Learning Motor Skills:
From Algorithms to Robot

Experiments

Erlernen Motorischer Fahigkeiten: Von Algorithmen zu Roboter-Experimenten
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

vorgelegte Dissertation von Dipl.-Ing. Jens Kober aus Kiinzelsau

Mérz 2012 — Darmstadt — D 17




Learning Motor Skills:
From Algorithms to Robot Experiments
Erlernen Motorischer Fahigkeiten: Von Algorithmen zu Roboter-Experimenten

Vorgelegte Dissertation von Dipl.-Ing. Jens Kober aus Kiinzelsau

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Prof. Dr. Stefan Schaal

Tag der Einreichung:

Darmstadt — D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-12345
URL: http://tuprints.ulb.tu-darmstadt.de/12345

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

@00

Die Vero6ffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung 2.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/2.0/de/




Erklarung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
dahnlicher Form noch keiner Priifungsbehérde vorgelegen.

Darmstadt, den 13. Marz 2012

(J. Kober)







Abstract

Ever since the word “robot” was introduced to the English language by Karel Capek’s play “Rossum’s
Universal Robots” in 1921, robots have been expected to become part of our daily lives. In recent years,
robots such as autonomous vacuum cleaners, lawn mowers, and window cleaners, as well as a huge
number of toys have been made commercially available. However, a lot of additional research is required
to turn robots into versatile household helpers and companions. One of the many challenges is that
robots are still very specialized and cannot easily adapt to changing environments and requirements.
Since the 1960s, scientists attempt to provide robots with more autonomy, adaptability, and intelligence.
Research in this field is still very active but has shifted focus from reasoning based methods towards
statistical machine learning. Both navigation (i.e., moving in unknown or changing environments) and
motor control (i.e., coordinating movements to perform skilled actions) are important sub-tasks.

In this thesis, we will discuss approaches that allow robots to learn motor skills. We mainly consider
tasks that need to take into account the dynamic behavior of the robot and its environment, where a
kinematic movement plan is not sufficient. The presented tasks correspond to sports and games but
the presented techniques will also be applicable to more mundane household tasks. Motor skills can
often be represented by motor primitives. Such motor primitives encode elemental motions which can be
generalized, sequenced, and combined to achieve more complex tasks. For example, a forehand and a
backhand could be seen as two different motor primitives of playing table tennis. We show how motor
primitives can be employed to learn motor skills on three different levels. First, we discuss how a single
motor skill, represented by a motor primitive, can be learned using reinforcement learning. Second, we
show how such learned motor primitives can be generalized to new situations. Finally, we present first
steps towards using motor primitives in a hierarchical setting and how several motor primitives can be
combined to achieve more complex tasks.

To date, there have been a number of successful applications of learning motor primitives employing
imitation learning. However, many interesting motor learning problems are high-dimensional reinforce-
ment learning problems which are often beyond the reach of current reinforcement learning methods. We
review research on reinforcement learning applied to robotics and point out key challenges and important
strategies to render reinforcement learning tractable. Based on these insights, we introduce novel learning
approaches both for single and generalized motor skills.

For learning single motor skills, we study parametrized policy search methods and introduce a frame-
work of reward-weighted imitation that allows us to derive both policy gradient methods and expectation-
maximization (EM) inspired algorithms. We introduce a novel EM-inspired algorithm for policy learning
that is particularly well-suited for motor primitives. We show that the proposed method out-performs
several well-known parametrized policy search methods on an empirical benchmark both in simulation
and on a real robot. We apply it in the context of motor learning and show that it can learn a complex
ball-in-a-cup task on a real Barrett WAM.

In order to avoid re-learning the complete movement, such single motor skills need to be generalized
to new situations. In this thesis, we propose a method that learns to generalize parametrized motor
plans, obtained by imitation or reinforcement learning, by adapting a small set of global parameters.
We employ reinforcement learning to learn the required parameters to deal with the current situation.
Therefore, we introduce an appropriate kernel-based reinforcement learning algorithm. To show its
feasibility, we evaluate this algorithm on a toy example and compare it to several previous approaches.
Subsequently, we apply the approach to two robot tasks, i.e., the generalization of throwing movements
in darts and of hitting movements in table tennis on several different real robots, i.e., a Barrett WAM, the
JST-ICORP/SARCOS CBi and a Kuka KR 6.

We present first steps towards learning motor skills jointly with a higher level strategy and evaluate
the approach with a target throwing task on a BioRob. Finally, we explore how several motor primitives,




representing sub-tasks, can be combined and prioritized to achieve a more complex task. This learning
framework is validated with a ball-bouncing task on a Barrett WAM.

This thesis contributes to the state of the art in reinforcement learning applied to robotics both in terms
of novel algorithms and applications. We have introduced the Policy learning by Weighting Exploration
with the Returns algorithm for learning single motor skills and the Cost-regularized Kernel Regression to
generalize motor skills to new situations. The applications explore highly dynamic tasks and exhibit a
very efficient learning process. All proposed approaches have been extensively validated with benchmarks
tasks, in simulation, and on real robots.
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Zusammenfassung

Schon seit 1921 mit dem Theaterstiick ,,Rossum’s Universal Robots“ von Karel (Vlapek das Wort , Roboter*
in die deutsche Sprache eingefiihrt wurde, besteht die Erwartung, dass Roboter Teil unseres taglichen
Lebens werden. Seit ein paar Jahren sind sowohl Roboter wie autonome Staubsauger, Rasenmaher und
Fensterreiniger als auch eine grofe Anzahl an Spielzeugrobotern im Handel erhéltlich. Allerdings ist noch
viel Forschung notig, bis Roboter als universelle Haushalts-Helfer und Geféhrten einsetzbar sind. Eine
der groRten Herausforderungen ist, dass Roboter immer noch sehr spezialisiert sind und sich nicht ohne
Weiteres an sich &ndernde Umgebungen und Anforderungen anpassen konnen. Seit den 1960ern versuchen
Wissenschaftler, Roboter mit mehr Autonomie, Anpassungsfahigkeit und Intelligenz auszustatten. Die
Forschung auf diesem Gebiet ist sehr aktiv, hat sich allerdings von regel-basierten Systemen hin zu
statistischem maschinellem Lernen verlagert. Sowohl Navigation (d.h. sich in unbekannten oder sich
andernden Umgebungen zu bewegen) als auch Motorsteuerung (d.h. das Koordinieren von Bewegungen,
um komplexe Aktionen auszufiihren) sind hierbei wichtige Teilaufgaben.

In dieser Doktorarbeit diskutieren wir Ansitze, die es Robotern erméglichen, motorische Fahigkeiten zu
erlernen. Wir betrachten in erster Linie Aufgaben, bei denen das dynamische Verhalten des Roboters und
seiner Umgebung beriicksichtigt werden muss und wo ein kinematischer Bewegungsplan nicht ausreichend
ist. Die vorgestellten Anwendungen kommen aus dem Sport- und Spiel-Bereich, aber die vorgestellten
Techniken kénnen auch bei alltdglichen Aufgaben im Haushalt Anwendung finden. Motorische Fihigkeiten
konnen oft durch Motor-Primitive dargestellt werden. Solche Motor-Primitive kodieren elementare
Bewegungen, die verallgemeinert, aneinandergereiht und kombiniert werden kénnen, um komplexere
Aufgaben zu erfiillen. Zum Beispiel konnte ein Vorhand- und Riickhand-Spiel als zwei verschiedene Motor-
Primitive fiir Tischtennis angesehen werden. Wir zeigen, wie Motor-Primitive verwendet werden konnen,
um motorische Fahigkeiten auf drei verschiedenen Ebenen zu erlernen. Zuerst zeigen wir, wie eine einzelne
motorische Fertigkeit, die durch eine Motor-Primitive dargestellt wird, mittels Reinforcement-Learning
(bestarkendes Lernen) gelernt werden kann. Zweitens zeigen wir, wie solche erlernten Motor-Primitiven
verallgemeinert werden konnen, um auf neue Situationen zu reagieren. Schlie@lich prasentieren wir
erste Schritte, wie Motor-Primitive in einer hierarchischen Struktur gelernt werden kénnen und wie sich
mehrere Motor-Primitive kombinieren lassen, um komplexere Aufgaben zu erfiillen.

Es gab schon eine Reihe von erfolgreichen Anwendungen des Erlernens von Motor-Primitiven durch
iiberwachtes Lernen. Allerdings sind viele interessante motorische Lernprobleme hochdimensionale
Reinforcement-Learning-Probleme, die oft auferhalb der Anwendbarkeit der aktuellen Reinforcement-
Learning-Methoden liegen. Wir besprechen Publikationen, die sich mit Reinforcement-Learning, ange-
wandt auf die Robotik, beschéftigen und zeigen sowohl zentrale Herausforderungen als auch Moglichkei-
ten, Reinforcement-Learning trotzdem anwenden zu konnen, auf. Basierend auf diesen Erkenntnissen
stellen wir neuartige Lernansétze fiir einzelne motorische Fahigkeiten vor, auch um diese zu generalisieren.

Fiir das Erlernen einzelner motorischer Fahigkeiten untersuchen wir parametrisierte Policy-Search-
Methoden und fithren ein Framework der erfolgsgewichteten Nachahmung ein, das es uns erméglicht,
sowohl bekannte Policy-Search-Gradientenverfahren als auch neue Erwartungswert-Maximisierung-
inspirierte-Algorithmen herzuleiten. Wir stellen einen neuartigen EM-inspirierten Policy-Search- Al-
gorithmus vor, der insbesondere fiir Motor-Primitive gut geeignet ist. Wir zeigen, dass das vorgeschlagene
Verfahren mehrere bekannte parametrisierte Policy-Search-Methoden auf empirischen Benchmarks, in der
Simulation und auf einem realen Roboter iibertrifft. Wir wenden den Algorithmus fiir motorisches Lernen
an und zeigen, dass eine komplexe Becherspiel-Aufgabe auf einem echten Barrett WAM gelernt werden
kann.

Um zu vermeiden, dass die Bewegung komplett neu gelernt werden muss, brauchen wir eine Moglichkeit,
motorische Fahigkeiten an neue Situationen anzupassen. In dieser Doktorarbeit schlagen wir eine Methode
vor, die lernt, Motor-Primitive (die durch Nachahmung oder Reinforcement-Learning erlernt wurden)




durch das Anpassen einer kleinen Anzahl von globalen Parametern zu verallgemeinern. Wir verwenden
Reinforcement-Learning, um die erforderlichen Parameter zu erlernen, die es ermoglichen, mit der
aktuellen Situation umzugehen. Hierfiir stellen wir einen kernel-basierten Reinforcement-Learning-
Algorithmus vor. Um die Anwendbarkeit zu zeigen, testen wir diesen Algorithmus mit einem einfachen
Beispiel und vergleichen ihn mit einigen bekannten Ansitzen. Anschlief3end wenden wir den Ansatz auf
zwei Roboter-Aufgaben an, namlich das Verallgemeinern von Dart-Wiirfen und Tischtennis-Schldgen mit
verschiedenen realen Robotern: mit einem Barrett WAM, dem JST-ICORP/SARCOS CBI und einem KUKA
KR 6 Roboter.

Wir prasentieren erste Schritte zum gleichzeitigen Erlernen motorischer Fihigkeiten und einer iiber-
geordneten Strategie. Diesen Ansatz zeigen wir mit Hilfe einer Zielwurf-Aufgabe auf einem BioRob.
Abschlief3end untersuchen wir, wie mehrere Motor-Primitive, die Teilaufgaben reprédsentieren, mit un-
terschiedlicher Gewichtung kombiniert werden konnen, um eine komplexere Aufgabe zu erfiillen. Das
Framework validieren wir, indem wir eine Tischtennisball-Jonglier-Aufgabe auf einem Barrett WAM
erlernen.

Diese Doktorarbeit leistet einen Beitrag zum Stand der Technik in Reinforcement-Learning, angewandt
auf die Robotik, sowohl durch neuartige Algorithmen als auch durch neuartige Anwendungen. Wir haben
den ,,Policy learning by Weighting Exploration with the Returns“-Algorithmus zum Erlernen einzelner
motorischer Fahigkeiten und die ,,Cost-regularized Kernel Regression“ zum Verallgemeinern motorischer
Fahigkeiten auf neue Situationen vorgestellt. Die Anwendungen zeigen hochdynamische Aufgaben und
weisen einen sehr effizienten Lernprozess aus. Alle vorgeschlagenen Ansdtze wurden ausgiebig mit
Benchmark-Aufgaben, in der Simulation und auf realen Robotern validiert.
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1 Introduction

Since Issac Asimov started to write short stories about robots in the 1940s, the idea of robots as household
helpers, companions and soldiers has shaped the popular view of robotics. Science fiction movies depict
robots both as friends and enemies of the human race, but in both cases their capabilities far exceed the
capabilities of current real robots. Simon [1965], one of the artificial intelligence (AI) research pioneers,
claimed that “machines will be capable, within twenty years, of doing any work a man can do.” This
over-optimistic promise led to more conservative predictions. Nowadays robots slowly start to penetrate
our daily lives in the form of toys and household helpers, like autonomous vacuum cleaners, lawn mowers,
and window cleaners. Most other robotic helpers are still confined to research labs and industrial settings.
Many tasks of our daily lives can only be performed very slowly by a robot which often has very limited
generalization capabilities. Hence, all these systems are still disconnected from the expectation raised by
literature and movies as well as from the dreams of Al researchers.

Especially in Japan, the need of robotic household companions has been recognized due to the aging
population. One of the main challenges remains the need to adapt to changing environments in a
co-inhabited household (e.g., furniture being moved, changing lighting conditions) and the need to adapt
to individual requirements and expectations of the human owner. Most current products either feature
a “one size fits all” approach that often is not optimal (e.g., vacuum robots that are not aware of their
surrounding but use an approach for obstacle treatment, that guarantees coverage of the whole floor
[BotJunkie, 2012]) or an approach that requires a setup step either in software (e.g. providing a floor
map) or in hardware (e.g., by placing beacons). As an alternative one could imagine a self-learning
system. In this thesis, we will not treat navigation problems but rather focus on learning motor skills
[Wulf, 2007]. We are mainly interested in motor skills that need to take into account the dynamics of
the robot and its environment. For these motor skills, a kinematic plan of the movement will not be
sufficient to perform the task successfully. A motor skill can often be represented by a motor primitive,
i.e., a representation of a single movement that is adapted to varying situations (e.g., a forehand or a
backhand in table tennis that is adapted to the ball position and velocity). We focus on learning how
to perform a motor primitive optimally and how to generalize it to new situations. The presented tasks
correspond to games and sports, which are activities that a user might enjoy with a robot companion, but
the presented techniques could also be applied to more mundane household tasks.

1.1 Motivation

Machine-learning research has resulted in a huge number of algorithms. Unfortunately most standard
approaches are not directly applicable to robotics, mainly due to the inherent high dimensionality. Hence
there is a need to develop approaches specifically tailored for the needs of robot learning. In this thesis
we focus on reinforcement learning of motor primitives.

Research in reinforcement learning started in the 1950s (e.g., [Minsky, 1954, Farley and Clark, 1954,
Bellman, 1957]) but has been mainly focused on theoretical problems. The algorithms are often evaluated
on synthetic benchmark problems involving discrete states and actions. Probably the best known real-
world applications of reinforcement learning are games, like backgammon [Tesauro, 1994] or Go [Chan
et al., 1996], but also robotic applications can be found from the 1990s on (e.g., [Mahadevan and Connell,
1992, Gullapalli et al., 1994]). In contrast to many problems studied in the reinforcement learning
literature, robotic problems have inherently continuous states and actions. Furthermore, experiments in
robotics often deal with expensive and potentially fragile hardware and often require human supervision
and intervention. These differences result in the need of adapting existing reinforcement learning
approaches or developing tailored ones.




Policy search, also known as policy learning, has become an accepted alternative of value function-based
reinforcement learning [Strens and Moore, 2001, Kwee et al., 2001, Peshkin, 2001, Bagnell et al., 2004,
El-Fakdi et al., 2006, Taylor et al., 2007]. Especially for learning motor skills in robotics, searching directly
for the policy instead of solving the dual problem (i.e., finding the value function) has been shown to be
promising, see Section 2.3 for a more detailed discussion. Additionally, incorporating prior knowledge
in the form of the policy structure, an initial policy, or a model of the system can drastically reduce the
learning time. In this thesis we will focus on policy search methods that employ a pre-structured policy
and an initial policy.

1.2 Contributions

This thesis contributes to the state of the art in reinforcement learning applied to robotics both in terms of
novel algorithms (Section 1.2.1) and applications (Section 1.2.2).

1.2.1 Algorithms

Reinforcement learning applied to robotics faces a number of challenges as discussed in Section 2.2. The
dimensionality is inherently high and continuous. Acquiring real world samples is expensive as they
require time, human supervision and potentially expensive and fragile hardware. Using models can
alleviate these problems but poses different challenges. Every learning algorithm is limited by its goal
specifications. Unfortunately specifying a cost or a reward function is not straightforward. Even the cost
function of a simple human reaching movement is not completely understood yet [Bays and Wolpert,
2007]. Inverse reinforcement learning is a promising alternative to specifying the reward function
manually and has been explored for the Ball-in-a-Cup task (Section 4.3.7) in [Boularias et al., 2011].

Ideally an algorithm applied to robotics should be safe, i.e., avoid damaging the robot, and it should
be fast, both in terms of convergence and computation time. Having a sample-efficient algorithm, with
very few open parameters, and the ability to incorporate prior knowledge all contribute significantly to
fast convergence. In this thesis we propose a framework of reward-weighted imitation that fits these
requirements. In Section 7.1.1, we will review how the proposed algorithms meet these requirements.

