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Abstract—1In this paper we present a new approach for
learning responsive robot behavior by imitation of human in-
teraction partners. Extending previous work on robot imitation
learning, that has so far mostly concentrated on learning from
demonstrations by a single actor, we simultaneously record
the movements of two humans engaged in on-going interaction
tasks and learn compact models of the interaction. Extracted
interaction models can thereafter be used by a robot to engage
in a similar interaction with a human partner. We present two
algorithms for deriving interaction models from motion capture
data as well as experimental results on a humanoid robot.

I. INTRODUCTION

While robots are becoming increasingly better at perform-
ing a wide range of motor skills, they are still limited in
their human interaction capabilities. To date, most robots are
not prepared to appropriately respond to the movements or
the behavior of a human partner. However, with application
domains of robots coming closer to our everyday life, there
is a need for adaptive algorithms that ensure responsive robot
behavior for human-robot interaction.

We present a new approach to robot learning that allows
anthropomorphic robots to learn a library of interaction skills
from demonstration. Traditional approaches to modelling
interactions assume a pre-specified symbolic representation
of the available actions. For example, they model interactions
in terms of commands such as wait, pick-up, and place.
Instead of such a top-down approach, we want to focus on
learning responsive behavior in a bottom-up fashion using a
trajectory based approach. The key idea behind our approach
is that the observation of human-human collaborations can
provide rich information specifying how and when to interact
in a particular situation. For example, by observing how
two human workmen collaborate on lifting a heavy box, a
robot could use machine learning algorithms to extract an
interaction model that specifies the states, movements, and
situational responses of the involved parties. In turn, such a
model can be used by the robot to assist in a similar lifting
task. Our approach is as an extension of imitation learning
[3] to multi-agent scenarios, in which the behavior and the
mutual interplay between two agents is imitated.

In this paper, we describe the general multi-agent imitation
learning setup for learning interaction models from motion
capture data. We also provide two first algorithms that enable
a robot to learn such interaction models between interacting
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Fig. 1. A humanoid robot receives a book that is handed over by a
human interaction partner. The robot learned what to do in this situation
by observing a similar situation between two humans.

agents. The first algorithm PPCA-IM (Probabilistic Principal
Component Analysis-Interaction Model) frames the task as
a missing value estimation problem. The second algorithm
called PM-IM (Path Map-Interaction Model) uses a Hidden
Markov Model (HMM) [20] to represent the mutual depen-
dencies of the interacting agents. A set of shared latent states
is used to map the behavior of one agent to the behavior of
the interaction partner. The principal difference between the
two algorithms presented in this paper is the representation
of the temporal dynamics of interaction. The PPCA-IM uses
an implicit representation of time via a temporal embedding
of the training data. In contrast, the PM-IM uses an explicit
representation of time via a discrete set of hidden nodes.
Through a series of experiments, we will show how the
two algorithms can be used to create a responsive robot that
learns to react to the movements and gestures of humans.
We will also provide a comparison of PPCA-IM and PM-IM
and discuss the advantages and drawbacks of each approach.

II. RELATED WORK

Finding simple and natural ways of specifying robot con-
trol programs is a focal point in robotics. Imitation learning,
also known as Programming by Demonstration, has been
proposed as a possible solution to this problem [22]. Based
on human-provided demonstrations of a specific skill, a robot
autonomously generates a control program that allows it to
generalize the skill to different situations. Most approaches
to imitation learning obtain a control policy which encodes
the behavior demonstrated by the user. The policy can
subsequently be used to generate a similar behavior that is
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Fig. 2. Overview of the interaction learning approach presented in this paper. The interaction behavior of two humans is observed, analyzed and imitated
in order in human-robot interaction scenarios. Left: The movements of two persons are recorded using motion capture technology. Middle: A compact
interaction model specifying the mutual influences and responses is learned. Right: The interaction model enables a robot to compute the best response to

the current behavior of a human interaction partner.

adapted to the current situation.

