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Abstract— In many cooperative tasks between a human and a
robotic assistant, the human guides the robot by exerting forces,
either through direct physical interaction or indirectly via a
jointly manipulated object. These physical forces perturb the
robot’s behavior execution and need to be compensated for in
order to successfully complete such tasks. Typically, this prob-
lem is tackled by means of special purpose force sensors which
are, however, not available on many robotic platforms. In con-
trast, we propose a machine learning approach based on sensor
data, such as accelerometer and pressure sensor information. In
the training phase, a statistical model of behavior execution is
learned that combines Gaussian Process Regression with a novel
periodic kernel. During behavior execution, predictions from
the statistical model are continuously compared with stability
parameters derived from current sensor readings. Differences
between predicted and measured values exceeding the variance
of the statistical model are interpreted as guidance information
and used to adapt the robot’s behavior. Several examples of
cooperative tasks between a human and a humanoid NAO robot
demonstrate the feasibility of our approach.

I. INTRODUCTION

An important vision of research in robotics and artificial
intelligence is the development of robot assistants that can
support humans in physically demanding tasks. A robot
assistant can hand over a distant tool or help in lifting a heavy
object. However, close-contact human-robot cooperation of
this kind requires significant sensing capabilities in order
to ensure safe and meaningful physical interactions between
humans and robots.

Humans often rely on tactile and force feedback as a
means of communication during joint physical activities.
For example, during joint manipulation and transportation
tasks the heading in which to carry an object is often
communicated using a gentle push in that direction. In
general, we note that activities which are based on the coop-
eration of pairs or teams of persons, e.g., sports or dancing,
make intensive use of such guidance information which is
communicated through touch and force information. In order
for a robot to engage in similar cooperative activities, it
needs to be able to access and interpret human guidance
through the analysis of externally exerted tactile forces.
However, this requires special purpose sensors, which are
often expensive, heavy and prone to error. In practice, many
sensors return non-zero readings when the robot executes a
motor task, e.g., walking. As a result, it is often difficult
to distinguish external perturbations of the sensor readings,
which are caused by the human interaction partner, from
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Fig. 1: A robot is following the human guidance during a co-
operative transportation task. The intended walking direction
is inferred using probabilistic machine learning methods.

sensor values that are caused by the execution of the robot
behavior itself.

In this paper, we present a machine learning approach that
can be used to identify and interpret external perturbations
caused by human interaction and guidance. In this approach,
we create a statistical model of the regular pattern of sensor
readings during the execution of different robot behaviors. In
turn, this is used to identify irregular deviations in the sensor
readings, which are caused by the human interaction partner.
An important advantage of this approach is that it can be used
with low-cost sensor technologies. Using machine learning
methods we can combine readings from different types of
sensors, e.g., accelerometers and pressure sensors, in order
to generate a robust statistical model.

We will show how such statistical models can be used
to produce intuitive physical interaction between humans
and robots in cooperative tasks as shown in Figure 1. In
particular, we will show how these models are used to allow
a NAO robot to identify and interpret human forces during
a joint transportation task.

II. RELATED WORK

Over the last twenty years, human-robot interaction has be-
come a major research topic within robotics, with dedicated
conferences, books and journal issues. Many researchers
have focused on speech and gesture as a means of establish-
ing communication protocols between robots and humans.
In recent years, however, various researchers have focused
on using cues from direct, physical interactions in order



Fig. 2: An overview of the presented machine learning approach. Left: Sensor data during regular behavior execution is
acquired. Center: After pre-processing the data, we learn a probabilistic model of the evolution of stability parameters. Right:
At runtime, we compare measured to predicted sensor data and use the deviation to control the robots behavior.

to realize non-verbal communication between robots and
humans.

Wang et al. [1] present a robot that can adapt its dancing
steps based on the external forces exerted by a human dance
partner. Ben Amor et al. [2] uses touch information to teach
new motor skills to a humanoid robot. In this approach,
the robot is not actively involved in any joint task with
the human. Touch information is, therefore, only used to
collect data for subsequent learning of a robotic motor skill.
Robot learning approaches that are based on such kinesthetic
teach-in have gained considerable attention in the literature,
with similar results reported in [3] and [4]. Following a
similar scheme, Lee et al. [5] use impedance control and
force-torque sensors in order realize human-robot interaction
during programming by demonstration tasks. A different
approach aiming at joint physical activities between humans
and robots has been reported in [6]. Ikemoto et al. use
Gaussian mixture models to adapt the timing of a humanoid
robot to that of a human partner in close-contact interac-
tion scenarios. The parameters of the interaction model are
updated using binary evaluation information obtained from
the human. The approach significantly improves physical
interactions, but is limited to learning timing information.