Policy learning by Weighting Exploration with the Returns (PoWER)

In Chapter 4, we introduce the Policy learning by Weighting Exploration with the Returns (PoOWER)
algorithm. PoWER is an expectation-maximization inspired policy search algorithm that is based on
structured exploration in the parameter space. In Chapter 4, we derive a framework of reward-weighted
imitation. Based on [Dayan and Hinton, 1997], we consider the return of an episode as an improper
probability distribution. We maximize a lower bound of the logarithm of the expected return. Depending
on the strategy of optimizing this lower bound and the exploration strategy, the framework yields several
well known policy search algorithms: episodic REINFORCE [Williams, 1992], the policy gradient theorem
[Sutton et al., 1999], episodic natural actor critic [Peters and Schaal, 2008c], as well as a generalization
of the reward-weighted regression [Peters and Schaal, 2008b]. Our novel algorithm, POWER, is based on
an expectation-maximization inspired optimization and a structured, state-dependent exploration. Our
approach has already given rise to follow-up work in other contexts, for example, [Vlassis et al., 2009,
Kormushev et al., 2010]. Theodorou et al. [2010] have shown that an algorithm very similar to POWER
can also be derived from a completely different perspective, that is, the path integral approach.

2 1 Introduction



Cost-regularized Kernel Regression (CrkR)

In Chapter 5, we introduce the algorithm Cost-regularized Kernel Regression (CrKR). CrKR is a non-
parametric policy search approach that is particularly suited for learning meta-parameters, i.e., a limited
set of parameters that influence the movement globally. In this setting, designing good parametrized
policies can be challenging, a non-parametric policy offers more flexibility. We derive CrKR based on the
reward-weighted regression [Peters and Schaal, 2008b, Chapter 4]. The resulting algorithm is related to
Gaussian process regression and similarly yields a predictive variance, which is employed to guide the
exploration in on-policy reinforcement learning. This approach is used to learn a mapping from situation
to meta-parameters while the parameters of the motor primitive can still be acquired through traditional
approaches.

1.2.2 Applications

In this thesis we show a large number of benchmark task and evaluate the approaches on robotic tasks
both with simulated and real robots. The employed robots include a Barrett WAM, a BioRob, the JST-
ICORP/SARCOS CBi and a Kuka KR 6. This thesis studies single motor skills and how these can be
generalized to new situations. The presented work has contributed to the state-of-the-art of reinforcement
learning applied to robotics by exploring highly dynamic tasks and exhibiting a very efficient learning
process.

Single Motor Skills

Because of the curse of dimensionality, we cannot start with an arbitrary solution to learn a motor skill.
Instead, we mimic the way children learn and first present an example movement for imitation learning,
which is recorded using, e.g., kinesthetic teach-in. Subsequently, our reinforcement algorithm learns how
to perform the skill reliably. After only realistically few episodes, the task can be regularly fulfilled and the
robot shows very good average performance. We demonstrate this approach with a number of different
policy representations including dynamical systems motor primitives [Ijspeert et al., 2002b] and other
parametric representations. We benchmark POWER against a variety of policy search approaches on both
synthetic and robotic tasks. Finally, we demonstrate that single movement skills like the Underactuated
Swing-Up and Ball-in-a-Cup can be learned on a Barrett WAM efficiently.

Generalized Motor Skills

In order to increase the efficiency of a learning process it is often advantageous to generalize a motor skill
to new situations instead of re-learning it from scratch. This kind of learning often requires a non-intuitive
mapping from situation to actions. To demonstrate the proposed system in a complex scenario, we have
chosen the Around the Clock dart throwing game, table tennis, and ball throwing implemented both on
simulated and real robots. In these scenarios we show that our approach performs well in a wide variety
of settings, i.e. on four different real robots (namely a Barrett WAM, a BioRob, the JST-ICORP/SARCOS
CBi and a Kuka KR 6), with different cost functions (both with and without secondary objectives), and
with different policies in conjunction with their associated meta-parameters. The ball throwing task
presents fist steps towards a hierarchical reinforcement learning system.

Many robotic tasks can be decomposed into sub-tasks. However, often these sub-tasks cannot be
achieved simultaneously and a dominance structure needs to be established. We evaluate initial steps
towards a control law based on a set of prioritized motor primitives with a ball-bouncing task on a Barrett
WAM.
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Figure 1.1: This figure illustrates the structure of this thesis. Chapter 2 reviews the field of reinforcement
learning applied to robotics, Chapter 3 describes the employed motor skill representation.
Chapter 4 provides a framework for policy search approaches. Chapter 5 describes how
movements can be generalized to new situations. Chapter 6 outlines how several motor
skills can be performed simultaneously to achieve a more complex task. Chapter 1 gives an
introduction and Chapter 7 provides a summary and an outlook on future work.

1.3 Outline

The chapters in this thesis can largely be read independently but partially build upon results of the
preceding chapters. Figure 1.1 illustrates the outline of this thesis. Chapter 3 describes the employed
motor primitive representation that is used as policy parametrization for the evaluations throughout the
thesis. The theoretical contributions are applicable to a wider variety of policies. Chapter 4 describes how
single movement skills can be learned using policy search and employing a parametrized policy that is
linear in parameters. Chapter 5 explains how single movements can be generalized to new situations using
a nonparametric policy representation. The initial movement is obtained using results from Chapters 3
and 4.

Chapter 2 : provides a survey on reinforcement learning applied to robotics. The survey provides an
overview of techniques and applications. The particular focus lies on challenges specific to reinforcement
learning in robotics and approaches to render the learning problem tractable nevertheless. This chapter is
based on [Kober et al., 2012a].
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Chapter 3 : describes how the [Ijspeert et al., 2002b] representation for motor skills can be generalized
for hitting and batting movements. This chapter is based on [Kober et al., 2010a].

Chapter 4: discusses a framework of reward-weighted imitation that allows us to re-derive several
well-know policy gradient approaches and to derive novel EM-inspired policy search approaches. The
resulting algorithm, POWER is evaluated in a number of benchmark and robotic tasks. This chapter is
based on [Kober and Peters, 2011a] and a preliminary version of some of the work in this chapter was
shown in [Kober et al., 2008, Kober and Peters, 2008, 2009, 2010].

Chapter 5: discusses how behaviors acquired by imitation and reinforcement learning as described in
Chapters 3 and 4 can be generalized to novel situations using the Cost-regularized Kernel Regression. We
also discuss first steps towards a hierarchical framework. The approach is evaluated on several robotic
platforms. This chapter is based on [Kober et al., 2012b] and a preliminary version of some of the work
in this chapter was shown in [Kober et al., 2010b, 2011, Kober and Peters, 2011b].

Chapter 6: discusses first steps towards performing sub-tasks simultaneously to achieve a task. We
discuss a novel learning approach that allows to learn a prioritized control law built on a set of sub-tasks
represented by motor primitives. The approach is evaluated with a ball bouncing task on a Barrett WAM.
This chapter is based on [Kober and Peters, 2012].

Chapter 7: concludes the thesis with a summary and gives an overview of open problems and an
outlook on future work.
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2 Reinforcement Learning in Robotics: a Survey

Robotics offers a tremendously interesting platform for the application and impact of reinforcement
learning; conversely, the challenges of robotics provide both inspiration and validation for reinforcement
learning. The relationship between disciplines has enough promise to be likened to that as between
physics and mathematics. Nevertheless, only a fraction of the scientists working on reinforcement
learning are sufficiently tied to robotics to oversee most problems encountered in this context. Here we
attempt to highlight both important challenges in robot reinforcement learning and important success
by surveying work that has successfully applied reinforcement learning to behavior generation for real
robots. We discuss how each work tamed the complexity of the domain and study the role of algorithms,
representations and prior knowledge in achieving success. As a result, a particular focus of our chapter
lies on the choice between model-based and model-free as well as between value function-based and
policy search methods.

2.1 Introduction

Robotics has a near infinite amount of interesting learning problems, a large percentage of which can
be phrased as reinforcement learning problems. See Figure 2.1 for an illustration of the wide variety
of robots that have learned tasks using reinforcement learning. However, robotics as a domain differs
significantly from well-defined typical reinforcement learning benchmark problems, which usually have
discrete states and actions. In contrast, many real-world problems in robotics are best represented with
high-dimensional, continuous states and actions. Every single trial run is costly and, as a result, such
applications force us to focus on problems that do not arise that frequently in classical reinforcement
learning benchmark examples. In this chapter, we highlight the challenges faced in robot reinforcement
learning and bring many of the inherent problems of this domain to the reader’s attention.

Robotics is characterized by inherently continuous state and action spaces which can be high dimen-
sional. In order to learn in a reasonable time frame, suitable approximations need to be introduced.
Real-world measurements are intrinsically noisy and often not all states can be observed. This inability
to measure gives rise to uncertainty in the state of the system. Experience on the real system is costly
and often hard to reproduce. However, it usually cannot be replaced by learning in simulations alone.
In analytical or learned models of the system even small modeling errors accumulate to substantially
different dynamic behavior, at least for highly dynamic tasks. Hence, the algorithms need to be robust
with respect to under-modeling. Another challenge faced in robot reinforcement learning is the generation
of appropriate reward functions. Good rewards that lead the systems quickly to success are needed to
cope with the cost of real-world experience but are a substantial manual contribution.

Obviously, not every reinforcement learning method is equally suitable for the robotics domain. In fact,
many of the methods that scale to more interesting tasks are model-based [Atkeson et al., 1997, Abbeel
et al., 2007] and often employ policy search rather than value function-based approaches [Gullapalli et al.,
1994, Miyamoto et al., 1996, Kohl and Stone, 2004, Tedrake et al., 2005, Peters and Schaal, 2008b,c,
Kober and Peters, 2008]. This stands in contrast to much of mainstream reinforcement [Kaelbling et al.,
1996, Sutton and Barto, 1998]. We attempt to give a fairly complete overview on real robot reinforcement
learning citing most original papers while distinguishing mainly on a methodological level.

As none of the presented methods extends to robotics with ease, we discuss how robot reinforcement
learning can be made tractable. We present several approaches to this problem such as choosing an
appropriate representation for your value function or policy, incorporating prior knowledge, and transfer
from simulations.

In this chapter, we survey real robot reinforcement learning and highlight how these approaches were
able to handle the challenges posed by this setting. We focus mainly on results that were obtained on
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physical robots with tasks going beyond typical reinforcement learning benchmarks. The goal of this
chapter is twofold. This chapter surveys a wide variety of tasks where reinforcement learning has been
successfully applied to robotics. Nearly any problem that can be phrased as an optimization problem, could
be attempted to be solved using reinforcement learning. On the one hand, we hope that this chapter can
provide indications for the robotics community which type of problems can be tackled by reinforcement
learning and provide pointers to approaches that are promising. On the other hand, this chapter can
point out novel real-world test beds and related interesting open questions for the reinforcement learning
community. The challenges in applying reinforcement learning in robotics are discussed in Section 2.2.
Standard reinforcement learning methods suffer from the discussed challenges. As already pointed
out in the reinforcement learning review paper by Kaelbling et al. [1996] “we must give up tabula
rasa learning techniques and begin to incorporate bias that will give leverage to the learning process”.
Hence, we concisely present reinforcement learning techniques in the context of robotics in Section 2.3.
Different approaches of making reinforcement learning tractable are treated in Sections 2.4 to 2.6. Finally
in Section 2.7, the example of ball-in-a-cup is employed to highlight which of the various approaches
discussed in the chapter have been particularly helpful to make such a complex task tractable. In
Section 2.8 we summarize the specific problems and benefits of reinforcement learning in robotics, in
Section 2.9 we give an outlook on interesting problems, and in Section 2.10, we give a conclusion.

2.2 Challenges in Robot Reinforcement Learning

Reinforcement learning is generically a hard problem and many of its challenges apply particularly in
the robotics setting. As the states and actions of most robots are inherently continuous we have to deal
with the resolution. Additionally the dimensionality can be high and we face the ‘Curse of Dimensionality’
[Bellman, 1957] as discussed in Section 2.2.1. As we deal with complex physical systems, samples can
be expensive due to the long execution time of complete tasks, required manual interventions as well
as maintenance and repair. Due to the real-world measurements we have to cope with uncertainty of
the system. A robot requires that the algorithm runs in real-time and that it is capable of dealing with
delays in the sensing and execution which are inherent in physical systems (see Section 2.2.2). Obviously,
a simulation could alleviate many problems but the approaches need to be robust with respect to model
errors as discussed in Section 2.2.3. An often underestimated problem is the goal specification, which
is achieved by designing a good reward function. As noted in Section 2.2.4 this choice can make the
difference between feasibility and an unreasonable amount of exploration.

2.2.1 Curse of Dimensionality

When Bellman [1957] explored optimal control in higher dimensions, he faced an exponential explosion
of states and actions for which he coined the term ‘Curse of Dimensionality’. Robotic systems often
have to deal with such high dimensional states and actions, e.g., due to the many degrees of freedom
of modern anthropomorphic robots. For example, in a ball-paddling task as shown in Figure 2.2, a
proper representation of a robot’s state would consist of its joint angles and velocities for each of its
seven degrees of freedom as well as Cartesian position and velocity of the ball. The robot’s actions
would be the generated motor commands which often are torques or accelerations. In this example,
we have 2 x (7 + 3) = 20 state dimensions and 7-dimensional continuous actions. Obviously, other
tasks may require even more dimensions, e.g., human-like actuation often follows the antagonistic
principle [Yamaguchi and Takanishi, 1997] which additionally allows to control stiffness. Obviously such
dimensionality is a major challenge for both the robotics and the reinforcement learning communities.
In robotics, tasks with such problems are often made more accessible to the robot engineer by shifting
some of the complexity to a lower layer of functionality. In the ball paddling example, we can simplify by
controlling the robot in racket space (which is lower-dimensional as the racket is orientation-invariant
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(c) An autonomous blimp (d) Sarcos humanoid DB

Figure 2.1: This figure illustrates robots to which reinforcement learning has been applied. The robots
cover the whole range of wheeled mobile robots, robotic arms, autonomous vehicles, to
humanoid robots. (a) The OBELIX robot is a wheeled mobile robot that learned to push boxes
[Mahadevan and Connell, 1992] with a value function-based approach (Picture reprint with
permission of Sridhar Mahadevan). (b) The Zebra Zero robot is a robot arm that learned a
peg-in-hole insertion task [Gullapalli et al., 1994] with a model-free policy gradient approach
(Picture reprint with permission of Rod Grupen). (c) The control of such autonomous blimps
(Picture reprint with permission of Axel Rottmann) was learned with both a value function
based approach [Rottmann et al., 2007] and model-based policy search [Ko et al., 2007]. (d)
The Sarcos humanoid DB learned a pole-balancing task [Schaal, 1996] using forward models
(Picture reprint with permission of Stefan Schaal).
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Figure 2.2: This Figure illustrates the state space of a robot reinforcement learning task.

around the string’s mounting point) with an operational space control law [Nakanishi et al., 2008]. Many
commercial robot systems also encapsulate some of the state and action components in an embedded
control system (e.g., trajectory fragments are frequently used as actions for industrial robots); however,
this form of a state dimensionality reduction severely limits the dynamic capabilities of the robot according
to our experience [Schaal et al., 2002, Peters et al., 2010b].

The reinforcement learning community has a long history of dealing with dimensionality using computa-
tional abstractions. It offers a larger set of applicable tools ranging from adaptive discretizations [Busoniu
et al., 2010] over function approximation approaches [Sutton and Barto, 1998] to macro actions or options
[Barto and Mahadevan, 2003]. Macro actions allow decomposing a task in elementary components and
quite naturally translate to robotics. For example, a macro action “move one meter to the left” could be
achieved by a lower level controller that takes care of accelerating, moving, and stopping while ensuring
the precision. Using a limited set of manually generated macro actions, standard reinforcement learning
approaches can be made tractable for navigational tasks for mobile robots. However, the automatic
generation of such sets of macro actions is the key issue in order to enable such approaches. We will
discuss approaches that have been successful in robot reinforcement learning in Section 2.4.

2.2.2 Curse of Real-World Samples

Robots inherently interact with the real-world and, hence, robot reinforcement learning suffers from most
of the resulting real-world problems. For example, robot hardware is usually expensive, suffers from wear
and tear, and requires careful maintenance. Repairing a robot system is a non-negligible effort associated
with cost, physical labor and long waiting periods. Hence, to apply reinforcement learning in robotics,
safe exploration becomes a key issue of the learning process [Schneider, 1996, Bagnell, 2004]; a problem
often neglected in the general reinforcement learning community.

However, several more aspects of the real-world make robotics a challenging domain. As the dynamics
of a robot can change due to many external factors ranging from temperature to wear, the learning
process may never fully converge, i.e., it needs a ‘tracking solution’ [Sutton et al., 2007]. Frequently, the
environment settings during an earlier learning period cannot be reproduced and the external factors are
not clear, e.g., how did the light conditions affect the performance of the vision system and, as a result,
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the task’s performance. This problem makes comparisons of algorithms particularly hard. Furthermore,
the approaches often have to deal with uncertainty due to inherent measurement noise and the inability
to observe all states directly with sensors.

Most real robot learning tasks require some form of human supervision, e.g., putting the pole back on
the robot’s end-effector during pole balancing, see Figure 2.1d, after a failure. Even when an automatic
reset exists (e.g., by having a smart contraption that resets the pole), learning speed becomes essential
as a task on a real robot cannot be sped up. The whole episode needs to be complete as it is often not
possible to start from arbitrary states.

For such reasons, real-world samples are expensive in terms of time, labor and, potentially, finances.
In robotic reinforcement learning, it is often considered to be more important to limit the real-world
interaction time instead of limiting the memory consumption or computational complexity. Thus, sample
efficient algorithms that are able to learn from a small number of trials are essential. In Sections 2.6.2
and 2.6.3 we will discuss several approaches that allow reducing the amount of required real-world
interactions.

