object.

III. PROBABILISTIC SEGMENTATION

A segmentation of the scene is obtained by partitioning
the set of extracted parts into groups corresponding to the
objects in the scene. Clues for this partitioning are provided
by interacting with the environment, which results in the
movement of objects.

Seeing parts move together is more probable when those
parts belong to the same objects [10, 11]. However, observing
joint movement does not guarantee that the parts belong
to the same object, as the robot’s sensors are noisy and
objects that push each other also result in joint movement.
To represent the resulting uncertainty, we use a probabilistic
approach. As data accumulates over time, the uncertainty
reduces, resulting in distributions peaked around the true
partition. An illustration of this process is provided in Fig. 3.

Fig. 3: Overview of our probabilistic segmentation approach.
After every action, the resulting scene is observed (1) and
moving (grey) and non-moving (white) parts are identified
(2). This data D is then used to update the probability distri-
bution over partitions s (3). This distribution is approximated
by drawing samples (4).

A. Probabilistic segmentation model and inference

We represent a partition of the set of N parts into
clusters (each corresponding to an object) by a vector s =
[s1, . . . , sN ]

T , with the variables si indicating which object
part i belongs to. That is, the vectors s = [1, 1, 2]

T and
s = [2, 2, 1]

T are equivalent as both indicate a partition
where the first two parts constitute a single object, while
the third part constitutes a different object.

The probability distribution over partitions s after T ac-
tions is expressed as p(s|D), with D the data observed so
far D = {(at,ot)|t ∈ 0, 1, . . . , T}. In this equation, at is
the index of the part targeted by the tth action and ot is the
resulting observation. Observation ot[j] is equal to 1 if part
j was observed moving at time step t, or 0 if it was observed
to be stationary.

t = 1, . . . , T
α

at

θp θnp θm θnm

s mt ot

Fig. 4: Graphical model for
segmentation. Shaded circles
indicate observed variables.

For each hypothesized
object k, we define latent
variables mk,t that indicate
whether the object moved
at time t. The probability
p(mk,t = 1), is assumed to
be an unknown constant θp
if that object was pushed,
or θnp if it was not pushed.
Furthermore, part i is as-
sumed to be observed mov-
ing at time t with an un-
known, fixed probability θm
if the object to which it belongs actually moved or θnm if it
did not (to account for sensor noise). Generally, segmenta-
tions s that assign the same object to parts that move together



are more probable, although these probabilities are learned
from the data rather than pre-specified. Fig. 4 shows the
structure of our graphical model. The free parameter α will
be explained below.

The number of possible values for s and m grows ex-
ponentially with the number of parts. Hence, calculating
the conditional probability for each segmentation quickly
becomes computationally impracticable. Therefore, we ap-
proximate this distribution using samples drawn according
to a Gibbs sampling scheme [30]. This approach produces
samples from p(s,m|D) by iteratively selecting one of the
latent variables and reassigning that variable a value based
on all other variables:

si ∼ p(si|s\i,a,m, α) ∝ p(m|a, s)p(s|α), and

mk,t ∼ p(mk,t|D, s,m\k,t) ∝ p(ot|m1:T )p(m1:T |at, s),

with the notation s\i indicating the vector of all variables
sj with j 6= i. If we keep only every nth sample we obtain
independent samples for sufficiently large n.

We will first turn our attention to the prior p(si, s\i|α).
We do not assume to know how many objects there are in
the scene. Hence, a suitable non-parametric prior distribution
over partitionings s of n parts is the Chinese restaurant
process [31]. Given the assignment of the other parts s\i,
part i is assigned to an existing object j with a probability
dependent on the number of parts Nj already assigned to
that object: p(si = j|s\i) = Nj/(α + N − 1). However,
the part can also be assigned to a new object J , to which
no other parts have been assigned yet, with probability
p(si = J |s\i) = α/(α + N − 1). The Chinese restaurant
process is a non-parametric process that does not require the
number of objects to be set in advance, allowing this number
to be inferred from the data. The free parameter α controls
how often new objects are created by the generative process.
In our experiments, we used the (standard) setting of α = 1.
We found that inference is not very sensitive to α, although
when extreme values are used, more data is needed to infer
the right number of objects.

The uncertainty in the parameters θp, θnp, θm and
θnm can be marginalized in closed form if we
use the conjugate factorizing prior p(θp, θnp|s) =
Beta(θp|αp, βp)Beta(θnp|αnp, βnp). We then obtain

p(m|a, s) =
ˆ 1

0

ˆ 1

0

p(m|s, θp, θnp)p(θp, θnp|s)dθpdθnp

∝
ˆ 1

0

θ
α′

p
p (1− θp)

β′
p dθp

ˆ 1

0

θ
α′

np
np (1− θnp)

β′
np dθnp

∝
α′p!β

′
p!(

1 + α′p + β′p
)
!