For example, the Dynamical Motor Primitive (DMP) [13]
approach uses dynamical systems to represent control poli-
cies. The DMP approach has been widely accepted in the
imitation learning community and has been used to learn
various motor skills such as locomotion [16], or drumming
[13]. Another way of encoding policies is to use statistical
modelling methods. For example, in the Mimesis Model [17]
a continuous hidden Markov model is used for encoding
the teacher’s demonstrations. A similar approach to motion
generation is presented by Calinon et al. [7] who used Gaus-
sian Mixture Regression to learn gestures. The advantage
of statistical and probabilistic approaches, is the ability to
naturally model the spatial and temporal variability of human
motion.

The methods discussed so far are limited to single agent
imitation learning scenarios. Once the behavior is learned,
it is executed without taking into account the reaction of
an interaction partner. In recent years, various attempts have
been undertaken for using machine learning in human-robot
interaction scenarios. In [15], a recurrent neural network was
used to learn a simple interaction game between a human
and a robot. More recently, Wang et al. [24] presented an
extension of the Gaussian Process Dynamics Model that was
used to infer the intention of a human player during a table-
tennis game. Through the analysis of the human player’s
movement, a robot player was able to determine the position
to which the ball will be returned. This predictive ability
allowed the robot to initiate its movements even before
the human hit the ball. In [14], Gaussian mixture models
were used to adapt the timing of a humanoid robot to that
of a human partner in close-contact interaction scenarios.
The parameters of the interaction model were updated using
binary evaluation information obtained from the human.
While the approach allowed for human-in-the-loop learning
and adaptation, it did not include any imitation of observed
interactions.

In a similar vein, the work in [17] showed how a robot
can be actively involved in learning how to interact with a

human partner. The robot performed a previously learned
motion pattern and observed the partner’s reaction to it.
Learning was realized by recognizing the observed reaction
and by encoding the action-reaction patterns in a HMM. The
HMM was then used to synthesize similar interactions. In
contrast, in our approach, learning of motion and interaction
is not split into two parts. Instead, we learn one integrated
interaction model which can directly synthesize an appro-
priate movement in response to an observed movement of
the human partner. Further, instead of modelling symbolic
action-reaction pairs, our approach is based on modelling
the joint dynamics during the execution of a movement.

In general, while the learning approaches discussed above
are placed within human-robot interaction settings, they only
learn from demonstrations by a single actor at a time. In
contrast, the work presented here focuses on imitation learn-
ing from simultaneously recorded movements by two human
interaction partners in order to learn integrated models of the
joint interaction.

III. LEARNING INTERACTION MODELS

The goal of learning an interaction model is to derive a
compact representation of how two agents behave and, in
particular, how they react to each other when they perform
a cooperative or competitive task together. The approach
followed in this paper derives such a representation from ob-
servations of human-human interactions. In Figure 2 we see
an overview of this approach. First, the movements of a pair
of persons performing a competitive (or cooperative) task
are recorded using motion capture technology. Subsequently,
an interaction model is learned from the recorded data. The
interaction model captures the reciprocal influences during
the execution of the task. In turn, the interaction model
enables us to predict the state (skeletal configuration) of one
human based on the observed states of the second human.
Finally, the learned model is used by a robot to engage in
a similar interaction with a human partner. In the example
depicted in Figure 2, the humanoid robot learns to perfom
defensive movements in response to a human performing
punching movements.



An interaction model can be regarded as a mapping from
the current state of one agent to the state of a second agent.
In our particular application, we want to learn a mapping
from the state of the opponent agent (i.e. the human) to
the state of the controlled agent (i.e. the robot)!. Input to
the learning algorithms are the two data sets A (controlled
agent) and B (opponent agent) consisting of joint angle
configurations of the two agents. Each point in A contains
information about the skeletal configuration of the controlled
agent at a particular time step, while B contains a joint
angle configurations for the opponent agent. Once a mapping
from B to A is learned, it can be used to compute the
most appropriate response of the controlled agent, given
the observed movements of the opponent agent. In this
section, we will present two algorithms that can learn such
a mapping.