Stückler et al. [7] present a cooperative transportation
task where a robot follows the human guidance using arm
compliance. In doing so, the robot recognizes the desired
walking direction through visual observation of the object
being transported. A similar setting has been investigated by
Yokoyama et al. [8]. They use a HRP-2P humanoid robot
equipped with a biped locomotion controller and an aural
human interface to carry a large panel together with a human.
Forces measured with sensors on the wrists are utilized to
derive the walking direction. Similarly, Bussy et al. [9] also
use force-torque sensors on the wrists to adapt the robot
behavior during object transportation tasks. Lawitzky et al.
[10] also shows how load sharing and role allocation can be
used to balance the contribution of each interaction partner
depending on the current situation.

The main drawback of the above approaches is that
they require special aural and visual input devices or force

sensors which are not present on many robot platforms.
Additionally, none of the approaches utilizing force-torque
sensors addresses the problem of uncertainty in the provided
measurements. As a result, all of these approaches assume
high-quality sensing capabilities and low-speed execution of
the joint motor task. In contrast to the above approaches,
we estimate the human forces using probabilistic machine
learning methods. These methods allow us to naturally model
uncertainties in sensor readings.

III. APPROACH

In our approach the human applies forces to the robot
via direct touch or via a carried object. The human guides
the robot, which consecutively has to appropriately react
to the exerted forces, i.e., stand-up, walk forward, walk
backwards or perform side steps. Measured forces are treated
as indications for the guidance of the human, e.g., a push
backwards signal the humans intention to move backwards.
In this paper, we assume that the human forces cannot be
directly measured using, for example, force-torque sensors.
Instead, we estimate these forces using the internal sensors
of the robot.

An overview of the approach can be seen in Figure 2.
First, we execute each of the behaviors, e.g., walking or
side steps, of the robot and collect sensor data at each time
step. For each behavior, we then learn a predictive model of
stability parameters. Using this model we can calculate the
deviation between the predicted and the currently calculated
stability parameters. If the deviation cannot be explained by
the predictive uncertainty of the learned model, the robot
attributes this effect to an external perturbation caused by the
human interaction partner. The sign and size of the deviation
are then used to infer the human guidance and control the
robot adequately.

In the following, we will discuss each step of our approach
in more detail.

A. Data Acquisition

In order to learn a predictive model of sensor values,
we first collect for each motor behavior of the robot a
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Fig. 3: Particularly in the case of PCA we see that the
amplitude of the first principal component is proportional
to the robot’s walking velocity.

representative data set. The goal of this process is to gather
information about the change of the robot parameters when
no interaction with a human partner is realized. The recorded
data includes the joint angles for all degrees-of-freedom, the
raw sensor reading of the internal sensors, as well as the
current parameters of the executed behavior, e.g., the walking
velocity.

To increase the robustness of the later model learning
method, we calculate higher-level stability parameters from
the recorded raw sensor readings. In particular, we compute
the center-of-mass (CM ) of the robot, using the position pi
and the mass mi of each body part.

CM =
1

M

n∑
i=1

(pimi),

Where n is the number of body parts and M is the total mass
of the robot. Additionally, we use acceleration a which is
measured by a three-axis accelerometer, as well as the mass
m, and the gravity constant g to calculate the ground reaction
vector (CG).

CG = (ma)− (mg).

Finally, we also approximate the center of pressure (CP ) of
the robot using the position pi and measurement ri of the
foot pressure sensors.

CP =
1

R

n∑
i=1

(piri).

Here, n reflects the number of pressure sensors and R is the
sum of the measured pressure values.

To reduce the dimensionality of the joint angle values of
the robot, we use manifold learning methods. All vectors
representing the joint angle configuration of the robot at a
specific time step are processed using linear or nonlinear
dimensionality reduction methods. The result is a set of
low-dimensional points, which reflect the dynamics of the

executed motor skill. More specifically, we used Principal
Component Analysis (PCA) [11], Locally Linear Embedding
(LLE) [12] and Manifold Charting (MC) [13] for the low-
dimensional embedding. Figure 3 shows the first principal
component of a robot’s walking gait recorded with 100Hz,
where the walking speed is first decreased and then increased
again. When using PCA, the amplitude of the principal
component is proportional to the robot’s walking velocity.
A similar effect, although less salient, can be observed
when using other dimensionality reduction methods too.
Additionally, we observe in Figure 3 that the executed motor
behavior exhibits a clear periodic behavior. We will later
see that this property can be exploited in order to realize
faster and more accurate learning of predictive models. After
dimensionality reduction, the joint angle data is replaced
by its low-dimensional projection. This has the benefit of
significantly reducing the complexity of the learning task,
while at the same time reducing the effect of noise and
outliers, as these are often cut out from the first principal
components.