α′np!β
′
np!(

1 + α′np + β′np

)
!
,

with α′p, α′np corresponding to αp, αnp plus the number of
times an object moved given that it was pushed (α′p) or not
pushed (α′np). Similarly, β′p, β′np correspond to βp, βnp plus
the number of times an object did not move given that it
was pushed (β′p) or not pushed (β′np). We set uniform priors

(a) Test scene to be segmented. (b) True partitioning.

Prior samples Posterior samples Posterior samples
(0 actions) (5 actions) (15 actions)

(c) Samples of the distribution over segmentations s, coloring the parts
according to the object they are assigned to. The columns contain three
samples from the distribution after observing the effect of 0, 5 and 15 actions.

Fig. 5: The same test scene is used to show the belief
state after exploring this set of objects in a similar training
scene (not shown). A priori, the number of objects as well
as the segmentation are unknown: the samples are blind
guesses. Over time, the number of objects and the correct
segmentation are inferred. The uncertainty decreases, which
is visible from the growing consistency of the samples.

αp = βnp = αnp = βp = 1. Analogously, we define the
observation model

p(o|m) =

ˆ 1

0

ˆ 1

0

p(o|m, θm, θnm)p(θm, θnm)dθmdθnm

∝
ˆ 1

0

θ
α′

m
m (1− θm)

β′
m dθm

ˆ 1

0

θ
α′

nm
nm (1− θnm)

β′
nm dθnm

∝ α′m!β
′
m!

(1 + α′m + β′m)!

α′nm!β
′
nm!

(1 + α′nm + β′nm)!
,

with the parameters α′m, α′nm, β′m, β′nm expressing the the
number of times parts were observed moving or not moving
given movement of the corresponding object, added to the
respective uniform prior α′m = β′nm = α′nm = β′m = 1. Not
all parts are observed at every time step, e.g. because of
occlusions or because the part was added at a later time
step. Such instances are ignored in these calculations.

The hyper parameters can be interpreted as ‘pseudo-
observations’ for each event. Samples of prior and posterior
segmentation of a test scene are shown in Fig. 5. Inference in
our probabilistic model takes between one and seven seconds
depending on the amount of data. Compared to the time
needed to observe the scene and execute an action, this is a
modest duration.



B. Selecting maximally informative actions
Our approach approximates a probability distribution over

segmentations regardless of the action selection strategy.
However, if the robot deliberately performs pushes it expects
to be most informative, segmentations might be obtained
faster [19]. Hence, our robot chooses actions to maximize
the mutual information I (s;o|a,D), where s is the partition
of the parts into objects and o is the observed outcome of an
action targeted at part a. The mutual information corresponds
to the expected information gain of observing the result of
pushing part a, and is given by

I (s;o|a,D) = Eo [DKL(p(s|o,D)||p(s|D))|a,D]

= Es,o

[
log

(
p(s,o|a,D)

p(o|a,D)p(s|a,D)

)∣∣∣∣ a,D],
where DKL is the Kullback-Leibler divergence. The argument
of the logarithm is computed as

p(s,o|a,D)
p(o|a,D)p(s|a,D)

=
p(o|s, a,D)
p(o|a,D)

=
p(o|s, a,D)

Es′ [p(o|s′, a,D)|D]
,

assuming p(s|a,D) = p(s|D), as shown in Fig. 4.
The spaces S and O of possible partitions and observa-

tions grow exponentially as the number of parts increases.
Hence, evaluating these expectations exactly is intractable.
We can approximate these expectations using samples j ∈
{1, . . . , J} drawn from p(s,o|a,D) and samples k ∈
{1, . . . ,K} drawn from p(s|D), i.e., by computing

I (s;o|a,D) ≈ 1

J

∑
j

log

(
p(oj |sj , a,D)

1
K

∑
k p(oj |sk, a,D)

)
. (1)

Samples from p(s|D) can be obtained using the Gibbs
sampling procedure described in Section III-A. To obtain
samples from the joint p(o, s|a,D), we again sample sj ∼
p(s|D) and separately sample oj ∼ p(o|sj , a,D), where

p(o|a, sj ,D) =
p(o,D|sj , a)
p(D|sj)

.

We assume p(D|sj , a) = p(D|sj), as shown in Fig. 4. In this
equation, p(D|sk) is calculated using

p(D|sk) = Em [p(D|m)|sk] ≈ J−1
J∑
j=1

p(D|mj),

using the conditional independence of D and approximating
the expectation with samples mj ∼ p(m|sk). To calculate
p(o,D|sj , a), we simply treat the potential observation o as
additional actual observations and use the same computation.