A. Algorithm 1: PPCA-IM

The first algorithm that we present is the Probabilistic Prin-
cipal Component Analysis - Interaction Model. The method
exploits the low-dimensional nature of human movement in
order to create a compact model of the interaction. It is well
known from human motor control, that motor tasks, e.g.,
grasping [21], walking [9], and also interactions between
humans [4] lie on low-dimensional manifolds. Such a man-
ifold typically has a much smaller dimensionality than the
total number of joints involved in the motor task. Therefore,
instead of finding a mapping in the high-dimensional space
involving all joints, we can find a low-dimensional space in
which the relationship between the postures and movements
can be learned in a more efficient way. After learning is
finished, the joint values of the controlled agent are treated
as missing values that are estimated by maximizing the
likelihood in the low-dimensional latent space.

The first step to PPCA-IM is the temporal embedding
of the opponent agent’s data. Temporal embedding allows
us to disambiguate between similar movements by includ-
ing information from prior time steps. In the second step,
namely dimensionality reduction, we then compute a low-
dimensional projection of the data set and use this space to
estimate the most likely response for the controlled agent.

1) Temporal Embedding: One possible approach to learn-
ing an interaction model is to learn a mapping between
individual pairs of samples in A and B directly. However,
such an approach does not take the temporal offset between
action and reaction into account, and is therefore prone
to fail for many behaviors. For example, a stretched out
arm can either mean that the opponent wants to shake
hands or perform a Karate movement. To disambiguate the
behavior in such scenarios it is important to take the temporal
development of the movement into account. When using
PPCA-IM we perform a temporal embedding of the data in

!For the sake of clarity we will henceforth use the terms controlled agent
and opponent agent to refer to the agents involved in an interaction. Note
that this naming convention does not restrict the application to competitive
tasks only.

B yielding a new data set B*. To each point in B we add
joint angles of the 7 last time steps:

bta

b; = VbeB,t>T. (1)

btf‘r

This embedding is comparable to modelling the interaction
as a Markov chain of order 7, rather than a traditional first-
order Markov chain. A similar preprocessing of the data was
proposed in [2].

2) Dimensionality Reduction: The next step in PPCA-IM
is to create a shared latent space that models the interaction
dynamics of the two agents. As the name of the algorithm
suggests, we use Probabilistic Principal Component Analysis
(PPCA) to learn a shared low-dimensional representation of
the movements. To this end, we create a combined data set
Z which is a concatenation of A and B*:

z = [a;, b}]V a;,b] € A,B” (2)

On the new data set Z we can then perform PPCA. PPCA
is an iterative version of the original PCA algorithm which
uses Expectation-Maximization (EM) [11] to determine the
optimal projection matrix C that maps the data set Z onto
a lower-dimensional principal component space. The PPCA
algorithm used here is based on [19]. An advantage of PPCA
over PCA is that it provides a probabilistic framework for
performing PCA on data sets that have missing values. In
our case, we treat the current joint angles of the controlled
agent as missing values that need to be estimated. The EM-
algorithm can be used to estimate the missing values of our
data. This estimation is done by adding an additional entry
z to Z, which consists of an observed part z, and a hidden
part z,. The observed part contains (temporally embedded)
joint values z, of the opponent agent. The hidden part zj
will be estimated during the EM-algorithm and is initially
filled with zeros.

Before starting the EM algorithm, we initialize the pro-
jection matrix C and the variance o2 with random values
between zero and one. In the E-step, we first calculate new
estimates for the covariance matrix 3 and matrix Y of
projected points:

E-Step:

S —[1+02cC?] 7,

Y — o0 2%CZ,
Based on these estimates, we can update in the M-step the
projection matrix C and the variance o2:
M-Step:
C —=ZY'(ST+YY")!,

s
1

o? —<p |9 Tr{CTEC} + Zl ||z; — CTy;||> + Dpo?
where S is the number of samples, D is the dimensionality
of the samples, and D; is the total number of missing
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Fig. 3. The projection of high-five motions into a low-dimensional space
using Probabilistic Principal Component Analysis. Each point in this space
corresponds to specific interaction situation and defines the postures of both
agents. Even if we observe the postures of one agent only, we can still infer
the most likely posture of the interaction partner using PPCA and missing
value estimation.