B. Model Learning

Subsequently, the acquired data is used to learn a mapping
from low-dimensional postures and behavior parameters to
stability parameters. Input to the mapping is a vector which
holds the low dimensional posture and the desired behavior
parameters. The mapping produces a vector which predicts
stability parameters, e.g., the CP as illustrated in Figure 4.

For learning such a mapping, we use Gaussian process re-
gression (GPR) [14]. GPR is a powerful method for learning
a probabilistic, non-linear mapping between two data sets.
A Gaussian process (GP) models a distribution p(f) over
functions, where f is a function mapping some input space
to an output space R.

Given a data set D = (X, y) with noisy output y, a
nonlinear regression can be written as:
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Fig. 4: The learned model is used to predict the CPx and
CPy. The deviation between measured values and the learned
prediction is located inside the allowed variance which is
given by the predictive uncertainty of the Gaussian process.



y = f(x) + ε, ε ∼ N(0, σ2)

where σ2 is the variance of the noise. The prior of f is a
Gaussian Process:

p(f) = GP (µ,K)

which can be used to perform Bayesian regression:

p(f |D) = p(f)p(D|f)
p(D)

The prediction of output y∗ at new entry point x∗ has
Gaussian probability distribution with mean µ(x∗) and vari-
ance σ2 as follows:

µ(x∗) =K(x∗, X)[K + σ2I]−1y

σ2(x∗) =K(x∗, x∗)−K(x∗, X)[K + σ2I]−1K(X, x∗).

A GP prior can be specified by the mean µ and covariance
function k. Since offsets and simple trends can be subtracted
out from data, we can use a zero mean prior of the GP. Thus,
the key quantity is the covariance matrix K, whose elements
are the output of the covariance function or kernel k(x, x′).
A kernel encodes implicit assumptions about the underlying
function f , such as smoothness or periodicity assumption.
The most frequent kernel in the GP literature is the squared
exponential kernel:

k(x, x′) = θ1 exp

(
−1

2

D∑
d=1

(
xd − x′d
ld

)2
)

where D is the number of input dimensions. Parameters of
the covariance function (θ1, ld) are called hyper-parameters
and can be calculated based on the recorded training data.
These parameters govern the properties of the kernel k(x, x′).
θ1 controls the amplitude of the function, while ld is called
characteristic length-scale and reflects the relative importance
of each input dimension.

The squared exponential kernel has been shown to produce
good results for a large number of application domains. Yet,
for some tasks better results can be achieved by using dif-
ferent types of kernels. In human-robot interaction scenarios,
in particular in cooperative transportation tasks, we are often
faced with periodic movements. Walking, sidestepping or
rotations are all examples for rhythmic movements, which
repeatedly execute similar motor patterns, such as a left-right
sequence of steps. Given this knowledge, we can devise a
kernel function that incorporates periodicity information. In
this paper, we will, therefore, use a novel periodic kernel,
which is defined as:

k(x, x′) = θ1 exp

−1

2

D∑
d=1

 sin
(
π
λd

(xd − x′d)
)

ld

2
 .

In addition to the hyper-parameters of the Squared Ex-
ponential kernel, our periodic kernel has a periodicity
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Fig. 5: The robot stands up while inferring that the human is
pulling at its arms. The execution of the stand-up behavior
is driven by the difference in the predicted and measured
center-of-mass CMz .

hyper-parameter λ. The similar fashion to the other hyper-
parameters, λ can be learned based on the acquired training
data.

C. Human-Robot Interaction

During interaction we measure the current angles of the
robot and project them into the low dimensional posture
space. The resulting low dimensional point and the current
behavior parameters are mapped to the desired stability
parameter via the predictive model. This predicted reference
value is compared with the measured stability parameter. If
the measurement is located outside the predictive uncertainty
of the Gaussian process we assume that the human is guiding
the robot and react by continuously adapting the behavior
parameters or changing the robot’s pose. For instance, the
robot increases his walking velocity when the human pulls
it or the robot stands up while lifting it. In our feedback
loop we use a simple proportional-derivative controller to
adapt the robot’s behavior based on the difference between
the predicted and measured stability parameters. Figure 5
illustrates the measured and predicted CMz coordinate when
lifting the robot. As a result the robot can react to human
guidance in real-time, e.g., the robot is standing up as long
as the human is lifting it.

In the following section several experiments focusing a
cooperative transportation task are explained in more detail.

IV. EXPERIMENTS
In the following experiments we use learned predictive

models in order to realize close-contact cooperative tasks
between a human and a robot. All experiments are carried out
on the NAO robot from Aldebaran Robotics. As illustrated
in Figure 5, we can use a model of the robot’s CMz for up
and down movements which can also be used for lifting and
placing of objects.



Fig. 6: The human directly guides the robot through longitudinal physical interaction. The robot infers the intended walking
direction and adapts the walking parameters, i.e., heading and velocity, accordingly.