IV. EXPERIMENTS

In the proposed approach, a robot uses probabilistic in-
ference to segment a cluttered scene based on interaction
data. In this section, we will first introduce our general
experimental set-up in Sec. IV-A. Then, in Sec. IV-C we
compare our probabilistic segmentation method to alternative
methods on data gathered by a real robot. Finally, in Sec. IV-
E, we consider a scenario where action selection according to
the mutual information criterion is needed to learn efficiently,
and compare that strategy to random action selection.

A. Experimental set-up

We evaluated our approach using a 7 degrees of free-
dom Mitsubishi PA-10 robot arm. Objects relevant for the
experiment were set up on a table next to the robot. A
RGBD camera, a force-torque sensor, and a rod used to
manipulate the objects were mounted on the arm’s end
effector (see Fig. 1). Hence, the robot could move the camera
to observe the scene from different perspectives. The force-
torque sensor allowed the robot to register forces exerted on
the rod, which allowed the robot to autonomously stop its
motion in case of unexpected collisions. The camera was
calibrated so that observations taken from different points
of view were aligned in the robot’s coordinate frame and
observed parts not belonging to the scene on the table could
automatically be removed.

Fig. 6: The set of 12 every-
day objects used in our exper-
iments. We included objects
of different shapes and an ar-
ticulated object (train), a de-
formable object (cloth bundle)
and a flexible object (basket).

To learn object models,
the robot was presented
with a cluttered scene of
novel objects taken from
the set shown in Fig. 6.
The robot interacted with
the scene, pushing selected
parts in a direction corre-
sponding to the estimated
surface normal. After ev-
ery action, the scene was
observed from three differ-
ent view points in order to
update both the individual
part models (as described
in Section II) and the distribution over partitions of the
parts into objects (as described in Section III-A). The entire
procedure is illustrated in Fig. 7.

B. Comparisons

We compared our probabilistic model to two heuristics
commonly employed in the field of interactive segmentation.
Neither of these baselines directly re-implements a particular
approach from the literature: interactive segmentation ap-
proaches usually have a strong interdependency between set-
up, sensing, representation, inference and action selection,
making it difficult to execute such a direct comparison in a
fair manner. Our baselines are:

1) Rigid motion: If parts do not follow the same rigid
transformation, they need to belong to different objects.

2) Pairwise: Two parts belong together if co-movement
is observed more often than separate movement, independent
of any other parts.

C. Evaluation of interactive segmentation

During interaction with its environment, the robot obtained
information that allowed it to narrow down its distribution
over possible segmentations. The number of objects and
the way the parts should be assigned to those objects were
inferred simultaneously with the probability that parts move
given a certain push.



(a) Observation (b) Integration (c) Push (d) Observation

Fig. 7: Illustration of the exploration phase. (a) The robot observes the scene, obtaining an incomplete point cloud from
one perspective. (b) Percepts from multiple perspectives are integrated and patches are extracted (part centers shown as blue
spheres). (c) A push is selected (bottom, blue sphere) and executed. (d) The resultant scene is observed and the patch centers
are registered as moving (green) or non-moving (red).

We evaluated the interactive segmentation algorithms on a
scene with four objects. The robot explored these objects
using fifteen random actions. The set of twelve different
objects (Fig. 6) was used to create fifteen initial set-ups.

After every action, the robot updated its posterior prob-
ability distribution over segmentations. Parts that belong
to the same object according to the ground truth (human
annotation), should be assigned likewise by the robot. The
robot decides the parts should belong to the same object if
the majority of samples assigns them so (and vice versa).

Following [32], we evaluated the partitions using the
correspondence

B =
|P ∩Q|√
|P ||Q|

, (2)

where Q and P are the set of pairs of parts that belong to
the same object according to the human annotation (Q) or
according to the model’s prediction (P ), and | · | denotes a
set’s cardinality. This correspondence is zero if ground truth
and prediction do not agree on any pair of parts. Conversely,
the correspondence is one if they agree on all pairs. The
results are shown in Fig. 8 and Fig. 9. The same dataset was
used for all methods.

D. Discussion of the segmentation task results

In the segmentation task, we evaluated the quality of
the segmentation the robot inferred through interaction. The
robot learned continuously from its own experience, without
needing an annotated training set or external feedback signal.