values in Z. The missing values z; of the matrix Z are
re-estimated before performing the next E-Step by first
calculating Zeszim:

Zestim = CTY: (3)

and then replacing the missing values z; with the newly
estimated values from Z.g¢;,,. The above EM-steps can be
iterated until the change in the error of the following objec-
tive function is below a given threshold (in our experiments
the threshold is 107°):

U(C,0) = SDlogo? + 0 2Do2,+

S
o2 | ||z — CTyil|? + Te {CTEC} |,
i=1

where 02, is the previous value for the variance. Once the
EM-algorithm is finished, we can use the missing values zy,
as the new desired joint angles for the controlled agent.

Figure 3 shows the low-dimensional projection of a high-
five interaction calculated with PPCA. Each point in the
low-dimensional space encodes the reaction of the controlled
agent with respect to the previous movements of the oppo-
nent agent. We can see that the interaction forms a smooth
trajectory in the low-dimensional space.

To better understand the role of temporal embedding in our
learning algorithm, we computed several PPCA projections
with different values for the parameter 7 (from Equation
(1)). For this purpose, we recorded a defensive movement
in which a human starts in a rest pose, then moves both
arms in a defensive stance, and finally goes back to the rest
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Fig. 4. PPCA projections of a defense interaction for different values of 7.
During the interaction the opponent agent attacks and retracts back to the
rest pose while the controlled agent goes to defense stance and then retracts
to the rest pose. When 7 = 0 the temporal context of a posture is not taken
into account.

pose. Figure 4 shows the projected movement for different
values of parameter 7.

When 7 = 0 (Figure 4 left), the postures for going towards
the defensive stance (green) and the postures for retracting
back from the defensive stance (red) are mapped onto the
same points in the low-dimensional space. As a result a
robot cannot distinguish between the two different modes
of this particular movement and would produce the same
reaction in both situations. We can also see in Figure 4,
that with increased value for 7 the points are more and
more disentangled. We can see that 7 = 20 produces a
clear separation between the two modes, i.e. going to and
pulling back from the defense stance, of the movement. The
trajectory starts at the rest posture in (—250,0)7, moves to
the defense stance at (250,0)7, and then moves back to a po-
sition close to the rest posture. Note, that in this example we
used a two-dimensional projection for visualization purposes
only. To find a suitable value for the dimensionality of the
low-dimensional space, we can use intrinsic dimensionality
estimation methods [5]. A simpler approach, which was used
in this paper, is to use the number of principal components
that insures that 95% of the information in our training data
is retained after PPCA.

B. Algorithm 2: PM-IM

The second algorithm for learning interaction models is
called Path Map-Interaction Model (PM-IM). The algorithm
uses a HMM to represent the mutual dependency of the
interaction partners at different time steps.

A HMM is an efficient tool for modelling probability
distributions over time-series’. It assumes that a set of
observations was generated by a process with hidden
internal states. Given the Markov assumption, any state s;
only depends on the predecessor state s,_;. Following the
notation in [20] and [6], a HMM can be defined as the tuple
0 = (S, 7, Pj—i,pi(o|s;)) where

o §={s1,...,8n} is the set of states s; of the HMM

e m={m1,..., 7y} is a probability distribution specifying
the probability 7; of starting in state ¢

P;_,; is the state transition matrix defining the proba-
bility p(s;|s;)of transitioning from state s; to s;
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Fig. 5. The graphical model of a path map Hidden Markov Model.
Each hidden node (white) is connected to two observed nodes (colored)
corresponding to each of the interacting agents. Each observed node contains
the joint angle configuration of the respective agent which is depicted by
a small skeleton. The diagram shows a path map for an punch/defense
interaction.

o p(ols;) is the emission probability distribution which
defines the probability of observing output o while
in state s;. The emission probability distribution is
modelled using a Gaussian distribution.

As already mentioned, the nodes of an HMM can be divided
into observable nodes and hidden nodes. Typically, an HMM
is defined in such a way that each hidden node is connected
to one observable node only. In the following, however, we
will use an extension of HMM, sometimes also referred to
as a path map[6], which has a different graph structure.