As the robot is a physical system there are strict constraints on the interaction between the learning
algorithm and the robot setup. Usually the robot needs to get commands at fixed frequency and for
dynamic tasks the movement cannot be paused. Thus, the agent has to select actions in real-time. It is
often not possible to pause to think, learn or plan between each action but rather the learning algorithm
has to deal with a fixed amount of time. Thus, not only are samples expensive to obtain, but also often
only a very limited number of samples can be used, if the runtime of the algorithms depends on the
number of samples. These constraints are less severe in an episodic setting where the time intensive part
of the learning can be postponed to the period between episodes.

On physical systems there are always delays in sensing and actuation. The state of the setup represented
by the sensors slightly lags behind the real state due to processing and communication delays. More
critically there are also communication delays in the actuation as well as delays due to the fact that a
physical system cannot instantly change its movement. For example, a car will not stop instantly when
you step on the break. Due to these delays, actions do not have instantaneous effects but are observable
only several time steps later. In contrast, in most general reinforcement learning algorithms, the actions
are assumed to take effect instantaneously.

2.2.3 Curse of Under-Modeling

One way to offset the cost of real-world interaction would be accurate models that are being used as
simulators. In an ideal setting, such an approach would render it possible to learn the behavior in
simulation and subsequently transfer it to the real robot. Unfortunately, creating a sufficiently accurate
model of the robot and the environment is challenging. As small model errors may accumulate, we can
frequently see a fast divergence of the simulated robot from the real-world system. When a policy is
trained using an imprecise forward model as simulator, the behavior will not transfer without significant
modifications as experienced by Atkeson [1994] when learning the underactuated swing-up. Only in a
limited number of experiments, the authors have achieved such a direct transfer, see Section 2.6.3 for
examples. If the task is inherently stable it is safer to assume that approaches that can be applied in
simulation may work similarly in the real-world [Kober and Peters, 2010].

In such stable scenarios, transferring policies poses a low risk of damaging the robot. Nevertheless,
tasks can often be learned better in the real-world than in simulation due to complex interactions between
mechanical objects. For unstable tasks transferring policies poses a high risk. As we will see later,
models are best used to test the algorithms in simulations but can also be used to check the proximity to
theoretically optimal solutions, to calculate approximate gradients, or to perform ‘mental rehearsal’.

2.2 Challenges in Robot Reinforcement Learning 1



2.2.4 Curse of Goal Specification

In reinforcement learning, the goal of the task is implicitly specified by the reward. Defining a good
reward function in robot reinforcement learning is hence often a daunting task. Giving rewards only
upon task achievement, e.g., did a table tennis robot win the match, will result in a simple binary reward.
However, the robot would receive such a reward so rarely that it is unlikely to ever succeed in the lifetime
of a real-world system. Hence, instead of using only simpler binary rewards, we frequently need to include
additional knowledge into such scalar rewards to guide the learning process to a reasonable solution. The
trade-off between different factors may be essential as hitting a table tennis ball very fast will result in
a high score but is likely to destroy the robot. Similarly, changes in actions can be penalized to avoid
high frequency control. Good reinforcement learning algorithms often exploit the reward function in
unexpected ways, especially if the reinforcement learning is done locally and not globally. For example, if
the distance between the ball and the desired highest point is part of the reward in ball paddling (see
Figure 2.2), many locally optimal solutions would attempt to simply move the racket upwards and keep
the ball on it. Reward shaping is employed to have a notion of closeness to the desired behavior instead
of relying on a reward that only encodes success or failure. Furthermore, robotic reinforcement learning
is often interested in local optimization. In conjunction with local approximation many techniques from
the optimal control literature can be employed.

Often the desired behavior can be represented in a high dimensional state-space which is unfeasible for
learning. In such cases the reward artfully specified in the features of the lower dimensional space in
which the learning algorithm operates. There is a trade-off between the complexity of the reward function
and the complexity of the learning problem. For example, crusher [Ratliff et al., 2006a], a outdoor robot,
reasons about the world on a long time horizon scale as if it is a holonomic robot living on a fine grid of
costs. The human operator is interested in a combination of time and risk, which cannot be represented
straightforwardly in this state-space. Nevertheless, by carefully mapping features to cost, a remarkably
human like behavior that seems to respect time and risk priorities can be achieved.

Inverse optimal control, also known as inverse reinforcement learning, is a promising alternative to
specifying the reward function manually. Instead, it assumes that a reward function can be reconstructed
from a set of expert demonstrations. This reward function does not necessarily correspond to the true
reward function, but provides guarantees on the resulting performance. Inverse optimal control was
initially studied in the control community [Kalman, 1964] and in the field of economics [Keeney and
Raiffa, 1976]. The initial results were only applicable to linear quadratic regulator problems and required
required closed form access to plant and controller, hence samples from human demonstrations could not
be used. Russell [1998] brought the field to the attention of the machine learning community. Abbeel
and Ng [2004] defined the constraint that no solution can be better than the demonstrated ones under
the recovered reward function. Ratliff et al. [2006b] introduced a margin to deal with instabilities due
to noise and Ziebart et al. [2008] rendered the idea robust and probabilistic, making inverse optimal
control applicable to robotics. It has been recently successfully applied to outdoor robot navigation [Ratliff
et al., 20064, Silver et al., 2008], manipulation [Ratliff et al., 2007], and quadruped locomotion [Ratliff
et al., 2006a, 2007, Kolter et al., 2007]. Please note that apprenticeship learning as defined by Pieter
Abbeel rather corresponds to imitation learning with subsequent refinement by reinforcement learning as
discussed in Section 2.5.1.

2.3 Foundations of Robot Reinforcement Learning

Real-world domains such as robotics are affected more strongly by the basic approach choices then
synthetic benchmark tasks. Hence, we introduce reinforcement learning in this chapter with a particular
point of view. The goal of reinforcement learning is to find a policy 7(s,a) that gathers maximal rewards
R(s,a). However, in real-world domains the average reward is often more suitable than a discounted
formulation due to its stability properties [Peters et al., 2004]. In order to incorporate exploration,
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the policy is considered a conditional probability distribution 7 (s,a) = f (als, 8) with parameters 6.
Reinforcement learning aims at finding the optimal policy 7t* or equivalent policy parameters 8* which
maximize the average returnJ () = Zs’a u”™ (s)m(s,a)R(s,a) where u™ is the stationary state distribution
generated by policy 7 acting in the environment T(s,a,s’) = P(s’|s,a). Hence, we have an optimization
problem of

mglx.](rr) = Zs’a,u” (s)m(s,a)R(s,a), 2.1
st u™(s) = 2 M) n(s,a)T (s,a,87), Vs' €S, (2.2)
1 = X u(s)nis,a). (2.3)

Here, Equation (2.2) defines stationarity of the state distributions u™ (i.e., it ensures that it converges)
and Equation (2.3) ensures a proper state-action probability distribution. This optimization problem can
be tackled in two substantially different ways [Bellman, 1967, 1971], i.e., we can search the optimal
solution directly in the original, primal problem, and we can optimize in the dual formulation. Optimizing
in primal formulation is known as policy search in reinforcement learning while searching in the dual is
called a value function-based approach.

2.3.1 Value Function Approaches

Most of reinforcement has focused on solving the optimization problem in Equations (2.1-2.3) not directly
but rather in its dual form. Using the Lagrangian multipliers V (s”) and R, we can express the Lagrangian
of the problem by

L = Zu“(s)n(s,a) R(s,a)—i—ZV(s/)T(s,a,s/)—R
—ZV(s’),u“(s’)—H_{.

Using straightforward insights and the stationarity condition
YoV U (s) (s a") = 2 V(s)u™(s)m(s,a), we can obtain the Karush-Kuhn-Tucker condi-
tions [Kuhn and Tucker, 1950] by differentiating with respect to u™ (s) 7 (s, a) which yields

dyrnL =R(s,a) +ZV (s)T (s,a,s") —R—V(s)=0.

S

As this implies that there are as many equations the number of states multiplied by the number of actions,
it is clear that only one action a* can be optimal. Thus, following the Bellman Principle of Optimality
[Bellman, 1957] “An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision.” we have

V(s) =max |R (s,a*) —R+ Z V(s)T (s,a",s") | . (2.4)

When evaluating Equation 2.4, we realize that V (s) corresponds to the sum of the reward difference from
the average reward R encountered after taking the optimal action a* in state s. Note that this function is
usually discovered by human insight [Sutton and Barto, 1998]. This principle of optimality has given
birth to the field of optimal control [Kirk, 1970] and the solution above corresponds to the dynamic
programming solution from the viewpoint of reinforcement learning.
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VALUE FUNCTION APPROACHES

Approach Employed by...

Model-Based Abbeel et al. [2006, 2007], Atkeson and Schaal [1997], Atkeson [1998], Bagnell
and Schneider [2001], Bagnell [2004], Bakker et al. [2006], Coates et al.
[2009], Donnart and Meyer [1996], Hester et al. [2010], Kalmar et al. [1998],
Ko et al. [2007], Kolter et al. [2008], Martinez-Marin and Duckett [2005],
Michels et al. [2005], Morimoto and Doya [2001], Ng et al. [2004b,a], Pendrith
[1999], Schaal and Atkeson [1994], Schaal [1996], Touzet [1997], Willgoss
and Igbal [1999]

Model-Free Asada et al. [1996], Bakker et al. [2003], Benbrahim et al. [1992], Benbrahim
and Franklin [1997], Birdwell and Livingston [2007], Bitzer et al. [2010], Conn
and Peters II [2007], Duan et al. [2007, 2008], Fagg et al. [1998], Gaskett et al.
[2000], Gréave et al. [2010], Hafner and Riedmiller [2007], Huang and Weng
[2002], Ilg et al. [1999], Katz et al. [2008], Kimura et al. [2001], Kirchner
[1997], Kroemer et al. [2009, 2010], Latzke et al. [2007], Lizotte et al. [2007],
Mahadevan and Connell [1992], Mataric [1997], Nemec et al. [2009, 2010],
OfRwald et al. [2010], Paletta et al. [2007], Platt et al. [2006], Riedmiller et al.
[2009], Rottmann et al. [2007], Smart and Kaelbling [1998, 2002], Soni and
Singh [2006], Tamosiunaite et al. [2011], Thrun [1995], Tokic et al. [2009],
Uchibe et al. [1998], Wang et al. [2006]

Table 2.1: This table illustrates different value function based reinforcement learning methods employed
for robotic tasks and associated publications.

Hence, we have a dual formulation of the original problem as condition for optimality. Many traditional
reinforcement learning approaches are based on this equation, these are called the value function methods.
Instead of directly learning a policy, they first approximate the Lagrangian multiplier V (s), also called
the value function, and use it to reconstruct the optimal policy. A wide variety of methods exist and can
be split mainly in three classes: (i) dynamic programming-based optimal control approaches such as
policy iteration or value iteration, (ii) rollout-based Monte Carlo methods and (iii) temporal difference
methods such as TD(A), Q-learning and SARSA. However, such value function based approaches often do
not translate well into high dimensional robotics as proper representations for the value function become
intractable and even finding the optimal action can already be a hard problem. A particularly drastic
problem is the error propagation in value functions where a small change in the policy may cause a large
change in the value function which again causes a large change in the policy. While this may lead faster to
good, possibly globally optimal solutions, such a learning process is considerably more dangerous when
applied on real systems where it is likely to cause significant damage. An overview of publications using
value function based methods is presented in Table 2.1. Here, model-based methods refers to all methods
that employ a predetermined or a learned model.

2.3.2 Policy Search

It is straightforward to realize that the primal formulation has a lot of features relevant to robotics. It
allows a natural integration of expert knowledge, e.g., through initializations of the policy. It allows
domain-appropriate pre-structuring of the policy in an approximate form without changing the original
problem. Optimal policies often have many fewer parameters than optimal value functions, e.g., in linear
quadratic control, the value function has quadratically many parameters while the policy requires only
linearly many parameters. Extensions to continuous state and action spaces follow straightforwardly.
Local search in policy space can directly lead to good results as exhibited by early hill-climbing approaches
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PoLicy SEARCH

Approach Employed by.. .

Gradient Deisenroth and Rasmussen [2010], Endo et al. [2008], Geng et al. [2006],
Guenter et al. [2007], Gullapalli et al. [1994], Hailu and Sommer [1998], Kohl
and Stone [2004], Kolter and Ng [2009], Mitsunaga et al. [2005], Miyamoto
et al. [1996], Peters and Schaal [2008a,c], Tamei and Shibata [2009], Tedrake
[2004], Tedrake et al. [2005]

Heuristic Erden and Leblebicioglu [2008], Dorigo and Colombetti [1993], Mataric [1994],
Svinin et al. [2001], Yasuda and Ohkura [2008], Youssef [2005]
Sample Buchli et al. [2011], Kalakrishnan et al. [2011], Kober and Peters [2008], Kober

et al. [2010a], Pastor et al. [2011], Peters and Schaal [2008b], Peters et al.
[2010a], Stulp et al. [2011], Tamosiunaite et al. [2011]

Table 2.2: This table illustrates different policy search reinforcement learning methods employed for
robotic tasks and associated publications.

[Kirk, 1970]. Additional constraints can be incorporated naturally. As a result, policy search appears more
natural to robotics.

Nevertheless, policy search has been considered the harder problem for a long time as the optimal
solution cannot directly be determined from Equations (2.1-2.3) while the solution of the dual problem
directly arises from the problems’ Karush-Kuhn-Tucker conditions [Kuhn and Tucker, 1950] and the
Bellman Principle of Optimality [Bellman, 1957].

Notwithstanding, in robotics, policy search has recently become an important alternative to value
function based methods due to the reasons described above as well as the convergence problems of
approximate value function methods. Most policy search methods optimize locally around existing policies
7t; by computing policy changes 6 7r; that will increase the expected return and results in iterative updates
in the form

7Tl'+1 == TCi +57Ti.

The computation of the policy update is the key step here and a variety of updates have been proposed
ranging from pairwise comparisons [Strens and Moore, 2001, Ng et al., 2004a] over gradient estimation
using finite policy differences [Geng et al., 2006, Mitsunaga et al., 2005, Sato et al., 2002, Tedrake et al.,
2005], cross entropy [Rubinstein and Kroese, 2004], and heuristic parallel search methods (such as
genetic algorithms, see [Goldberg, 1989]) to approaches coming from optimal control such as differential
dynamic programming (DDP) [Atkeson, 1998] and multiple shooting approaches [Betts, 2001] as well as
core reinforcement learning methods.

In recent years, general reinforcement learning has yielded three kinds of policy search approaches that
have translated particularly well into the domain of robotics: (i) policy gradients approaches based on
likelihood-ratio estimation [Sutton et al., 1999], (ii) policy updates inspired by expectation maximization
[Toussaint et al., 2010], and (iii) the path integral methods [Kappen, 2005]. Likelihood-ratio policy
gradient methods rely on perturbing the motor command instead of comparing in policy space. Initial
approaches such as REINFORCE [Williams, 1992] have been rather slow but recent natural policy gradient
approaches [Peters and Schaal, 2008a,c] have allowed faster convergence which may be useful for robotics.
When the reward is treated as an improper probability distribution [Dayan and Hinton, 1997], safe and
fast methods can be derived that are inspired by expectation-maximization. Some of these approaches
have proven successful in robotics, e.g., reward-weighted regression [Peters and Schaal, 2008b], POWER
[Kober and Peters, 2008], MCEM [Vlassis et al., 2009], cost-regularized kernel regression [Kober et al.,
2010a], and PI? [Theodorou et al., 2010]. An overview of publications using policy search methods is
presented in Table 2.2.
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2.4 Tractability through Representation

Much of the success of reinforcement learning methods has been due to the smart use of approximate
representations. In a domain that is so inherently beyond the reach of complete tabular representation,
the need of such approximations is particularly pronounced. The different ways of making reinforcement
learning methods tractable in robotics are tightly coupled to the underlying framework. Policy search
methods require a choice of policy representation that limits the number of representable policies to
enhance learning speed, see Section 2.4.3. A value function-based approach requires an accurate,
robust but general function approximator that can capture the value function sufficiently precisely, see
Section 2.4.2. Reducing the dimensionality of states or actions by smart state-action discretization is a
representational simplification that may enhance both policy search and value function-based methods,
see 2.4.1. An overview of publications using representations to render the learning problem tractable is
presented in Table 2.3.

2.4.1 Smart State-Action Discretization

Having lower-dimensional states or actions eases most reinforcement learning problems significantly;,
particularly in the context of robotics. Here, we give a quick overview of different attempts to achieve this
goal with smart discretization.

Hand Crafted: A variety of authors have manually tuned discretizations so that basic tasks can be
learned on real robots. For low-dimensional tasks, such as balancing a ball on a beam [Benbrahim et al.,
1992], we can generate discretizations straightforwardly while much more

human experience is needed for more complex tasks. Such tasks range from basic navigation with noisy
sensors [Willgoss and Igbal, 1999] over one degree of freedom ball-in-a-cup [Nemec et al., 2010], two
degree of freedom crawling motions [Tokic et al., 2009], and learning object affordances [Paletta et al.,
2007] up to gait patterns for four legged walking [Kimura et al., 2001].

Learned from Data: Instead of specifying the discretizations by hand, they can also be learned from
data. For example, a rule based reinforcement learning approach automatically segmented the state
space to learn a cooperative task with mobile robots [Yasuda and Ohkura, 2008]. In the related field of
computer vision, Piater et al. [2011] propose an approach that adaptively and incrementally discretizes a
perceptual space into discrete states.