The experiment required inferring the segmentation of
scenes composed of rigid and non-rigid objects using just
movement data. Considering these circumstances, both the
‘pairwise’ method and our full model did quite well. Both
comparison methods were outperformed by our probabilistic
segmentation approach (see Fig. 8). Our approach attained an
average quality of 0.86 in contrast to 0.80 for the ‘pairwise’

Fig. 8: Inference of scene segmentations using difference in-
ference methods. Parameter learning increases initial uncer-
tainty in the probabilistic model, which reduces segmentation
quality. Error bars show the standard error.

method. This difference is a significant step towards ‘perfect’
segmentations (1.00). After 15 actions all methods except
for the ‘rigid motion’ method seem to have converged. Our
probabilistic approach needed only 9 actions for half of the
trials to attain a segmentation quality of at least 0.85, while
this quality is not reached within 15 actions for the ‘pairwise’
and ‘rigid motion’ methods (see Fig. 9).

Parameters of our probabilistic model (θp, θnp, θm and θnm)
are learned rather than tuned which increases uncertainty in
the beginning of the experiment. This uncertainty reduces
performance of our learning method relative to manually
specified methods initially. The baseline methods, on the
other hand, do not manage to take optimal advantage of
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Fig. 9: Inference of scene segmentation using different
methods: number of actions needed for the majority of trials
to reach a given accuracy. Since the experiments lasted for
15 actions, 15 is the maximum number shown even if the
segmentation quality was not reached within this number.

a larger dataset. One cause for occasional failure in all of
the methods was that the tracker system occasionally loses
certain parts.

A qualitative advantage of our method over the ‘pairwise’
method is that it respects the transitivity of the ‘belongs to
the same object’ relation: if part i and j belong together and
so do j and k, the same necessarily holds for i and k. The
‘pairwise’ method cannot guarantee this consistency.

E. Action selection experiment

In a second experiment, we evaluate how much the robot
gains by exploiting its knowledge of the segmentation uncer-
tainty to select more informative actions. When all objects
can be manipulated equally easily, random action selection
performs fairly well as it tends to distribute actions evenly
over all objects. However, objects are not always consistently
reachable. Some objects might even be entirely out of the
robot’s workspace, and can only be manipulated at a later
point in time.

Therefore, we used a set-up similar to the previous exper-
iment, however, every scene included five objects of which
two were initially placed outside of the robot’s workspace.
The objects were selected from the set shown in Fig. 6,
and ten independent trials were executed. After training on
the three remaining objects for ten actions (using a random
action selection strategy), these objects were placed so that
they became reachable to the robot.

Then, five more actions were executed using one of
two action selection strategies: selecting actions at random
or according to the maximal mutual information criterion
explained in section III-B. To speed up computation, we
set the parameters θnp, θp, θm, θnm to their MAP estimate
using the data gathered in the previous experiment. Action
selection took less than one second. The action’s resulting

Fig. 10: Action selection experiment. On the left, the seg-
mentation quality is shown starting from the tenth action,
when two objects are moved inside the robot’s workspace.
The right graph shows the mean number of pushes directed
at existing and newly introduced objects during this period.

movement was used to infer the segmentation using our
probabilistic approach. We expect the mutual information
criterion to focus exploration at the objects that it has not
yet explored when they are moved inside the workspace,
thereby improving the robot’s knowledge faster. The results
are shown in Fig. 10.

F. Evaluation of the action selection experiment

After the first 10 actions, the three objects initially in
the workspace have been explored using random actions.
When the two initially out-of-reach objects are introduced
into the workspace, the action selection strategy employing
the mutual information criterion focuses explorative actions
on these objects, quickly improving the segmentation quality.
Random actions are still divided over all five objects in the
robot’s workspace, leading to slower improvement for this
baseline.

V. CONCLUSION

In this paper, we have introduced our approach for prob-
abilistic segmentation of cluttered scenes. This approach
allows the robot to learn about novel objects in cluttered
environments, even in the presence of noise or uncertainty.
It retains a probability distribution over segmentations. This
distribution could be helpful for subsequent tasks such as
planning for different possible outcomes and the selection of
robust actions. Furthermore, by representing the remaining
uncertainty, the robot can direct exploration to reduce this
uncertainty. Reaching a low uncertainty could also serve as
a stopping criterion for the segmentation phase, allowing the
robot to start exploring other properties.

We avoid hand-tuning important parameters, such as the
number of objects and the probability of movement given a
push, by learning them from the observed effects of inter-
acting with the objects. Furthermore, we do not hand-code
assumptions about object shapes, appearance, or compact-
ness. In fact, in our experiments, only the movement resulting



from actions was used to infer segmentations, and not the
visual similarity between parts. Using learning techniques to
incorporate such visual clues is subject of ongoing work.

We evaluated the quality of the segmentation found by
a real robot as it obtained experience through interaction
with its environment. Two heuristics for motion segmentation
were outperformed by our method. We suggested a maximum
mutual information criterion as a principled way of directing
exploration. In a separate experiment, we showed that when
objects are not consistently reachable, this criterion improves
the robot’s learning speed.
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