A path map relates the time-series behavior of a cue
system to the behavior a target system. This is achieved
by connecting each hidden node to two observables nodes:
one observable for the cue system and one observable for
the target system. A path map for the task of interaction
modelling can be seen in Figure 5. The colored nodes
correspond to the observables of the controlled agent (blue)
and the opponent agent (red) respectively. Each observable
state holds the full joint angle configuration of the respective
agent in the current situation. The white nodes depict the
hidden states of the interaction task. Each hidden state
models a specific context or situation during the interaction.

In contrast to the standard HMM, a path map contains two
emission probability distributions p4(a;|s;) and pp(b|st);
one for each of the two agents. The training of the path
map, however, can be performed using the same approach
as for a standard HMM. First, a K-Means[18] clustering
algorithm is used to initialize the hidden states of the HMM.
Using the EM [11] algorithm, we can then estimate all
missing parameters of the HMM. A detailed description of
HMM training can be found in [20]. Once it is learned, the
path map in Figure 5 allows us to estimate the behavior
of one agent by observing the movements of the other. We
first calculate the most likely sequence of states given the
observed behavior of the opponent agent. Using the emission
probability distribution pp(b;|s;) of each state, we can then
generate an appropriate response for the controlled agent in

every situation.

An interesting feature of HMMs is the ability to use
several HMM models in parallel. For example, assume that
we learn two HMMs for different interaction tasks, e.g.,
punching and handing-over. Given a new observed movement
of the attacking agent, we can calculate the likelihood of this
movement with respect to each learned HMM and select the
model with highest likelihood according to:

0* = arg maaxp(btw). (€))

Once the HMM with highest likelihood is selected, we can
calculate the emissions for the current situation and use the
resulting joint angle values for controlling the robot. The
above feature allows us to use the knowledge of several
HMMs in order to recognize an interaction scenario and also
to respond to the behavior of the human partner. The set of
interaction skills can, therefore, be gradually expanded.

IV. EXPERIMENTS

To evaluate the algorithms proposed in this paper, we
conducted a set of interaction experiments and analyzed the
results. In the following sections, we will report the results
achieved by applying the algorithms in simulation as well as
on a real robot performing human-robot interaction with a
human partner.

A. Interaction Data

Before training any specific model, we first collected
a set of training data representing different competitive
and cooperative interaction tasks. Specifically, we collected
motion capture data of two interacting humans. The data
set consisted of various interaction tasks acquired from the
CMU Motion Capture Library?, as well as additional data
gathered using two Kinect cameras and two human subjects.
In order to be independent of a specific tracking device, we
transformed all motion capture data into the BioVision file
format and used the resulting joint angle information as input
to the learning algorithms. In total, we used 18 joints, with
each joint being parametrized by three joint angles. The final
data set consisted of four different interaction tasks:

o Boxing: One agent attacks with punches at different
heights and from different directions while the other
agent defends.

o Martial Arts: One agent attacks with punches and kicks
while the other defends.

o High Five: Both agents perform a high-five movement.

« Handing over: One agent hands a book over to the other
agent.

B. Runtimes

In interactive scenarios, a robot needs to quickly respond
to the behavior of the human partner. In the following we
will, therefore, analyze the computational demands of the
proposed algorithms and the runtimes for predicting the
appropriate response in the current situation. Figure 6 depicts

Zhttp://mocap.cs.cmu.edu/
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Fig. 6. The runtime of the PPCA-IM and the PM-IM algorithms. The values
indicate the measured time needed for predicting the optimal response of
the robot given the human’s action at a particular time step. With increasing
number of learned behaviors, the time needed to predict the optimal response
increases, too. Additionally, the plots also show how the size of the temporal
embedding window (20,10,5) affects the runtime of the PPCA. The right
plot shows how the number of states/clusters affects the runtime of the
PM-IM.

the runtimes of the PPCA-IM and the PM-IM algorithms.
For training we used an increasingly complex data set with
one to five different behaviors. Each behavior consisted of
approx. 120 data samples. The plots show how the number
of interactive behaviors affects the response time of the robot
when applying an interaction model after learning.