Meta-Actions: Automatic construction of meta actions has fascinated reinforcement learning re-
searchers and there are various example in the literature. For example, in [Asada et al., 1996],
the state and action sets are constructed in a way that repeated action primitives leads to a change
in state to overcome problems associated with the discretization. Q-learning and dynamic programming
based approaches have been compared in a pick-n-place task [Kalmar et al., 1998] using modules. A task
of transporting a ball with a dog robot [Soni and Singh, 2006] can be learned with semi-automatically
discovered options. Using only the sub-goals of primitive motions, a pouring task can be learned by a
humanoid robot [Nemec et al., 2009]. Various other examples range from foraging [Mataric, 1997] and
cooperative tasks [Mataric, 1994] with multiple robots, to grasping with restricted search spaces [Platt
et al., 2006] navigation of a mobile robot [Dorigo and Colombetti, 1993]. These approaches belong to
hierarchical reinforcement learning approaches.

Relational Representation: In a relational representation the states, actions, and transitions are not
represented individually but entities of the same, predefined type are grouped and their relations are
considered. This representation has been employed to learn to navigate buildings with a real robot in a
supervised setting [Cocora et al., 2006] and to manipulate articulated objects in simulation [Katz et al.,
2008].

16 2 Reinforcement Learning in Robotics: a Survey



SMART STATE-ACTION DISCRETIZATION

Approach Employed by.. .

Hand crafted Benbrahim et al. [1992], Kimura et al. [2001], Nemec et al. [2010], Paletta
et al. [2007], Tokic et al. [2009], Willgoss and Igbal [1999]

Learned Piater et al. [2011], Yasuda and Ohkura [2008]

Meta-actions Asada et al. [1996], Dorigo and Colombetti [1993], Kalmar et al. [1998],
Mataric [1994, 1997], Platt et al. [2006], Soni and Singh [2006], Nemec et al.
[2009]

Relational Cocora et al. [2006], Katz et al. [2008]

Representation

FUNCTION APPROXIMATION

Approach Employed by...

Local Models Bentivegna et al. [2004b], Schaal [1996], Smart and Kaelbling [1998]

Neural Networks Benbrahim and Franklin [1997], Duan et al. [2008], Gaskett et al. [2000],
Hafner and Riedmiller [2003], Riedmiller et al. [2009], Thrun [1995]

GPR Gréave et al. [2010], Kroemer et al. [2009, 2010], Lizotte et al. [2007], Rottmann
et al. [2007]

Neighbors Hester et al. [2010], Mahadevan and Connell [1992], Touzet [1997]

PRE-STRUCTURED POLICIES

Approach Employed by.. .

Motor Primitives Kohl and Stone [2004], Kober and Peters [2008], Peters and Schaal [2008a,c],
Stulp et al. [2011], Tamosiunaite et al. [2011], Theodorou et al. [2010]

Neural Networks Endo et al. [2008], Geng et al. [2006], Gullapalli et al. [1994], Hailu and
Sommer [1998]

Via Points Miyamoto et al. [1996]

Linear Models Tamei and Shibata [2009]

GMM & LLM Deisenroth and Rasmussen [2010], Guenter et al. [2007], Peters and Schaal
[2008Db]

Controller Kolter and Ng [2009], Tedrake [2004], Tedrake et al. [2005], Vlassis et al.
[2009]

Non-parametric Kober et al. [2010a], Mitsunaga et al. [2005], Peters et al. [2010a]

Table 2.3: This table illustrates different methods of making robot reinforcement learning tractable by
employing a suitable representation.
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2.4.2 Function Approximation

Function approximation has always been the key component that allowed value function methods to scale
into interesting domains. In robot reinforcement learning, the following function approximation schemes
have been popular and successful.

Neural networks: Neural networks as function approximators for continuous states and actions have
been used by various groups, e.g., multi-layer perceptrons were used to learn a wandering behavior and
visual servoing [Gaskett et al., 2000]; fuzzy neural networks [Duan et al., 2008] as well as explanation-
based neural networks [Thrun, 1995] have allowed learning basic navigation while CMAC neural networks
have been used for biped locomotion [Benbrahim and Franklin, 1997].

A particularly impressive application of value function approximation has been the success of Brain-
stormers RoboCup soccer team that used multi-layer perceptrons to learn various sub-tasks [Hafner and
Riedmiller, 2003, Riedmiller et al., 2009]. The resulting components contributed to winning the world
cup several times in different leagues. Retaining all collected data and using domain knowledge to only
consider the task relevant state space, allows to efficiently fill up the state space.

Generalize to Neighboring Cells: As neural networks are globally affected from local errors, much
work has focused on simply generalizing from neighboring cells. One of the earliest papers in robot
reinforcement learning [Mahadevan and Connell, 1992] introduced this idea by statistical clustering
states to speed up a box pushing task with a mobile robot, see Figure 2.1a. This approach was also used
for a navigation and obstacle avoidance task with a mobile robot [Touzet, 1997]. Similarly, decision
trees have been used to generalize states and actions to unseen ones, e.g., to learn a penalty kick on a
humanoid robot [Hester et al., 2010].

Local Models: Locally weighted regression is known to be a particularly efficient function approximator.
Using it for value function approximation has allowed learning a navigation task with obstacle avoidance
[Smart and Kaelbling, 1998], a pole balancing task Schaal [1996] as well as an air hockey task [Bentivegna
et al., 2004b].

Gaussian Process Regression: Using GPs as function approximator for the value function has allowed
learning of hovering with an autonomous blimp [Rottmann et al., 2007], see Figure 2.1c. Similarly,
another paper shows that grasping can be learned using Gaussian Process Regression [Grave et al., 2010].
Grasping locations can be learned by focusing on rewards, modeled by GPR, by trying candidates with
predicted high rewards [Kroemer et al., 2009]. High reward uncertainty allows intelligent exploration in
reward-based grasping [Kroemer et al., 2010]. Gait of robot dogs can be optimized by first learning the
expected return function with a Gaussian process regression and subsequently searching for the optimal
solutions [Lizotte et al., 2007].

2.4.3 Pre-structured Policies

To make the policy search approach tractable, the policy needs to be represented with an appropriate
function approximation.

Motor Primitives: Motor primitives are a biologically-inspired concept and represent basic movements.
For discrete movements the dynamical system motor primitives [Ijspeert et al., 2002b, Schaal et al.,
2007] representation has been employed to learn a T-ball batting task [Peters and Schaal, 2008a,c], the
underactuated swing-up and ball-in-a-cup [Kober and Peters, 2008], flipping a light switch [Buchli et al.,
2011], a pouring water [Tamosiunaite et al., 2011], as well as playing pool and manipulating a box
[Pastor et al., 2011]. For rhythmic behaviors half-elliptical locuses have been used as a representation of
the gait pattern of a robot dog [Kohl and Stone, 2004].

Neural Networks: Instead of analytically describing rhythmic movements, neural networks can be
used as oscillators to learn gaits of a a two legged robot [Geng et al., 2006, Endo et al., 2008]. Also a
peg-in-hole (see Figure 2.1b) and a ball-balancing task [Gullapalli et al., 1994] as well as a navigation task
[Hailu and Sommer, 1998] have been learned with neural networks as policy function approximators.
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Figure 2.3: Boston Dynamics LittleDog jumping [Kolter and Ng, 2009] (Picture reprint with permission of
Zico Kolter).

Via Points: Optimizing the position and timing of via-points Miyamoto et al. [1996] learned a kendama
task.

Linear Models: Tamei and Shibata [2009] used reinforcement learning to to adjust a model that maps
from EMG signals to forces that in turn is used in a cooperative holding task.

Gaussian Mixture Models and Locally Linear Models: One of the most general function approximators
is based on radial basis functions, also called Gaussian kernels. However, specifying the centers and
widths of these is challenging. These locations and variances can also be estimated from data prior to the
reinforcement learning process which has been used to generalize a reaching movement [Guenter et al.,
2007] and to learn the cart-pole task [Deisenroth and Rasmussen, 2010]. Operational space control was
learned by Peters and Schaal [2008b] using locally linear models.

Controller: Here, parameters of a local linear controller are learned. Applications include learning to
walk in 20 minutes with a biped robot [Tedrake, 2004, Tedrake et al., 2005], to drive a radio-controlled
(RC) car as well as a jumping behavior for a robot dog jump [Kolter and Ng, 2009], as illustrated in
Figure 2.3, and to balance a two wheeled robot [Vlassis et al., 2009].

Non-parametric: Also in this context non-parametric representations can be used. The weights of
different robot human interaction possibilities [Mitsunaga et al., 2005], the weights of different striking
movements in a table tennis task [Peters et al., 2010a], and the parameters of meta-actions for dart and
table tennis tasks [Kober et al., 2010a] can be optimized.

2.5 Tractability through Prior Knowledge

Prior knowledge can significantly help to guide the learning process. Prior knowledge can be included
in the form of initial policies, initial models, or a predefined structure of the task. These approaches
significantly reduce the search space and, thus, speed up the learning process. Providing a goal achieving
initial policy allows a reinforcement learning method to quickly explore promising regions in the value
functions or in policy space, see Section 2.5.1. Pre-structuring the task to break a complicated task down
into several more tractable ones can be very successful, see Section 2.5.2. An overview of publications
using prior knowledge to render the learning problem tractable is presented in Table 2.4.
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2.5.1 Prior Knowledge through Demonstrations

Animals and humans frequently learn using a combination of imitation and trial and error. For example,
when learning to play tennis, an instructor usually shows the student how to do a proper swing, e.g.,
a forehand or backhand. The student will subsequently imitate this behavior but still needs hours of
practicing to successfully return balls to the opponent’s court. Input from a teacher is not limited to initial
instruction. The instructor can give additional demonstrations in a later learning stage [Latzke et al.,
2007], these can also be used as differential feedback [Argall et al., 2008]. Global exploration is not
necessary as the student can improve by locally optimizing his striking movements previously obtained by
imitation. A similar approach can speed up robot reinforcement learning based on human demonstrations
or initial hand coded policies. Pieter Abbeel coined the term ‘apprenticeship learning’ for this type of
learning.! For a recent survey on imitation learning for robotics see [Argall et al., 2009].

Both value function based approaches and policy search methods work well for real system applications
if they do not make big changes of the distribution over states. Policy search approaches implicitly
maintain the state distribution by limiting the changes to the policy. On the other hand, for value function
based approaches an unstable estimate of the value function can lead to drastic changes in the policy if
the state distribution is not maintained. The learning problem becomes significantly more tractable if it is
known beforehand which states matter, that is the state distribution the approach needs to optimize over.
Such state distributions can be obtained both from demonstrations by a teacher and hand coded policies.

Demonstrations by a Teacher: Demonstrations can be obtained by remote controlling the robot, which
was used to initialize a Q-table for a navigation task [Conn and Peters II, 2007]. If the robot is back-
drivable, kinesthetic teach-in (i.e., by taking it by the hand and moving it) can be employed. This method
has resulted in applications including T-ball batting [Peters and Schaal, 2008a,c], reaching tasks [Guenter
et al., 2007, Bitzer et al., 2010], ball-in-a-cup [Kober and Peters, 2008], flipping a light switch [Buchli
et al., 2011], playing pool and manipulating a box [Pastor et al., 2011], as well as opening a door and
picking up objects [Kalakrishnan et al., 2011]. A marble maze task can be learned using demonstrations
by a human player [Bentivegna et al., 2004a]. Motion-capture setups can be used alternatively, but the
demonstrations are often not as informative due to the correspondence problem. Demonstrations obtained
by motion capture have been used to learn ball-in-a-cup [Kober et al., 2008] and grasping [Grave et al.,
2010].

Hand Coded Policy: A pre-programmed policy can provide demonstrations instead of a human teacher.
A vision-based mobile robot docking task can be learned faster with such a basic behavior than using
Q-learning alone as demonstrated in [Martinez-Marin and Duckett, 2005]. As an alternative corrective
actions when the robot deviates significantly from the desired behavior can be employed as prior
knowledge. This approach has been applied to adapt walking patterns of a robot dog to new surfaces
[Birdwell and Livingston, 2007] by Q-learning. Having hand-coded stable initial gaits can significantly
help as shown on six-legged robot gait [Erden and Leblebicioglu, 2008] as well as on a biped [Tedrake,
2004, Tedrake et al., 2005].

2.5.2 Prior Knowledge through Task Structuring

Often a task can be decomposed hierarchically into basic components or in a sequence of increasingly
difficult tasks. In both cases the complexity of the learning task is significantly reduced.

Hierarchical Reinforcement Learning: Easier tasks

can be used as building blocks for a more complex behavior. For example, hierarchical Q-learning
has been used to learn different behavioral levels for a six legged robot: moving single legs, locally
moving the complete body, and globally moving the robot towards a goal [Kirchner, 1997]. A stand-up

! The term ‘apprenticeship learning’ is often misconstrued to ‘inverse reinforcement learning’ or ‘inverse optimal control’ but

actually should be employed in a much broader meaning.
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DEMONSTRATION

Approach Employed by.. .

Teacher Bentivegna et al. [2004a], Bitzer et al. [2010], Conn and Peters II [2007],
Gréave et al. [2010], Kober et al. [2008], Kober and Peters [2008], Latzke et al.
[2007], Peters and Schaal [2008a,c]

Policy Birdwell and Livingston [2007], Erden and Leblebicioglu [2008], Martinez-
Marin and Duckett [2005], Smart and Kaelbling [1998], Tedrake [2004],
Tedrake et al. [2005], Wang et al. [2006]

TASK STRUCTURE

Approach Employed by...
Hierarchical Donnart and Meyer [1996], Kirchner [1997], Morimoto and Doya [2001]
Progressive Tasks Asada et al. [1996]

DIRECTED EXPLORATION

Employed by. ..

Huang and Weng [2002], Kroemer et al. [2010], Pendrith [1999]

Table 2.4: This table illustrates different methods of making robot reinforcement learning tractable by
incorporating prior knowledge.

behavior considered as a hierarchical reinforcement learning task has been learned using Q-learning in
the upper-level and TD-learning in the lower level [Morimoto and Doya, 2001]. Navigation in a maze
can be learned using an actor-critic architecture by tuning the influence of different control modules and
learning these modules [Donnart and Meyer, 1996].

Progressive Tasks: Often complicated tasks are easier to learn if simpler tasks can already be performed.
A sequence of increasingly difficult missions has been employed to learn a goal shooting task in [Asada
et al., 1996] using Q-learning.

2.5.3 Directing Exploration with Prior Knowledge

A mobile robot learns to direct attention [Huang and Weng, 2002] by employing a modified Q-learning
approach using novelty. Using ‘corrected truncated returns’ and taking into account the estimator variance,
a six legged robot employed with stepping reflexes can learn to walk [Pendrith, 1999]. Using upper
confidence bounds to direct exploration grasping can be learned efficiently [Kroemer et al., 2010]. Offline
search can be used to enhance Q-learning during a grasping task [Wang et al., 2006].

2.6 Tractability through Models

Using a simulation instead of the real physical robot has major advantages such as safety and speed. A
simulation can be used to eliminate obviously bad behaviors and often runs much faster than real time.
Simulations are without doubt a helpful testbed for debugging algorithms. A popular approach is to
combine simulations and real evaluations by only testing promising policies on the real system and using
it to collect new data to refine the simulation (Section 2.6.2). Unfortunately, directly transferring policies
learned in simulation to a real system can be challenging (Section 2.6.3). An overview of publications
using simulations to render the learning problem tractable is presented in Table 2.5.
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Figure 2.4: Autonomous inverted helicopter flight [Ng et al., 2004b](Picture reprint with permission of
Andrew Ng).

2.6.1 Role of Models

Model-free algorithms try to directly learn the value function or the policy. Model-based approaches
jointly learn a model of the system and the value function or the policy. Model-based methods can make
the learning process a lot more sample efficient. However, depending on the type of model these may
require a lot of memory. Model-based approaches rely on an approach that finds good policies in the
model. These methods encounter the risk of exploiting model inaccuracies to decrease the cost. If the
learning methods require predicting the future or using derivatives, the inaccuracies may accumulate
quickly, and, thus, significantly amplify noise and errors [An et al., 1988]. These effects lead to value
functions or policies that work well in the model but poorly on the real system. This issue is highly
related to the transfer problem discussed in Section 2.2.3. A solution is to overestimate the noise, to
introduce a controlled amount of inconsistency [Atkeson, 1998], to use a crude model to find a policy
that compensates the derivative of the behavior in the model and on the real system [Abbeel et al., 2006],
or to solely rely on the gradient of the model.

In Section 2.2.3, we discussed that policies learned in simulation often cannot be transferred to the real
system. However, simulations are still a very useful tool. Most simulations run significantly faster than
real time and many problems associated with expensive samples (Section 2.2.2) can be avoided. For these
reasons simulations are usually used to debug, test and optimize algorithms. Learning in simulation often
can be made significantly easier than on real robots. The noise can be controlled and all variables can be
accessed. If the approach does not work in simulation it is often unlikely that it works on the real system.
Many papers also use simulations to benchmark approaches as repeating the experiment frequently to
observe the average behavior and to compare many algorithms is often not feasible on the real system.

2.6.2 Mental Rehearsal

The idea of combining learning in simulation and in the real environment has been popularized by
the Dyna-architecture [Sutton, 1990] in reinforcement learning. Due to the obvious advantages in the
robotics domain, it has been proposed in this context as well. Experience collected in the real-world can
be used to learn a forward model [Astrom and Wittenmark, 1989] from data. Such a a forward model
allows training in a simulated environment and the resulting policy is subsequently transferred to the real
environment. This approach can also be iterated and may significantly reduce the needed interactions
with the real-world. However, often the learning process can exploit the model errors which may lead to
biased solutions and slow convergence.
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Benefits of Noise: A complex real-world system such as a robot can never be simulated without any
kind of simulation errors. Even small inaccuracies accumulate and lead to simulation bias. Reinforcement
learning approaches will exploit such inaccuracies if they are beneficial for the reward. This effect
is closely related to overfitting in supervised learning. The problem can be addressed by introducing
stochastic models or distributions over models even if the system is very close to deterministic. Artificially
adding a little noise will smoothen model errors and therefore avoid overfitting [Jakobi et al., 1995,
Atkeson, 1998]. On the downside, some very precise policies may be eliminated. This technique can be
beneficial in all approaches described below.