0 100 200 300 400 500 600 700

−0.04

−0.02

0

0.02

0.04

0.06

Time Step

C Px

Variance
Measurement
Prediction

Pull

Fig. 7: The predicted and measured center-of-pressure CPx
during interaction. The highlighted region indicates the time
period with human perturbation.

However, after lifting, we transport the object by adapting
the direction and velocity of the robots walking behavior
by using a predictive model for lateral and longitudinal
walking/side stepping. For this, we again acquire data from
the robots walking behavior. Here, the robot starts with the
maximum forward walk velocity and decreases its speed until
walking backward with the maximum speed. While doing so
we capture the robot’s pose, stability parameters and the walk
velocity with 100Hz resulting in 6000 measurements. Next,
we learn two different predictive models. The first model
learns the mapping from the current posture and velocity to
the CPx, while the second model performs a mapping onto
the CPy parameter. While this can also be realized using a
multivariate output GP, we have often experienced a better
accuracy when using separate models. A video showing the
results of the experiments in this section can be found under
the following link: http://youtu.be/48y0hEix2fY.

A. Longitudinal Walking Model

In this experiment, we apply our approach to realize
a direct, physical interaction between a human and robot
through touch. As shown in Figure 6, the human guides the
robot by applying forces to his hands. In order to respond to
these forces, the speed of the walking behavior is adapted.
For this, we measure the robot’s current posture, CPx and
walking velocity. As explained above, the posture is reduced
using the low dimensional posture model and then mapped

to the center-of-pressure parameter CPx via the predictive
model. Figure 7 shows predicted and measured values dur-
ing human-robot interaction. Throughout the experiment the
walk velocity remains the same as long as the measured
CPx is located within the area of uncertainty, i.e., within
the envelope spanned by the variance. However, the walking
velocity is increased whenever the measured CPx is outside
the area of uncertainty. Up to time step 200 the velocity
remains constant because the measurement is located inside
the envelope. Between time step 200 and 350 the measured
CPx is higher than the allowed deviation, which triggers an
increase in the velocity. We can also see that the prediction
is adapted to the new walking velocity after time step 350.
Since the human permanently interacts with the robot, we
also measure small variations of the CPx throughout the
entire interaction.

B. Lateral Walking Model

Next, we apply our lateral walking model to a cooperative
human-robot manipulation task in which the human applies
forces to the robot via a carried object as shown in Figure
8. Since the hands and arms are not completely stiff, any
forces of the human induce slight changes to their position
thereby affecting the CMy . The resulting measurements and
predictions are shown in Figure 9. These are due to the fact
that the model does not include the weight of the table or
the carried object. However, for small weights the deviation
is still inside the allowed variance.

C. Periodic Kernel

We also evaluated the benefit of using our periodic kernel
for learning the predictive model. Table I reports the Root
Mean Squared (RMSE) error for the squared exponential
kernel and the periodic kernel as performed on test data that
has not been used for training. The evaluation was performed
using a five-fold cross validation. The results clearly indicate
an improvement when using a periodic kernel instead of a
squared exponential kernel. We also noticed that, when using
a periodic kernel, less training data is needed to generate a
good predictive model. While not conclusive, these results
demonstrate that choosing a periodic kernel can significantly
improve the quality and speed of learning, when generating
predictive models for rhythmic motor skills.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a behavior adaptation approach
for cooperative human-robot interaction tasks. Using a GPR
and a novel periodic kernel, we learn a model of the regular



Fig. 8: A cooperative human-robot transportation task. The human applies lateral forces on the robot via a carried object.
The robot reacts by side-stepping.
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Fig. 9: The predicted and measured center-of-mass CMy

during a cooperative transportation task. Whenever the table
is pushed to the left or to the right, the robot responds with
adequate side-steps to stabilize the CMy .

TABLE I: Comparison of Squared Exponential and Periodic
kernels

Kernels Root Mean Squared Error
Squared Exponential 0.0196

Periodic 0.0005

sensory consequences of a motor skill. At runtime, we
can analyze deviations from this regular pattern to infer
information about human guidance during physical inter-
action. We have shown that this approach can be used to
realize interesting cooperative tasks involving a human and
a robot. By using a probabilistic approach, we account for
the inherent uncertainty in the sensor readings of the used
robot. We are currently extending our framework to scenarios
that additionally involve interactions with the environment.
In such scenarios the robot needs to differentiate between
the different sources of external perturbations, e.g., the slope
of the ground vs. the force of the human partner. To this
end, we want to investigate the use of online blind-source
separation algorithms. Furthermore, we want to increase
the efficiency of our regression model by using sparse

approximation algorithms. More specifically, we want to
analyze the required amount of training data needed to
learn sufficiently good predictive model. Finally, we want
to investigate how different predictive models can be used in
combination and in a hierarchy in order to generalize learned
stability information to entirely new situations and behaviors.
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