As can be seen in Figure 6, PPCA-IM has a significantly
faster response time. Especially, with increasing number of
clusters/states in the PM-IM, the response times quickly
deteriorate. With 60 hidden states, the PM-IM requires about
0.4 seconds to compute a prediction. A smaller number of
states can be used to speed up the algorithm. However, this
comes at the price of a significantly lower quality of the
learned model. In the above example, the PM-IM was only
able to produce accurate responses when 55 or more states
were used. The PPCA-IM was used with a 7 dimensional
latent space.

C. Generalization

Another important feature of interaction models is the
ability to generalize learned behaviors to new situations. To
analyze the generalization ability, we conducted a set of
experiments in which we trained interaction models for a
boxing/defending behavior. The models were trained with
high- and low-punches, and were later tested with several
other punches that aimed at a position inbetween the trained
punches. Figure 7 shows the z-position of the wrist of the
controlled agent while trying to defend several punches.

The gound truth data gathered from the human clearly
shows that the hand needs to be lifted to different levels, in
order to defend from the upcoming punch. The trajectories
generated with the PPCA-IM model have similar characteris-
tics to the human trajectories. The blue trajectory in Figure 7
corresponds to a movement that was not seen in the training
data. Despite that it was not trained, the PPCA-IM was still
able to generalize the learned movement to this new situation.
Both the shape and height of the trajectory are close to the
ground truth of the human demonstrator. In contrast to that,
the PM-IM does not exhibit a similar generalization ability.
In the depicted case, the PM-IM repeatedly switches between
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Fig. 7. The wrist position of the controlled agent for different defenses. The
human raises his hand to different heights depending on the type of punch
he receives. The defense movement for a center punch was not learned. The
PPCA-IM algorithm is still able to generalize to this situation. The PM-IM
algorithm does not generalize well in this situation.

states for high-punches and low-punches leading, over time,
to oscillations with an increasing amplitude.

An interesting property of PPCA-IM is the fact that it
automatically produces continuous outputs in every time
step. The controlled agent reacts even to small changes in
the behavior of the opponent agent. By nature the PM-IM is
a discrete model and does not produce different outputs in
every time step. Still, a continuous output can be generated
by using interpolation (as done in the above examples) or by
incorporating velocity information into the model.

D. Robot Experiments

In order to validate our results on a real robot, we
conducted an experiment in which a NAO robot learned a
set of interaction skills that can be performed cooperatively
or competitively with a human partner.

However, in order to replay any of the synthesized move-
ments with the used NAO robot, we first have to find a
mapping between the body parts of the human demonstrator
and the body parts of the robot. This problem is commonly
referred to as the correspondence problem [8] and is a
fundamental problem of imitation learning. In this paper,
we performed the mapping by using inverse kinematics (IK)
on the extremities of the robot. The human skeleton was
scaled to the size of the robot and IK was used to ensure
that the positions of the feet, hands, pelvis and head of
the robot matched the positions of the human extremities.
More specifically, we used the iTaSC [10] IK algorithm for
fitting the human skeleton to the robot. We have released the
software package for IK-based correspondence matching of
the NAO robot as an open-source tool for the general public?.

To test our algorithms, we trained interaction models for
the martial arts data set. The robot learns to recognize and

3The software can be downloaded as a Blender-extension from
https://bitbucket.org/JuvenileFlippancy/naoblender
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Fig. 8. A martial arts scenario trained and executed with the PM-IM algorithm. Top: The captured movement of the human. Second row: The joint angle
configurations generated by the PM-IM after observing the human movement. Third row: The log-likelihoods for the different behaviors. Below: Pictures
of the interaction between the human and the robot. The human movement was recorded with a Kinect camera.

defend different types of attacks, e.g., punchrighthigh, punch-
leftlow, kickrightlow. A set of 12 behaviors was used for
training. Depending on the type of attack a different defense
behavior is executed. For learning the PM-IM we used 60
to 70 hidden states. The number of hidden states for each
behavior was estimated using cross-validation on the training
data. For PPCA-IM we used a sampling rate of 10/ z and
T =20.