Re-using Random Numbers: When comparing results of different simulation runs, it is often hard to
tell from a small number of samples whether a policy really worked better or whether it was an effect of
the simulated stochasticity. Using a large number of samples to obtain proper estimates of the expectations
become prohibitively expensive if a large number of such comparisons need to be performed (e.g., for
gradient estimation within an algorithm). A common technique in the statistics and simulation community
[Glynn, 1987] to address this problem is to re-use the series of random numbers in fixed models, hence,
removing the noise contribution. Ng et al. [2004b,a] extended this approach for learned simulators.
The resulting approach, PEGASUS, found various applications in the learning of artistic maneuvers for
autonomous helicopters [Bagnell and Schneider, 2001, Bagnell, 2004, Ng et al., 2004b,a], as illustrated
in Figure 2.4, it has been used to learn control parameters for a RC car [Michels et al., 2005] and an
autonomous blimp [Ko et al., 2007].

Taking Turns: Such mental rehearsal has found a lot of applications in robot reinforcement learning.
Parallel learning in simulation and directed exploration allows Q-learning to learn a navigation task from
scratch in 20 minutes [Bakker et al., 2006]. Two robots taking turns in learning a simplified soccer task
were also able to profit from mental rehearsal [Uchibe et al., 1998]. Atkeson et al. [1997] learned a
billiard and a devil sticking task employing forward models. Nemec et al. [2010] used a value function
learned in simulation to initialize the real robot learning.

Iterative Learning Control: A powerful idea is to use crude approximate models to determine gradients,
e.g., for an update step. The resulting new policy is then evaluated in the real world and the model is
updated. This approach is known as iterative learning control [Arimoto et al., 1984] and is related to
feedback error learning [Kawato, 1990]. A similar preceding idea was employed to minimize trajectory
tracking errors [An et al., 1988]. More recently, iterative learning control has been employed to learn
robot control [Norrlof, 2002, Bukkems et al., 2005], the steering of a RC car [Abbeel et al., 2006], a pick
and place task [Freeman et al., 2010], as well as tying knots with a surgical robot at superhuman speeds
[Berg et al., 2010].

Linear Quadratic Regulators: Instead of sampling from a forward model-based simulator, such learned
models can also be directly used for computing optimal control policies. This has resulted in a variety
of robot reinforcement learning applications ranging from pendulum swing-up tasks learned with DDP
[Atkeson and Schaal, 1997, Atkeson, 1998], devil-sticking (a form of gyroscopic juggling) obtained with
local LQR solutions [Schaal and Atkeson, 1994], trajectory following with space-indexed controllers
trained with DDP for an autonomous RC car [Kolter et al., 2008], the cart-pole task [Deisenroth and
Rasmussen, 2010], a block stacking task [Deisenroth et al., 2011], to aerobatic helicopter flight trained
with DDP [Coates et al., 2009]. Solving an LQR problem with multiple probabilisitc models and combining
the resulting closed-loop control with open-loop control has resulted in autonomous sideways sliding into
a parking spot [Kolter et al., 2010]. A promising new related approach are LQR-trees [Tedrake et al.,
2010].

2.6.3 Direct Transfer from Simulated to Real Robots

Only few papers claim that a policy learned in simulation can directly be transferred to a real robot while
maintaining its high level of performance. The few examples include maze navigation tasks [Bakker
et al., 2003, ORwald et al., 2010, Youssef, 2005] and obstacle avoidance [Fagg et al., 1998] for a mobile
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Approach Employed by...

Re-using Random Bagnell and Schneider [2001], Bagnell [2004], Ko et al. [2007], Michels et al.

Numbers [2005], Ng et al. [2004b,a]

Taking Turns Atkeson et al. [1997], Bakker et al. [2006], Nemec et al. [2010], Uchibe et al.
[1998]

Iterative Learning Abbeel et al. [2006], An et al. [1988], Berg et al. [2010], Bukkems et al. [2005],

Control Freeman et al. [2010], Norrlof [2002]

Linear Quadratic Atkeson and Schaal [1997], Atkeson [1998], Coates et al. [2009], Deisenroth

Regulators and Rasmussen [2010], Deisenroth et al. [2011], Kolter et al. [2008, 2010],

Schaal and Atkeson [1994], Tedrake et al. [2010]

DirecT PoLicy TRANSFER

Employed by...

Bakker et al. [2003], Duan et al. [2007], Fagg et al. [1998], Ilg et al. [1999],
ORwald et al. [2010], Svinin et al. [2001], Youssef [2005]

Table 2.5: This table illustrates different methods of making robot reinforcement learning tractable using
models.

robot. Similar transfer was achieved in very basic robot soccer [Duan et al., 2007] and multi-legged robot
locomotion [Ilg et al., 1999, Svinin et al., 2001].

2.7 A Case Study: Ball-in-a-Cup

Up to this point in this chapter, we have reviewed a large variety of problems and associated possible
solutions of robot reinforcement learning. In this section, we will take an orthogonal approach and
discuss one task in detail that has previously been studied. This task is called ball-in-a-cup and due to
its complexity, it can serve as an example to highlight some of the various discussed challenges and
methods. In Section 2.7.1, the experimental setting is described with a focus on the task and the reward.
Section 2.7.2 discusses a type of pre-structured policies that has been particularly useful in robotics.
Inclusion of prior knowledge is presented in Section 2.7.3. The advantages of the employed policy search
algorithm are explained in Section 2.7.4. The use of simulations in this task is discussed in Section 2.7.5.
Finally, an alternative reinforcement learning approach is explored in Section 2.7.6.

2.7.1 Experimental Setting: Task and Reward

The children’s motor game ball-in-a-cup, also known as balero and bilboquet, is challenging even for most
adults. The toy consists of a small cup held in one hand (or, in this case, is attached to the end-effector of
the robot) and a small ball is hanging on a string attached to the cup’s bottom (for the employed toy, the
string is 40cm long). Initially, the ball is at rest, hanging down vertically. The player needs to move fast to
induce motion in the ball through the string, toss it up and catch it with the cup. A possible movement is
illustrated in Figure 2.5a. As the string frequently entangles in failures and the robot cannot unravel it,
human intervention is required and an automatic reset is often not possible.

The state of the system can be described by joint angles and joint velocities of the robot as well as the
the Cartesian coordinates and velocities of the ball. The actions are the joint space accelerations (which
are translated into torques by an inverse dynamics controller). Thus, the reinforcement learning approach
has to deal with twenty state and seven action dimensions. Discretizing the state-action space for a value
function based approach is not likely to be feasible.
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(@) Schematic drawings of the ball-in-a-cup motion

(b) Kinesthetic teach-in

(¢) Final learned robot motion

Figure 2.5: This figure shows schematic drawings of the ball-in-a-cup motion (a), the final learned robot
motion (c), as well as a kinesthetic teach-in (b). The green arrows show the directions of the
current movements in that frame. The human cup motion was taught to the robot by imitation
learning with 31 parameters per joint for an approximately 3 seconds long movement. The
robot manages to reproduce the imitated motion quite accurately, but the ball misses the cup
by several centimeters. After approximately 75 iterations of the Policy learning by Weighting
Exploration with the Returns (POWER) algorithm the robot has improved its motion so that the
ball regularly goes into the cup.

At the time t. where the ball passes the rim of the cup with a downward direction, the reward is
computed as r(t.) = exp(—a(x, —x;)* — a(y. — y,)*) while r (t) = 0 for all t # t,. Here, the cup position
is denoted by [x., y.,2.] € R, the ball position [x;, y,,%;,] € R® and the scaling parameter a = 100.
Initially, Kober and Peters [2010] used a reward function based solely on the minimal distance between
the ball and the cup. However, the algorithm has exploited rewards resulting from hitting the cup with
the ball from below or from the side as such behaviors are easier to achieve and yield comparatively high
rewards. To avoid such local optima, it was essential to find a good reward function such as the initially
described one.

The task is quite complex as the reward is not only affected by the cup’s movements but foremost by the
ball’s movements. As the ball’s movements are very sensitive to small perturbations, the initial conditions
or small arm movement changes, will drastically affect the outcome. Creating an accurate simulation is
hard due to the nonlinear, unobservable dynamics of the string and its non-negligible weight.

2.7.2 Appropriate Policy Representation

The policy is represented by dynamical system motor primitives [Ijspeert et al., 2002b, Schaal et al.,
2007]. The global movement is encoded as a point attractor linear dynamical system. The details of
the movement are generated by a transformation function that allows learning complex behaviors. This
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transformation function is modeled using locally linear function approximation. This combination of the
global attractor behavior and local transformation allows a very parsimonious representation of the policy.
This policy is linear in parameters a = 6u(s) and, thus, it is straightforward to include prior knowledge
from a demonstration using supervised learning by locally weighted regression.

2.7.3 Generating a Teacher’s Demonstration

Due to the complexity of the task, ball-in-a-cup is a hard motor task even for children who usually only
succeed after observing another person presenting a demonstration, and require additional trial-and-error-
based learning. Mimicking how children learn ball-in-a-cup, the motor primitives are first initialized by
imitation and, subsequently, improved by reinforcement learning.

A demonstration for imitation was obtained by recording the motions of a human player performing
kinesthetic teach-in as shown in Figure 2.5b. Kinesthetic teach-in means ‘taking the robot by the hand’,
performing the task by moving the robot while it is in gravity-compensation mode and recording the joint
angles, velocities and accelerations. It requires a back-drivable robot system similar to a human arm. From
the imitation, the number of needed policy parameters can be determined by cross-validation. As the robot
fails to catch the ball with the cup, additional reinforcement learning is needed for self-improvement.

2.7.4 Reinforcement Learning by Policy Search

When learning motor primitives, a deterministic mean policy @ = Qu(s) = f (z) is learned. This policy is
linear in parameters 6 and augmented by additive exploration €(s, t) to make model-free reinforcement
learning possible. As a result, the explorative policy can be given in the form a = Qu(s, t) + e(u(s, t)).
Policy search approaches often focus on state-independent, white Gaussian exploration, i.e., e(u(s, t)) ~
A(0,%) which has resulted into applications such as T-Ball batting [Peters and Schaal, 2008a] and
constrained movement [Guenter et al., 2007]. However, such unstructured exploration at every step has
several disadvantages, i.e., (i) it causes a large variance which grows with the number of time-steps, (ii) it
perturbs actions too frequently, thus, ‘washing’ out their effects and (iii) can damage the system executing
the trajectory.

Alternatively, one could generate a form of structured, state-dependent exploration [Riickstiel3 et al.,
2008] €(u(s, t)) = e u(s, t) with [g,];; ~ A(0, 0'1.2].), where al.zj are meta-parameters of the exploration
that can also be optimized. This argument results into the policy a ~ n(a,ls,, t) = A (alu(s, t), X(s, t)).

Kober and Peters [2008] have derived a framework of reward weighted imitation. Based on [Dayan
and Hinton, 1997] they consider the return of an episode as an improper probability distribution. A
lower bound of the logarithm of the expected return is maximized. Depending on the strategy of
optimizing this lower bound and the exploration strategy, the framework yields several well known policy
search algorithms: episodic REINFORCE [Williams, 1992], the policy gradient theorem [Sutton et al.,
1999], episodic natural actor critic [Peters and Schaal, 2008c], a generalization of the reward-weighted
regression [Peters and Schaal, 2008b] as well as the novel Policy learning by Weighting Exploration with
the Returns (PoOWER) algorithm. PoWER is an expectation-maximization inspired algorithm that employs
state-dependent exploration. The update rule is given by

E; {2321 £,.Q"(s;,a,, t)}
EAY, Q" Goant)}

To reduce the number of trials in this on-policy scenario, the trials are reused through importance
sampling [Sutton and Barto, 1998]. To avoid the fragility sometimes resulting from importance sampling
in reinforcement learning, samples with very small importance weights are discarded. This algorithm
performs basically a local search around the policy learned from prior knowledge.

0'=0+

26 2 Reinforcement Learning in Robotics: a Survey



The policy converges to the maximum after 100 episodes and the robot regularly succeeds at bringing
the ball into the cup after approximately 75 episodes.

Using a value function based approach would require an unrealistic amount of samples to get a
good estimate of the value function. Greedily searching for an optimal motor command in such a
high-dimensional action space is probably as hard as finding a locally optimal policy.

2.7.5 Use of Simulations in Robot Reinforcement Learning

The robot is simulated by rigid body dynamics with parameters estimated from data. The toy is simulated
as a pendulum with an elastic string that switches to a ballistic point mass when the ball is closer to the
cup than the string is long. The spring, damper and restitution constants were tuned to match recorded
data. Even though this simulation matches recorded data very well, policies that get the ball in the cup
in simulation usually miss the cup by several centimeters on the real system and vice-versa. However,
this simulation was very helpful to develop and tune the algorithm as it runs faster in simulation than
real-time and does not require human supervision or intervention.

2.7.6 Alternative Approach with Value Function Methods

Nemec et al. [2010] used a different reinforcement learning approach to achieve the ball-in-a-cup task
with a Mitsubishi PA10 robot. They decomposed the task in two sub-tasks, the swing-up phase and the
catching phase. In the swing-up phase the ball is moved above the cup. In the catching phase the ball is
caught with the cup using an analytic prediction of the ball trajectory based on the movement of a flying
point mass. The catching behavior is fixed, only the swing-up behavior is learned. The paper proposes to
use SARSA to learn the swing-up movement. The states consist of the cup positions and velocities as well
as the angular positions and velocities of the ball. The actions are the accelerations of the cup in a single
Cartesian direction. Tractability is achieved by discretizing both the states (324 values) and the actions (5
values) and initialization by simulation. The behavior was first learned in simulation requiring 220 to
300 episodes. The state-action value function learned in simulation was used to initialize the learning
on the real robot. The robot required an additional 40 to 90 episodes to adapt the behavior learned in
simulation to the real environment.

2.8 Discussion

Incorporating prior knowledge is one of the main tools to make robotic reinforcement learning tractable.
However, it is often hard to tell in advance how much prior knowledge is required to make the rein-
forcement learning algorithms succeed in a reasonable number of episodes. If local optimization is
employed, an initial policy needs to be defined. Obtaining these from human demonstrations can be
virtually impossible if the morphology of the robot is different from a human’s and more than a small
number of degrees of freedom need to be controlled. Programming a policy by hand is usually too time
consuming to be a desirable alternative.

The action space in robotics often is inherently continuous and multi-dimensional. Care needs to be
taken when using function approximation. Model based approaches can be used to reduce required
real-world interactions. Often methods based on approximate models and using local optimization work
well. On the one hand, due to under-modeling and resulting model errors, policies learned only in
simulation usually cannot be transferred directly to the robot. On the other hand, real-world samples are
expensive in most cases while calculations are comparatively cheap.

The state of the robot can only be obtained indirectly by sensors or is not observable at all. Often
a lot of effort needs to be put into pre-processing the sensor information to obtain the states for the
reinforcement learning algorithm. Often the environment and the robot itself change dynamically, for
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example, vision systems depend on the lightning condition and the robot dynamics change with wear and
the temperature of the grease. Thus, constant adaptation might be a requirement.

Reinforcement learning is not yet applicable to robotics out of the box. For each task, appropriate
methods need to be carefully selected. The user has to decide when enough prior knowledge is given and
learning can take over. All methods require hand-tuning as appropriate representations, reward functions,
and prior knowledge need to be chosen. Inverse reinforcement learning could be used as an alternative to
designing the reward function.

In the field of inverse optimal control, robotic problems clearly have driven theoretical research.
Policy search and robustness concerns also has been pushed by robotic research. Nevertheless, more
theoretical research is required to come up with algorithms that can handle the specific challenges of
robotic reinforcement learning. These methods need to address multi-dimensional continuous action
spaces, partial observability, model learning, and continuous adaptation to changes in the hardware and
environment.

Robotic reinforcement learning has a number of advantages over algorithmic reinforcement learning.
Prior knowledge of the behavior of the system as well as the task is often available and can be incorporated
in the learning approach. The use of models permits to limit the number of real-world trials as the learning
can be partially done based on the model. Using crude models to approximate gradients has yielded
impressive results.

Policy search approaches implicitly maintain a state distribution. Also value function based methods
benefit from such fixed state distributions. For some tasks, value function based approaches can be made
tractable in a straightforward manner by using macro actions. Often the robotic learning approaches are
closer to optimal control problems than the ones typically studied in algorithmic reinforcement learning.
All approaches benefit from reward shaping, that is by using rewards that convey a notation of closeness
and are not only based on success or failure. Value function heuristics can be successfully employed.

2.9 Next Challenges

When a human is learning a new task he relies on the skills he has learned previously. For example,
learning to throw darts is significantly easier when the skill of throwing balls has been learned previously
compared to learning from scratch. Also for reinforcement learning applied to robotics it will be crucial to
have the possibility to transfer learned skills to other tasks and potentially to robots of a different type.
For complex tasks learning cannot be achieved globally, hence it is essential to reuse other locally learned
information.

One of the key differences to synthetic reinforcement learning benchmarks is that robotic reinforcment
learning has to handle noisy and incomplete perceptions. Most of the surveyed work relies on a very
simple perception system or pre-processed data. In contrast humans learn to optimally perceive in order
to fulfill a task. For example, when catching a ball, people learn to chancel the optic acceleration in
order to facilitate to intercept its path [McLeod et al., 2006]. Integrating computer vision and robotic
reinforcement learning will allow many applications beyond the reach of current techniques. Learning
active perception jointly with the robot’s movement and semantic perception are open problems.

2.10 Conclusion

In this chapter, we have surveyed robot reinforcement learning in order to introduce general reinforcement
learning audiences to the state of the art in this domain. We have pointed out the inherent challenges
such as the high-dimensional continuous state and action space, the high cost associated with trials, the
problems associated with transferring policies learned in simulation to real robots as well as the need for
appropriate reward functions. A discussion of how different robot reinforcement learning approaches
are affected by the domain has been given. We have surveyed different authors’ approaches to render
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robot reinforcement learning tractable through improved representation, inclusion of prior knowledge
and usage of simulation. To highlight aspects that we found particularly important, we give a case study
on how a robot can learn a complex task such as ball-in-a-cup.
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3 Movement Templates for Learning of Hitting and Batting

Hitting and batting tasks, such as tennis forehands, ping-pong strokes, or baseball batting, depend on
predictions where the ball can be intercepted and how it can properly be returned to the opponent. These
predictions get more accurate over time, hence the behaviors need to be continuously modified. As a
result, movement templates with a learned global shape need to be adapted during the execution so that
the racket reaches a target position and velocity that will return the ball over to the other side of the
net or court. It requires altering learned movements to hit a varying target with the necessary velocity
at a specific instant in time. Such a task cannot be incorporated straightforwardly in most movement
representations suitable for learning. For example, the standard formulation of the dynamical system
based motor primitives (introduced by Ijspeert et al. [2002a]) does not satisfy this property despite their
flexibility which has allowed learning tasks ranging from locomotion to kendama. In order to fulfill this
requirement, we reformulate the Ijspeert framework to incorporate the possibility of specifying a desired
hitting point and a desired hitting velocity while maintaining all advantages of the original formulation.
We show that the proposed movement template formulation works well in two scenarios, i.e., for hitting a
ball on a string with a table tennis racket at a specified velocity and for returning balls launched by a ball
gun successfully over the net using forehand movements. All experiments were carried out on a Barrett
WAM using a four camera vision system.

3.1 Introduction

Learning new skills can frequently be helped significantly by choosing a movement template representation
that facilitates the process of acquiring and refining the desired behavior. For example, the work on
dynamical systems-based motor primitives [Ijspeert et al., 2002a, Schaal et al., 2003, 2007] has allowed
speeding up both imitation and reinforcement learning while, at the same time, making them more
reliable. Resulting successes have shown that it is possible to rapidly learn motor primitives for complex
behaviors such as tennis swings [Ijspeert et al., 2002a] with only a final target, constrained reaching
[Gams and Ude, 2009], drumming [Pongas et al., 2005], biped locomotion [Schaal et al., 2003, Nakanishi
et al., 2004] and even in tasks with potential industrial application [Urbanek et al., 2004]. Although
some of the presented examples, e.g., the tennis swing [Ijspeert et al., 2002a] or the T-ball batting [Peters
and Schaal, 2006], are striking movements, these standard motor primitives cannot properly encode a
hitting movement. Previous work needed to make simplistic assumptions such as having a static goal
[Peters and Schaal, 2006], a learned complex goal function [Peters et al., 2010b] or a stationary goal that
could only be lightly touched at the movement’s end [Ijspeert et al., 2002a].

Most racket sports require that we hit a non-stationary target at various positions and with various
velocities during the execution of a complete striking movement. For example, in table tennis, a typical
movement consists of swinging back from a rest postures, hitting the ball at a desired position with a
desired orientation and velocity, continuing the swing a bit further and finally returning to the rest posture.
See Figure 3.1 for an illustration. Sports sciences literature [Ramanantsoa and Durey, 1994, Miilling and
Peters, 2009] indicates that most striking movements are composed of similar phases that only appear
to be modified by location and velocity at the interception point for the ball [Schmidt and Wrisberg,
2000, Bootsma and van Wieringen, 1990, Hubbard and Seng, 1954, Tyldesley and Whiting, 1975]. These
findings indicate that similar motor primitives are being used that are invariant under these external
influences similar to the Ijspeert motor primitives [Ijspeert et al., 2002a, Schaal et al., 2003, 2007] being
invariant under the modification of the final position, movement amplitude and duration. However, the
standard formulation by Ijspeert et al. cannot be used properly in this context as there is no possibility to
directly incorporate either a via-point or a target velocity (if the duration cannot be adapted as, e.g., for
an approaching ball). Hence, a reformulation is needed that can deal with these requirements.
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Figure 3.1: This figure illustrates the different phases of a table tennis stroke. The blue box on the left
represents a ping-pong ball launcher, the table is shown in green and the different states of the
robot are superposed. A typical racket trajectory is indicated by the dark gray solid line while
the orange dashed line represents the ball’s trajectory. The robot goes through four stages: it
swings back (D—©®), it strikes the ball at a virtual hitting point with a goal-oriented velocity at
posture @, it follows the strike through (®—®) and finally returns to the rest posture ®. While
the complete arm movement can be modeled with the ljspeert approach, the reformulation in
this paper is required to be able to properly strike the ball.

In this paper, we augment the Ijspeert approach [Ijspeert et al., 2002a, Schaal et al., 2003, 2007] of
using dynamical systems as motor primitives in such a way that it includes the possibility to set arbitrary
velocities at the hitting point without changing the overall shape of the motion or introducing delays that
will prevent a proper strike. This modification allows the generalization of learned striking movements,
such as hitting and batting, from demonstrated examples. In Section 3.2, we present the reformulation of
the motor primitives as well as the intuition behind the adapted approach. We apply the presented method
in Section 3.3 where we show two successful examples. First, we test the striking movements primitive
in a static scenario of hitting a hanging ball with a table tennis racket and show that the movement
generalizes well to new ball locations. After this proof of concept, we take the same movement template
representation in order to learn an adaptable forehand for table tennis. The later is tested in the setup
indicated by Figure 3.1 where we use a seven degrees of freedom Barrett WAM in order to return balls
launched by a ball cannon.

3.2 Movement Templates for Learning to Strike

Ijspeert et al. [2002a] suggested to use a dynamical system approach in order to represent both discrete
point-to-point movements as well as rhythmic motion with motor primitives. This framework ensures
the stability of the movement!, allows the representation of arbitrarily shaped movements through
the primitive’s policy parameters, and these parameters can be estimated straightforwardly by locally
weighted regression. In the discrete case, these primitives can be modified through their meta-parameters
in order to adapt to the final goal position, the movement amplitude or the duration of the movement.
The resulting movement can start from arbitrary positions and velocities and go to arbitrary final positions
while maintaining the overall shape of the trajectory. In Section 3.2.1, we review the most current version
of this approach based on [Schaal et al., 2007].

However, as outlined in Section 3.1, this formulation of the motor primitives cannot be used straight-
forwardly in racket sports as incorporating a desired virtual hitting point [Ramanantsoa and Durey,
1994, Miilling and Peters, 2009] (consisting of a desired target position and velocity) cannot be achieved

! Note that the dynamical systems motor primitives ensure the stability of the movement generation but cannot guarantee

the stability of the movement execution [Ijspeert et al., 2002a, Schaal et al., 2007].
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Figure 3.2: In this figure, we convey the intuition of the presented reactive templates for learning striking
movements. The Ijspeert formulation can be seen as a nonlinear spring damper system that
pulls a degree of freedom to a stationary goal while exhibiting a learned movement shape.
The presented approach allows hitting a target with a specified velocity without replanning if
the target is adapted and, in contrast to the Ijspeert formulation, can be seen as a degree of
freedom pulled towards a moving goal.

straightforwardly. For example, in table tennis, fast forehand movements need to hit a ball at a pre-
specified speed, hitting time and a continuously adapted location. In the original Ijspeert formulation, the
goal needs to be determined at the start of the movement and at approximately zero velocity as in the
experiments in [Ijspeert et al., 2002a]; a via-point target can only be hit properly by modifying either the
policy parameters [Peters and Schaal, 2006] or, indirectly, by modifying the goal parameters [Peters et al.,
2010b]. Hence, such changes of the target can only be achieved by drastically changing the shape of the
trajectory and duration.

As an alternative, we propose a modified version of Ijspeert’s original framework that overcomes this
limitation and is particularly well-suited for striking movements. This modification allows setting both
a hitting point and a striking velocity while maintaining the desired duration and the learned shape of
the movement. Online adaptation of these meta-parameters is possible and, hence, it is well-suited for
learning racket sports such as table tennis as discussed in Chapter 5. The basic intuition behind the
modified version is similar to the one of Ijspeert’s primitives, i.e., both assume that the controlled degree
of freedom is connected to a specific spring damper system; however, the approach presented here allows
overcoming previous limitations by assuming a connected moving target, see Figure 3.2. The resulting
approach is explained in Section 3.2.2.

A further drawback of the Ijspeert motor primitives [Ijspeert et al., 2002a, Schaal et al., 2003, 2007]
is that, when generalizing to new targets, they tend to produce large accelerations early in the move-
ment. Such an acceleration peak may not be well-suited for fast movements and can lead to execution
problems due to physical limitations; Figure 3.4 illustrates this drawback. In Section 3.2.3, we propose a
modification that alleviates this shortcoming.

3.2.1 Discrete Movement Primitives

While the original formulation in [Ijspeert et al., 2002a, Schaal et al., 2003] for discrete dynamical systems
motor primitives used a second-order system to represent the phase z of the movement, this formulation
has proven to be unnecessarily complicated in practice. Since then, it has been simplified and, in [Schaal
et al., 2007], it was shown that a single first order system suffices

Z=—-TQ,z. (3.1
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This canonical system has the time constant T = 1/T where T is the duration of the motor primitive, a
parameter a, which is chosen such that z ~ 0 at T to ensure that the influence of the transformation
function, shown in Equation (3.3), vanishes. Subsequently, the internal state x of a second system is
chosen such that positions q of all degrees of freedom are given by q = x;, the velocities q by q = 7x, = X;
and the accelerations g by q = 7x,. Under these assumptions, the learned dynamics of Ijspeert motor
primitives can be expressed in the following form

X, = Ta, (B (8—%1) —X,) + TAf(2), (3.2)
Xl == TXZ'

This set of differential equations has the same time constant 7 as the canonical system, parameters o,
B, set such that the system is critically damped, a goal parameter g, a transformation function f and an
amplitude matrix A = diag(a,,a,,...,qa,), with the amplitude modifier a = [a;,a,,...,a,]. In [Schaal
et al., 2007], they use a = g — x{ with the initial position x{, which ensures linear scaling. Alternative
choices are possibly better suited for specific tasks, see e.g., [Park et al., 2008]. The transformation
function f(z) alters the output of the first system, in Equation (3.1), so that the second system, in
Equation (3.2), can represent complex nonlinear patterns and it is given by

f(2) :Zi\lzlwi(z)wiz. (3.3)

Here, w; contains the i adjustable parameter of all degrees of freedom, N is the number of parameters
per degree of freedom, and 1;(z) are the corresponding weighting functions [Schaal et al., 2007].
Normalized Gaussian kernels are used as weighting functions given by

exp (_hi (z— Ci)z)

Z;V:l exp (—hj (z - cj)z) .

These weighting functions localize the interaction in phase space using the centers ¢; and widths h;. Note
that the degrees of freedom (DoF) are usually all modeled as independent in Equation (3.2). All DoFs are
synchronous as the dynamical systems for all DoFs start at the same time, have the same duration, and the
shape of the movement is generated using the transformation f(z) in Equation (3.3). This transformation
function is learned as a function of the shared canonical system in Equation (3.1).

One of the biggest advantages of this motor primitive framework [Ijspeert et al., 2002b, Schaal et al.,
2007] is that the second system in Equation (3.2), is linear in the shape parameters 6. Therefore,
these parameters can be obtained efficiently, and the resulting framework is well-suited for imitation
(Section 3.2.4) and reinforcement learning (Chapter 4). Additional feedback terms can be added as
shown in [Schaal et al., 2007, Kober et al., 2008, Park et al., 2008].

Y (z)=

3.4

3.2.2 Adapting the Motor Primitives for Striking Movements

The regular formulation [Ijspeert et al., 2002a, Schaal et al., 2003, 2007] which was reviewed in Section
3.2.1, allows to change the initial position x{ and goal position g (which corresponds to the target, i.e.,
the position at the end of the movement at time T) of the motor primitive while maintaining the overall
shape of the movement determined by the parameters w;. For disturbed initial conditions, the attractor
dynamics that pull the motor primitive to the trained behavior and it is guaranteed to finally reach to
the goal position g, see [Ijspeert et al., 2002a]. However, the formulation above only considers the case
of a final goal with a favored velocity of X,(T) = 0 at the goal g and final time T. However, using the
transformation function f(z) in Equation (3.3), it can be forced to arbitrary final velocities by changing the
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Figure 3.3: Target velocity adaptation is essential for striking movements. This figure illustrates how
different versions of the dynamical system based motor primitives are affected by a change
of the target velocity. Here, an artificial training example (i.e., ¢ = 2t% + cos(4tm) — 1)
is generated. After learning, all motor primitive formulations manage to reproduce the
movements accurately from the training example for the same target velocity and cannot be
distinguished. When the target velocity is tripled, this picture changes drastically. For ljspeert’s
original model the amplitude modifier a had to be increased to yield the desired velocity. The
increased amplitude of the trajectory is clearly visible for the positions and even more drastic
for the velocities and accelerations. The reformulations presented in this paper, stay closer
to the movement shape and amplitude. Particularly the velocities and accelerations exhibit
that the new approach allows much better generalizing of the learned behavior. This figure
furthermore demonstrates how a large initial step in acceleration appears for ljspeert’s original
model (and the reformulation for hitting) even if a transformation function is used to partially
suppress it for the training example.

shape parameters of the movement. As the last basis function in the transformation function f(z) decays
almost to zero at time T the active parameters, the last parameter wy needs to be over-proportionally
large. If the motor primitive is trained with X;(T) = 0 it simply rests at x; = g if it runs for longer than T.
However, large wy often cause overshooting in x; and the trajectory is subsequently pulled back to the
final position g only using the linear attractor dynamics in Equation (3.2) which may not be suitable for a
given task. The goal velocity X;(T) can only be changed either by scaling the duration of the movement T
or with the amplitude modifier a; however a mapping of g and x;(T) to a has to be established first. The
main downsides of these approaches, respectively, are that either the total duration is changed (which
makes the interception of a table tennis ball hard) or that a modifies the whole motion including shape
and amplitude (which causes undesired movements and often requires overly strenuous movements in
table tennis). These effects are illustrated in Figure 3.3. Note, if the goal is constantly adapted as in table
tennis (where the ball trajectory is not certain until the ball has bounced on the table the last time), these
effects will produce significantly stronger undesired effects and, possibly, unstable behavior.

As an alternative for striking movements, we propose a modification of the dynamical system based
motor primitives that allows us to directly specify the desired x;(T) while maintaining the duration of the
movement and having the possibility to change the amplitude of the motion independently. For doing so,
we introduce a moving goal and include the desired final velocity in Equation (3.2). We use a linearly
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Figure 3.4: An important aspect of the ljspeert framework is that such primitives are guaranteed to be
stable and, hence, safe for learning. A problem of the regular formulation highly unevenly dis-
tributed acceleration with a jump at the beginning of the movement of its unaltered dynamics.
These high accelerations affect the movement when the behavior is either generalized to new
goals or when during trial-and-error learning where the initial parameters are small. Some of
these problem have previously been noted by Park et al. [2008], and are particularly bad in the
context of fast striking movements. Here, we compare the different formulations with respect
to their acceleration in the unaltered dynamics case (i.e., w = 0). For a better comparison, we
set the goal velocity to zero (g = 0). The ljspeert formulation clearly shows the problem with
the large acceleration, as does the reformulation for hitting (with a hitting speed of g = 0 both
are identical). While the Park modification starts without the jump in acceleration, it requires
almost as high accelerations shortly afterwards. The acceleration-safe reformulation for hitting
also starts out without a step in acceleration and does not require huge accelerations.

moving goal but other choices may be better suited for different tasks. This reformulation results in the
following equations for the learned dynamics

5 — %
X, = T, (ﬁg (8gn— %) + g) + TAf, (3.5)
Xl = TXz,
In(2)
g =8 —g——, (3.6)

TAapy

where g is the desired final velocity, g,, is the moving goal and the initial position of the moving goal
g’ =g—7g ensures that g, (T) = g. The term —1In(z)/ (tay) is proportional to the time if the canonical
system in Equation (3.1) runs unaltered; however, adaptation of z allows the straightforward adaptation
of the hitting time. If § = 0, this formulation is exactly the same as the original formulation. The imitation
learning approach mentioned in Section 3.2.1 can be adapted straightforwardly to this formulation.
Figure 3.3 illustrates how the different approaches behave when forced to achieve a specified desired

final velocity.