Figure 8 shows the movements of the human and the
responses of the NAO robot. Note that the defense posture
for an attack with the right hand and attacks with the left
hand are different: robot lifts only one arm or both arms for
defense. Similarly, the defense stance for a low-kick requires
the robot to kneel down and block with one arm. The Figure
also shows the log-likelihoods for the different behaviors
that are generated by the HMMs. Interestingly the difference
in the log-likelihood is very high when the opponent agent
executes a kick-right-low movement. The robot can easily
disambiguate this case as it is only when of two trained
behaviors which use the leg. Both the PM-IM as well as
the PPCA-IM model can solve the above task and produce
appropriate responses for the NAO robot. The PPCA-IM
model was again trained with 7 latent dimensions. Apart
from martial arts examples we have also trained interaction
models for the other data sets. Figure 1 shows the behavior
of the robot after training a handing-over interaction task.

E. Discussion

The results suggest that both PPCA-IM and PM-IM can
be used encode and reproduce the joint dynamics of the
interaction partners in a shared task. However, the results
also show various advantages and shortcomings of these
algorithms. The PPCA-IM approach is particularly well
suited for modelling continuous reponses and correlations
in the movements of the interaction partners. It has limited
computational demands and generalizes to some extent to
new situations. This shows that dimensionality reduction can
be an effective measure for extracting the hidden structure
in interaction data. Without dimensionality reduction, the use
of the temporal embedding for motion capture data would be
computationally prohibitive and the learning would require
a significantly larger amount of data.

At the same time, PPCA-IM does not provide information
about the state or the development of the interaction. In
this regard, the HMM-based PM-IM algorithm provides a
richer set of tools for recognizing and estimating of the
current state of the interaction. Yet, this comes at the price
of significantly higher computational demands, as well as
limited generalization abilities. Consequently, it would be
interesting to combine the approaches presented in this paper
by using a HMM with PPCA-IM models as emissions. In
such a case, the HMM can be used to realize a space-
time linearization of the training data, while the PPCA-
IM can take on the role of modelling the correlations in
the movements of the interaction partners in a particular
temporal context. Recent advances in HMM training [23]



also suggest a closer relationship between dimensionality
reduction and temporal models such as HMMs.

V. CONCLUSIONS

In this paper we presented a new approach for teaching
robots how to respond to the movements of a human partner.
Using motion capture technology, the movements of a pair of
persons are first recorded, and then processed using machine
learning algorithms. The result is a model of how each person
adapted its behavior to the movements of the respective other.
Once an interaction model is learned, it can be used by a
robot to engage in a similar task with a human counter part.
We have also provided two algorithms called PPCA-IM and
PM-IM, that are extensions to known methods, which can
be used for learning interaction models from motion capture
data. The algorithms allow a robot to learn when and how to
respond to the behavior of a human partner. All methods
were implemented on a NAO humanoid robot and were
evaluated in cooperative and competitive tasks. After learning
an interaction model, the NAO robot was able to generate
appropriate defense responses in a challenging martial arts
scenario. The discussion of the advantages and shortcomings
of each of the two algorithms suggests that a combination
of temporal models and dimensionality reduction can be an
interesting path for developing more sophisticated models of
interactions.

While the results in this paper are encouraging, there are
various aspects of imitation learning in multi-agent scenarios
that need further investigation. In particular, it is interesting
to investigate how learned models can be used to predict the
future behavior of an interaction partner given the actions
of the controlled agents. This can be helpful in avoiding
decisions that potentially lead to dangerous situations or
injuries. In this paper, we did not investigate the aspect of
force transfer between a human and a robot. Even small
forces that are exchanged between interaction partners can
have a significant impact on the execution and success of
a joint task. First research results on incorporating force
transfer in interaction models can be found in [1]. Another
aspect that needs further investigation is task space control.
For some interaction tasks it is important that constraints are
fulfilled within the task space. We are currently investigating
the use of Interaction Meshes [12] for this purpose. Finally,
it is also important to include tertiary objects, e.g., a jointly
lifted box, into the interaction model.
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