3.2.3 Safer Dynamics for Generalization

Generalizing fast movements such as a forehand in table tennis can become highly dangerous if the
primitive requires exceedingly high accelerations or has large jumps in the acceleration (e.g., the fastest
table tennis moves that we have executed on our WAM had a peak velocity of 7m/s and 10g maximum
acceleration). Hence, the initial jump in acceleration often observed during the execution of the Ijspeert
primitives may lead to desired accelerations that a physical robot cannot properly execute, and may even
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cause damage to the robot system. In the following, we will discuss several sources of these acceleration
jumps and how to overcome them. If the dynamics are not altered by the transformation function,
i.e., w =0, the highest acceleration during the original Ijspeert motor primitive occurs at the very first
time-step and then decays rapidly. If the motor primitives are properly initialized by imitation learning,
the transformation function will cancel this initial acceleration, and, thus, this usually does not pose a
problem in the absence of generalization. However, when changing the amplitude a of the motion (e.g.,
in order to achieve a specific goal velocity) the transformation function will over- or undercompensate
for this initial acceleration jump. The adaptation proposed in Section 3.2.2 does not require a change in
amplitude, but suffers from a related shortcoming, i.e., changing the goal velocity also changes the initial
position of the goal, thus results in a similar jump in acceleration that needs to be compensated. Using the
motor primitives with an initial velocity that differs from the one used during imitation learning has the
same effect. Figures 3.3 and 3.4 illustrate these initial steps in acceleration for various motor primitive
formulations. As an alternative, we propose to gradually activate the attractor dynamics of the motor
primitive (e.g., by reweighting them using the output of the canonical system). When combined, these
two adaptations result in

. (8—%)
X, =(1—2z)7a, ([a’g (8n —%1) +T) + TAf. (3.7)
Surprisingly, after this modification the unaltered dynamics (i.e., where w = 0 and, hence, TAf(z) = 0)
result in trajectories that roughly resemble a minimum jerk movements and, hence, look very similar
to human movements. Exactly as for the Ijspeert formulation, we can arbitrarily shape the behavior by
learning the weights of the transformation function. Note that [Park et al., 2008] also introduced a similar
modification canceling the initial acceleration caused by the offset between initial and goal position;
however, their approach cannot deal with a deviating initial velocity.

The proposed acceleration jump compensation also yields smoother movements during the adaptation
of the hitting point as well as smoother transitions if motor primitives are sequenced. The later becomes
particularly important when the preceding motor primitive has a significantly different velocity than
during training (by imitation learning) or if it is terminated early due to external events. All presented
modifications are compatible with the imitation learning approach discussed in Section 3.2.1 and the
adaptation is straightforward. Figures 3.3 and 3.4 show how the presented modifications overcome the
problems with the initial jumps in acceleration.

3.2.4 Imitation Learning

In the following chapters we use imitation learning from a single example to generate a sensible initial
policy. This step can be performed efficiently in the context of dynamical systems motor primitives in both
the original and adapted forms, as the transformation function Equation (3.3) is linear in its parameters.
As a result, we can choose the weighted squared error (WSE)

WSE, = X, (£ - %,0")" (3.8)

as cost function and minimize it for all parameter vectors 8" with n € {1,2,...,N}. Here, the corre-
sponding weighting functions are denoted by v} and the basis function by z,. The reference or target
signal ft“’f is the desired transformation function and t indicates the time-step of the sample. The error in
Equation (3.8) can be rewritten in matrix form as

WSE, = (£~ 26") ¥ (£~ zo")
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with £¢f containing the values of ft“’f for all time-steps t, ¥ = diag (1/)”, R ,1/)’}), and [Z], = z,.
As a result, we have a standard locally-weighted linear regression problem that is straightforward to solve
and yields the unbiased parameter estimator

0" = (z'wz) " Z'wf.
This approach was originally suggested for imitation learning by Ijspeert et al. [2002a]. Estimating the

parameters of the dynamical system is slightly more difficult; the duration of the movement is extracted
using motion detection and the time-constant is set accordingly.

3.3 Robot Evaluation

In this section, we evaluate the presented reactive templates for representing, learning and executing
forehands in the setting of table tennis. For doing so, we evaluate our representation for striking
movements first on hitting a hanging ball in Section 3.3.1 and, subsequently, in the task of returning a
ball served by a ball launcher presented in Section 3.3.2.

When hitting a ping-pong ball that is hanging from the ceiling, the task consists of hitting the ball
with an appropriate desired Cartesian velocity and orientation of the paddle. Hitting a ping-pong ball
shot by a ball launcher requires predicting the ball’s future positions and velocities in order to choose an
interception point. The latter is only sufficiently accurate after the ball has hit the table for the last time.
This short reaction time underlines that the movement templates can be adapted during the trajectory
under strict time limitations when there is no recovery from a bad generalization, long replanning or
inaccurate movements.

3.3.1 Generalizing Forehands on Static Targets

As a first experiment, we evaluated how well this new formulation of hitting primitives generalizes
forehand movements learned from imitation as shown in Figure 3.6 (a). First, we collected arm, racket
and ball trajectories for imitation learning using the 7 DoF Barrett WAM robot as an haptic input device
for kinesthetic teach-in where all inertial forces and gravity were compensated. In the second step, we
employ this data to automatically extract the duration of the striking movement, the duration of the
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Figure 3.5: This figure demonstrates the generalization of an imitated behavior to a different target that
is 15cm away from the original target. Note that this trajectory is for a static target, hence the
slow motion. The depicted degree of freedom (DoF) is shoulder adduction-abduction (i.e., the
second DoF). The solid gray bars indicate the time before and after the main movement, the
gray dashed lines indicate the phase borders also depicted in Figure 3.1 and the target is hit at
the second border.
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) e

(¢) Application: Returning Balls launched by a Ball Gun

Figure 3.6: This figure presents a hitting sequence from the demonstration, a generalization on the robot
with a ball attached by a string as well as a generalization hitting a ball shot by a ping-pong
ball launcher. The demonstration and the flying ball generalization are captured by a 25Hz
video camera, the generalization with the attached ball is captured with 200Hz through our
vision system. From left to right the stills represent: rest posture, swing-back posture, hitting
point, swing-through and rest posture. The postures (D-®) are the same as in Figure 3.2.

individual phases as well as the Cartesian target velocity and orientation of the racket when hitting the
ball. We employ a model (as shown in Section 3.2) that has phases for swinging back, hitting and going
to a rest posture. Both the phase for swing-back and return-to-home phases will go into intermediary still
phases while the hitting phase goes through a target point with a pre-specified target velocity. All phases
can only be safely executed due to the “safer dynamics” which we introduced in Section 3.2.3.

In this experiment, the ball is a stationary target and detected by a stereo camera setup. Subsequently;,
the supervisory level proposed in [Miilling and Peters, 2009] determines the hitting point and the striking
velocity in configuration space. The motor primitives are adjusted accordingly and executed on the robot in
joint-space using an inverse dynamics control law. The robot successfully hits the ball at different positions
within a diameter of approximately 1.2m if kinematically feasible. The adaptation for striking movements
achieves the desired velocities and the safer dynamics allow generalization to a much larger area while
successfully removing the possibly large accelerations at the transitions between motor primitives. See
Figure 3.5 for a comparison of the training example and the generalized motion for one degree of freedom
and Figure 3.6 (b) for a few frames from a hit of a static ball.

3.3.2 Playing against a Ball Launcher

This evaluation adds an additional layer of complexity as the hitting point and the hitting time has to be
estimated from the trajectory of the ball and continuously adapted as the hitting point cannot be reliably
determined until the ball has bounced off the table for the last time. In this setting, the ball is tracked by
two overlapping high speed stereo vision setups with 200Hz cameras. In order to obtain better estimates
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Figure 3.7: Generalization to various targets (five different forehands at posture ®) are shown approxi-
mately when hitting the ball.

of the current position and to calculate the velocities, the raw 3D positions are filtered by a specialized
Kalman filter [Kalman, 1960] that takes contacts of the ball with the table and the racket into account
[Miilling and Peters, 2009]. When used as a Kalman predictor, we can again determine the target point for
the primitive with a pre-specified target velocity with the method described in [Miilling and Peters, 2009].
The results obtained for the still ball generalize well from the static ball to the one launched by a ball
launcher at 3m/s which are returned at speeds up to 8m/s. A sequence of frames from the attached video
is shown in Figure 3.6. The plane of possible virtual hitting points again has a diameter of roughly 1m as
shown in Figure 3.7. The modified motor primitives generated movements with the desired hitting position
and velocity. The robot hit the ball in the air in approx. 95% of the trials. However, due to a simplistic
ball model and execution inaccuracies the ball was often not properly returned on the table. Please see
the videos accompanying this chapter http://www.robot-learning.de/Research/HittingMPs.

Note that our results differ significantly from previous approaches as we use a framework that allows
us to learn striking movements from human demonstrations unlike previous work in batting [Senoo et al.,
2006] and table tennis [Andersson, 1988]. Unlike baseball which only requires four degrees of freedom
(as, e.g., in [Senoo et al., 2006] who used a 4 DoF WAM arm in a manually coded high speed setting), and
previous work in table tennis (which had only low-inertia, was overpowered and had mostly prismatic
joints [Andersson, 1988, Féssler et al., 1990, Matsushima et al., 2005]), we use a full seven degrees of
freedom revolutionary joint robot and, thus, have to deal with larger inertia as the wrist adds roughly
2.5kg weight at the elbow. Hence, it was essential to train trajectories by imitation learning that distribute
the torques well over the redundant joints as the human teacher was suffering from the same constraints.

3.4 Conclusion

In this paper, we rethink previous work on dynamic systems motor primitive [Ijspeert et al., 2002a, Schaal
et al., 2003, 2007] in order to obtain movement templates that can be used reactively in batting and
hitting sports. This reformulation allows to change the target velocity of the movement while maintaining
the overall duration and shape. Furthermore, we present a modification that overcomes the problem of an
initial acceleration step which is particularly important for safe generalization of learned movements. Our
adaptations retain the advantages of the original formulation and perform well in practice. We evaluate
this novel motor primitive formulation first in hitting a stationary table tennis ball and, subsequently, in
returning ball served by a ping pong ball launcher. In both cases, the novel motor primitives manage to
generalize well while maintaining the features of the demonstration. This new formulation of the motor
primitives can hopefully be used together with meta-parameter leraning (Chapter 5) in a mixture of motor
primitives [Miilling et al., 2010] in order to create a complete framework for learning tasks like table
tennis autonomously.
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4 Policy Search for Motor Primitives in Robotics

Many motor skills in humanoid robotics can be learned using parametrized motor primitives. While
successful applications to date have been achieved with imitation learning, most of the interesting motor
learning problems are high-dimensional reinforcement learning problems. These problems are often
beyond the reach of current reinforcement learning methods. In this chapter, we study parametrized
policy search methods and apply these to benchmark problems of motor primitive learning in robotics. We
show that many well-known parametrized policy search methods can be derived from a general, common
framework. This framework yields both policy gradient methods and expectation-maximization (EM)
inspired algorithms. We introduce a novel EM-inspired algorithm for policy learning that is particularly
well-suited for dynamical system motor primitives. We compare this algorithm, both in simulation and on
a real robot, to several well-known parametrized policy search methods such as episodic REINFORCE,
‘Vanilla’ Policy Gradients with optimal baselines, episodic Natural Actor Critic, and episodic Reward-
Weighted Regression. We show that the proposed method out-performs them on an empirical benchmark
of learning dynamical system motor primitives both in simulation and on a real robot. We apply it in the
context of motor learning and show that it can learn a complex Ball-in-a-Cup task on a real Barrett WAM
robot arm.

4.1 Introduction

To date, most robots are still taught by a skilled human operator either via direct programming or
a teach-in. Learning approaches for automatic task acquisition and refinement would be a key step
for making robots progress towards autonomous behavior. Although imitation learning can make this
task more straightforward, it will always be limited by the observed demonstrations. For many motor
learning tasks, skill transfer by imitation learning is prohibitively hard given that the human teacher is
not capable of conveying sufficient task knowledge in the demonstration. In such cases, reinforcement
learning is often an alternative to a teacher’s presentation, or a means of improving upon it. In the high-
dimensional domain of anthropomorphic robotics with its continuous states and actions, reinforcement
learning suffers particularly from the curse of dimensionality. However, by using a task-appropriate policy
representation and encoding prior knowledge into the system by imitation learning, local reinforcement
learning approaches are capable of dealing with the problems of this domain. Policy search (also known
as policy learning) is particularly well-suited in this context, as it allows the usage of domain-appropriate
pre-structured policies [Toussaint and Goerick, 2007], the straightforward integration of a teacher’s
presentation [Guenter et al., 2007, Peters and Schaal, 2006] as well as fast online learning [Bagnell
et al., 2004, Ng and Jordan, 2000, Hoffman et al., 2007]. Recently, policy search has become an accepted
alternative of value-function-based reinforcement learning [Bagnell et al., 2004, Strens and Moore,
2001, Kwee et al., 2001, Peshkin, 2001, El-Fakdi et al., 2006, Taylor et al., 2007] due to many of these
advantages.

In this chapter, we will introduce a policy search framework for episodic reinforcement learning and
show how it relates to policy gradient methods [Williams, 1992, Sutton et al., 1999, Lawrence et al.,
2003, Tedrake et al., 2004, Peters and Schaal, 2006] as well as expectation-maximization (EM) inspired
algorithms [Dayan and Hinton, 1997, Peters and Schaal, 2007]. This framework allows us to re-derive or
to generalize well-known approaches such as episodic REINFORCE [Williams, 1992], the policy gradient
theorem [Sutton et al., 1999, Peters and Schaal, 2006], the episodic Natural Actor Critic [Peters et al.,
2003, 2005], and an episodic generalization of the Reward-Weighted Regression [Peters and Schaal,
2007]. We derive a new algorithm called Policy Learning by Weighting Exploration with the Returns
(POWER), which is particularly well-suited for the learning of trial-based tasks in motor control.
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We evaluate the algorithms derived from this framework to determine how they can be used for refining
parametrized policies in robot skill learning. To address this problem, we follow a methodology suitable
for robotics where the policy is first initialized by imitation learning and, subsequently, the policy search
algorithm is used for self-improvement. As a result, we need a suitable representation in order to apply
this approach in anthropomorphic robot systems. In imitation learning, a particular kind of motor control
policy has been very successful, which is known as dynamical system motor primitives [Ijspeert et al.,
2002a,b, Schaal et al., 2003, 2007]. In this approach, dynamical systems are used to encode a control
policy suitable for motor tasks. The representation is linear in the parameters; hence, it can be learned
straightforwardly from demonstrations. Such dynamical system motor primitives can represent both
point-to-point and rhythmic behaviors. We focus on the point-to-point variant which is suitable for
representing single-stroke, episodic behaviors. As a result, they are particularly well-suited for episodic
policy search.

We show that all presented algorithms work sufficiently well when employed in the context of learning
dynamical system motor primitives in different benchmark and application settings. We compare these
methods on the two benchmark problems from [Peters and Schaal, 2006] for dynamical system motor
primitives learning, the Underactuated Swing-Up [Atkeson, 1994] robotic benchmark problem, and
the Casting task. Using entirely different parametrizations, we evaluate policy search methods on the
mountain-car benchmark [Sutton and Barto, 1998] and the Tetherball Target Hitting task. On the
mountain-car benchmark, we additionally compare to a value function based approach. The method with
the best performance, POWER, is evaluated on the complex task of Ball-in-a-Cup [Sumners, 1997]. Both
the Underactuated Swing-Up as well as Ball-in-a-Cup are achieved on a real Barrett WAM robot arm. Please
also refer to the videos at http://www.robot-learning.de/Research/ReinforcementLearning. For all
real robot experiments, the presented movement is learned by imitation from a kinesthetic demonstration,
and the Barrett WAM robot arm subsequently improves its behavior by reinforcement learning.

4.2 Policy Search for Parametrized Motor Primitives

Our goal is to find reinforcement learning techniques that can be applied in robotics in the context of
learning high-dimensional motor control tasks. We first introduce the required notation for the derivation
of the reinforcement learning framework in Section 4.2.1. We discuss the problem in the general setting
of reinforcement learning using a generalization of the approach in [Dayan and Hinton, 1997, Attias,
2003, Peters and Schaal, 2007]. We extend the existing approach to episodic reinforcement learning for
continuous states, in a manner suitable for robotics.

We derive a new expectation-maximization (EM) inspired algorithm [Dempster et al., 1977] called
Policy Learning by Weighting Exploration with the Returns (POWER) in Section 4.2.3 and show how the
general framework is related to policy gradient methods and the Reward-Weighted Regression method in
Section 4.2.2.

4.2.1 Problem Statement & Notation

In this chapter, we treat motor primitive learning problems in the framework of reinforcement learning
[Sutton and Barto, 1998] with a strong focus on the episodic case. At time t, there is an actor in a state
s, that chooses an action a, according to a stochastic policy n(a,|s;,t). Such a policy is a probability
distribution over actions given the current state and time. The stochastic formulation allows a natural
incorporation of exploration, and the optimal time-invariant policy has been shown to be stochastic in
the case of hidden state variables [Sutton et al., 1999, Jaakkola et al., 1993]. Upon the completion of
the action, the actor transfers to a state s,,; and receives a reward r,. As we are interested in learning
complex motor tasks consisting of a single stroke [Schaal et al., 2007], we focus on finite horizons of
length T with episodic restarts and learn the optimal parametrized, stochastic policy for such episodic
reinforcement learning problems [Sutton and Barto, 1998]. We assume an explorative parametrized
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policy 7 with parameters § € R". In Section 4.3.1, we discuss how the dynamical system motor primitives
[Ijspeert et al., 2002a,b, Schaal et al., 2003, 2007] can be employed in this setting. In this section, we will
keep most derivations sufficiently general such that they are transferable to various other parametrized
policies that are linear in the parameters.

The general goal in reinforcement learning is to optimize the expected return of the policy © with
parameters 6 defined by

J(8) = [,pe(v)R(x)dT,

where T is the set of all possible paths. A rollout T = [s;.7,1,;.7], also called path, episode or trial,
denotes a series of states s;.;.; = [S;,89,...,S741] and actions a,.; = [a;,a,,...,ar]. The probability
of rollout 7 is denoted by py(7), while R(7) refers to its aggregated return. Using the standard Markov
assumption and additive accumulated rewards, we can write

pe(v) = p(s)I1i_,p(sesilse,a)m(a,ls,, o), 4.1)
R(t) = T_lzzzlr(st,at,stﬂ,t),

where p(s;) denotes the initial state distribution, p(s,,;|s;,a,) the next state distribution conditioned on
the last state and action, and r(s,,a,,s;,;,t) denotes the immediate reward.

While episodic Reinforcement Learning (RL) problems with finite horizons are common in both human
Waulf [2007] and robot motor control problems, few methods exist in the RL literature. Examples are
episodic REINFORCE [Williams, 1992], the episodic Natural Actor Critic eNAC [Peters et al., 2003, 2005]
and model-based methods using differential dynamic programming [Atkeson, 1994].

4.2.2 Episodic Policy Learning

In this section, we discuss episodic reinforcement learning in policy space, which we will refer to as
Episodic Policy Learning. We first discuss the lower bound on the expected return as suggested in [Dayan
and Hinton, 1997] for guaranteeing that policy update steps are improvements. In [Dayan and Hinton,
1997, Peters and Schaal, 2007] only the immediate reward case is discussed; we extend this framework
to episodic reinforcement learning. Subsequently, we derive a general update rule, which yields the policy
gradient theorem [Sutton et al., 1999], a generalization of the reward-weighted regression [Peters and
Schaal, 2007], as well as the novel Policy learning by Weighting Exploration with the Returns (PoOWER)
algorithm.

Bounds on Policy Improvements

Unlike in reinforcement learning, other branches of machine learning have focused on maximizing lower
bounds on the cost functions, which often results in expectation-maximization (EM) algorithms [McLachan
and Krishnan, 1997]. The reasons for this preference also apply in policy learning: if the lower bound
also becomes an equality for the sampling policy, we can guarantee that the policy will be improved by
maximizing the lower bound. Results from supervised learning can be transferred with ease. First, we
generalize the scenario suggested by Dayan and Hinton [1997] to the episodic case. Here, we generate
rollouts 7T using the current policy with parameters @, which we then weight with the returns R(7), and
subsequently match it with a new policy parametrized by 6. This matching of the success-weighted path
distribution is equivalent to minimizing the Kullback-Leibler divergence D(pg(7)R(7)||pe/(7)) between
the new path distribution p4/ (7) and the reward-weighted previous one py (7)R (7). The Kullback-Leibler
divergence is considered a natural distance measure between probability distributions [Bagnell and
Schneider, 2003, van der Maaten et al., 2009]. As shown in [Dayan and Hinton, 1997, Peters and Schaal,
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2007], such a derivation results in a lower bound on the expected return using Jensen’s inequality and
the concavity of the logarithm. Thus, we obtain

po (7)
Pe(f)

d7 + const,

logJ(6") = log / Py (VR(x)d7 = log / po (V)R(%)d,

pe’ (7)

po (7)

> /Tpg (7)R(7)log

which is proportional to
—D (pg (T)R(7) lIpe (7)) = Lg(0),

where
p(7)

1"

D (p(®)llg(%)) =/p(ﬂ:)log

denotes the Kullback-Leibler divergence, and the constant is needed for tightness of the bound. Note
that py (7)R(7) is an improper probability distribution as pointed out by Dayan and Hinton [1997]. The
policy improvement step is equivalent to maximizing the lower bound on the expected return Ly(0"), and
we will now show how it relates to previous policy learning methods.

Resulting Policy Updates

In this section, we will discuss three different policy updates, which are directly derived from the results
of Section 4.2.2. First, we show that policy gradients [Williams, 1992, Sutton et al., 1999, Lawrence et al.,
2003, Tedrake et al., 2004, Peters and Schaal, 2006] can be derived from the lower bound Ly(80"), which
is straightforward from a supervised learning perspective [Binder et al., 1997]. Subsequently, we show
that natural policy gradients [Bagnell and Schneider, 2003, Peters and Schaal, 2006] can be seen as an
additional constraint regularizing the change in the path distribution resulting from a policy update when
improving the policy incrementally. Finally, we will show how expectation-maximization (EM) algorithms
for policy learning can be generated.

Policy Gradients.
When differentiating the function Ly(0’) that defines the lower bound on the expected return, we
directly obtain

3Lo(8") = Jypo(TIR(T)3y logpe ()dw = E {(X1_, 8 log nlarls,, O)R(D},  4.2)

where
99/ 1ogpy: (7) = Y;_, 09/ log 7 (a,s,, t)

denotes the log-derivative of the path distribution. As this log-derivative depends only on the policy we
can estimate a gradient from rollouts, without having a model, by simply replacing the expectation by a
sum. When 6’ is close to 8, we have the policy gradient estimator, which is widely known as episodic
REINFORCE [Williams, 1992]

limg/_,o 39/L9(0/) = 30.](0)
See Algorithm 4.1 for an example implementation of this algorithm and Appendix 4.A.1 for the detailed

steps of the derivation. A MATLAB implementation of this algorithm is available at http://www.robot-
learning.de/Member/JensKober.
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Algorithm 4.1 ‘Vanilla’ Policy Gradients (VPG)
Input: initial policy parameters 6,

repeat
Sample: Perform h = {1,...,H} rollouts using a=0"¢(s,t) + ¢, with [ef] ~ (0, (0™)?) as
stochastic policy and collect all (t, s’tl, a’t‘, s}t’H, £/, t+1) fort =1{1,2,..., T +1}.

Compute: Return R" = ZtT L T eligibility

= dlogp (rh) =XT: dlogm (aﬂs?,t) ZT: gh” o t)

aon aon

t=1 t=1 (
and baseline
2
2521 (wh,n) Rh
H 2
thl (wh’n)

for each parameter n = {1,...,N} from rollouts.

n __

Compute Gradient:

. dlogp(zh) n ul .
e I COROI S WS
h=1
Update policy using

041 =0+ agyp.

until Convergence 0, ~ 0.
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Algorithm 4.2 episodic Natural Actor Critic (eNAC)

Input: initial policy parameters 6,
repeat
Sample: Perform h = {1,...,H} rollouts using a = 0 ¢ (s, t) + £, with [ef] ~ H(0,(o™™)?) as

stochastic policy and collect all (t, s’;, a’:, S}tl+1, e}tl, riﬂrl) fort=1{1,2,...,T +1}.

T+1
Compute: Return R* = Y/ "/

n=1{1,...,N} from rollouts.

r and eligibility y"" = ZZZI(OZ “2ghnpn(shn t) for each parameter

Compute Gradient:

T T_ (oTe) 1T

[giuac-Reet] = (¥7®) ¥R

1 H T
with R = [Rl,...,RH]T and ¥ = Voo where Y = [wh’l,...,wh’N]T.

1,...,1
Update policy using

011 =04 + aBenac-

until Convergence 6, ~ 0.

A reward, which precedes an action in a rollout, can neither be caused by the action nor cause an
action in the same rollout. Thus, when inserting Equation (4.1) into Equation (4.2), all cross-products
between r, and Jy/ log m(a,;5.|S;45¢> t + 6t) for 6t > 0 become zero in expectation [Peters and Schaal,
2006]. Therefore, we can omit these terms and rewrite the estimator as

Og'Lg (0)=E {2;8@/ log 7t (a,|s,, t) Q" (s, a, t)} , 4.3)

where

T -
Q™ (s,a,t)=E {Zf:tr (s;,az,Sp1, 1) s, =s,a, = a}

is called the state-action value function [Sutton and Barto, 1998]. Equation (4.3) is equivalent to the policy
gradient theorem [Sutton et al., 1999] for #’ — 0 in the infinite horizon case, where the dependence on
time t can be dropped.

The derivation results in the episodic Natural Actor Critic as discussed in [Peters et al., 2003, 2005]
when adding an additional cost in Equation (4.2) to penalize large steps away from the observed
path distribution. Such a regularization can be achieved by restricting the amount of change in the
path distribution and subsequently, determining the steepest descent for a fixed step away from the
observed trajectories. Change in probability distributions is naturally measured using the Kullback-Leibler
divergence, thus after adding the additional constraint of

D (pg (%) |lper (7)) ~0.5(6"—0) ' F(0)(0'—0) =6

using a second-order expansion as an approximation where F(#) denotes the Fisher information matrix
[Bagnell and Schneider, 2003, Peters et al., 2003, 2005]. See Algorithm 4.2 for an example implementation
of the episodic Natural Actor Critic. A MATLAB implementation of this algorithm is available at http:
//www.robot-learning.de/Member/JensKober.

Policy Search via Expectation Maximization.
One major drawback of gradient-based approaches is the learning rate, which is an open parameter that
can be hard to tune in control problems but is essential for good performance. Expectation-Maximization
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algorithms are well-known to avoid this problem in supervised learning while even yielding faster
convergence [McLachan and Krishnan, 1997]. Previously, similar ideas have been explored in immediate
reinforcement learning [Dayan and Hinton, 1997, Peters and Schaal, 2007]. In general, an EM-algorithm
chooses the next policy parameters 0, ; such that

0, =argmaxy Lo (0").

In the case where 7(a,|s,,t) belongs to the exponential family, the next policy can be determined
analytically by setting Equation (4.2) or Equation (4.3) to zero

E {2;189/ log 7t (a,|s,, t) Q(s, a, t)} =0, 4.4

and solving for 6’. Depending on the choice of stochastic policy, we will obtain different solutions and
different learning algorithms. It allows the extension of the reward-weighted regression to longer horizons
as well as the introduction of the Policy learning by Weighting Exploration with the Returns (PoOWER)
algorithm.

4.2.3 Policy learning by Weighting Exploration with the Returns (POWER)

In most learning control problems, we attempt to have a deterministic mean policy a = 0" ¢ (s, t) with
parameters 6 and basis functions ¢. In Section 4.3.1, we will introduce a particular type of basis function
well-suited for robotics. These basis functions derive from the motor primitive formulation. Given such a
deterministic mean policy a = 8" ¢ (s, t), we generate a stochastic policy using additive exploration &(s, t)
in order to make model-free reinforcement learning possible. We have a policy n(a,|s,, t) that can be
brought into the form

a=0"¢(s,t)+e(p(st)).

Previous work in this setting [Williams, 1992, Guenter et al., 2007, Peters and Schaal, 2006, 2007], with
the notable exception of [Riickstiel? et al., 2008], has focused on state-independent, white Gaussian explo-
ration, namely e(¢ (s, t)) ~ A(€]0, X). It is straightforward to obtain the Reward-Weighted Regression
for episodic RL by solving Equation (4.4) for ', which naturally yields a weighted regression method with
the state-action values Q" (s, a, t) as weights. See Algorithm 4.3 for an exemplary implementation and
Appendix 4.A.2 for the derivation. An optimized MATLAB implementation of this algorithm is available at
http://www.robot-learning.de/Member/JensKober. This form of exploration has resulted in various
applications in robotics such as T-Ball batting [Peters and Schaal, 2006], Peg-In-Hole [Gullapalli et al.,
1994], constrained reaching movements [Guenter et al., 2007] and operational space control [Peters and
Schaal, 2007].

However, such unstructured exploration at every step has several disadvantages: (i) it causes a large
variance in parameter updates that grows with the number of time-steps [Riickstief3 et al., 2008, Peters
and Schaal, 2006], (ii) it perturbs actions too frequently as the system acts as a low pass filter, and the
perturbations average out, thus their effect is washed out, and (iii) it can damage the system executing
the trajectory. As the action is perturbed in every time-step the outcome of a trial can change drastically.
This effect accumulates with the number of trials and the exploration is not equal over the progress of
the trial. This behavior leads to a large variance in parameter updates. Random exploration in every
time-step leads to jumps in the actions. A physical robot can not execute instantaneous changes in actions
as either the controller needs time to react or the motor and the links of the robot have inertia that forces
the robot to continue the motion induced by the previous actions. Globally speaking, the system acts as
a low pass filter. If the robot tries to follow the desired high frequency action changes, a lot of strain is
placed on the mechanics of the robot and can lead to oscillations. Furthermore, the accumulating effect
of the exploration can lead the robot far from previously seen states, which is potentially dangerous.
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Algorithm 4.3 episodic Reward Weighted Regression (eRWR)

Input: initial policy parameters 6,
repeat
Sample: Perform h = {1,...,H} rollouts using a = 0 ¢ (s, t) + £, with [ef] ~ H(0,(o™™)?) as

stochastic policy and collect all (t, s’;, a’:, S}tl+1, e}tl, riﬂrl) fort=1{1,2,...,T +1}.

. . T
Compute: State-action value function Qf’h = ZE: .

r? from rollouts.
Update policy using
0"  — ((q)n)T an)n)_l (‘_I)n)T QnAn

k+1 —

with basis functions

" — 1,n 1n 4 2n H,n HnT
-_ 1 P T’ 1 P 1 PN T F)

where ¢’:’” is the value of the basis function of rollout h and parameter n at time t,
actions

n__ 1,n 1,n _2n H,n H,n T
A" = [al P o e ¢ N« S b ] s

and returns
. m,1 m,1 ,2 n,H n,H
Q" =diag (Q",...,Q7",QT%,....QT",...,Q}")

until Convergence 0, ~ 0.

As a result, all methods relying on this state-independent exploration have proven too fragile for learning
tasks such as the Ball-in-a-Cup (see Section 4.3.7) on a real robot system. Alternatively, as introduced in
[Riickstiel3 et al., 2008], one could generate a form of structured, state-dependent exploration. We use

e(p(s,t)) =¢/p(s,t)

with g, ~ A4(0,%), where ¥ is a hyper-parameter of the exploration that can be optimized in a similar
manner (see Appendix 4.A.3). This argument results in the policy

a~m(als,t) =A (a0 (s,t),¢(s,t)'Te(s,1)).

Inserting the resulting policy into Equation (4.4), we obtain the optimality condition update and can
derive the update rule

0 =0+E {ZLW(& Q" (s,a, t)}_l E {ZLW(& 0eQ” (5,20}

with W(s, t) = ¢ (s, t)@(s, ) (¢(s, ) TP(s, t)) L.

In order to reduce the number of rollouts in this on-policy scenario, we reuse the rollouts through
importance sampling as described, in the context of reinforcement learning, in [Andrieu et al., 2003,
Sutton and Barto, 1998]. The expectations E{-} are replaced by the importance sampler denoted by
{()w(z)- To avoid the fragility sometimes resulting from importance sampling in reinforcement learning,
samples with very small importance weights are discarded. This step is necessary as a lot of rollouts
with a low return accumulate mass and can bias the update. A simple heuristic that works well in
practice is to discard all but the j best rollouts, where j is chosen in the same order of magnitude as
the number of parameters N. The derivation is shown in Appendix 4.A.3 and the resulting algorithm
in Algorithm 4.4. Note that for our motor primitives, some simplifications of W are possible. These
and other simplifications are shown in Appendix 4.A.3. A MATLAB implementation of this algorithm in
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Algorithm 4.4 EM Policy learning by Weighting Exploration with the Returns (PoOWER)

Input: initial policy parameters 6,

repeat
Sample: Perform rollout(s) using a = (6 +¢,) ¢ (s, t) with ] ¢ (s,t) ~ A(0, ¢(s, 1) TP (s, t)) as
stochastic policy and collect all (t,s;,a,,S;,1, &, Teqq) for t ={1,2,..., T + 1}.

Estimate: Use unbiased estimate

Q" (s,a, t) = ZET:J (sz,az,Siq, L) -

Reweight: Compute importance weights and reweight rollouts, discard low-importance rollouts.

Update policy using

O =0+ (T W 0Q G.a0) (S W06 (s5a.0)

w( w(7)

with W(s, t) = @(s, )P (s, ) (p(s, t)' 2P (s, t)) 7L

until Convergence 6,,, ~ 0.

several variants is available at http://www.robot-learning.de/Member/JensKober. As we will see in
Section 4.3, this POWER method significantly outperforms all other described methods.

PoWER is very robust with respect to reward functions. The key constraint is that it has to be an
improper probability distribution which means that the rewards have to be positive. It can be beneficial
for learning speed if the reward function sums up to one as a proper probability distribution.

Like most learning algorithms, POWER achieves convergence faster for lower numbers of parameters.
However, as it is an EM-inspired approach, it suffers significantly less from this problem than gradient
based approaches. Including more prior knowledge, either in the parametrization or the initial policy,
leads to faster convergence. As discussed above, changing exploration at every time-step has a number of
disadvantages. Fixing the exploration for the whole episode (if each basis function is only active for a
short time) or using a slowly varying exploration (for example based on random walks) can increase the
performance. All algorithms introduced in this chapter optimize locally and can get stuck in local optima.
An initial policy should be chosen to avoid local optima on the progress towards the desired final solution.

4.3 Benchmark Evaluation and Application in Robotics

In this section, we demonstrate the effectiveness of the algorithms presented in Section 4.2.3 in the
context of motor primitive learning for robotics. We will first give a quick overview of how the motor
primitives [Ijspeert et al., 2002a,b, Schaal et al., 2003, 2007] work and how learning algorithms can be
used to adapt them. Subsequently, we will discuss how we can turn the parametrized motor primitives
[ljspeert et al., 2002a,b, Schaal et al., 2003, 2007] into explorative, stochastic policies [Riickstief3 et al.,
2008]. We show that the novel POWER algorithm outperforms many previous well-known methods,
particularly ‘Vanilla’ Policy Gradients [Williams, 1992, Sutton et al., 1999, Lawrence et al., 2003, Peters
and Schaal, 2006], Finite Difference Gradients [Sehnke et al., 2010, Peters and Schaal, 2006], the episodic
Natural Actor Critic [Peters et al., 2003, 2005], and the generalized Reward-Weighted Regression [Peters
and Schaal, 2007] on the two simulated benchmark problems suggested by Peters and Schaal [2006] and
the Underactuated Swing-Up [Atkeson, 1994]. We compare policy search based algorithms to a value
function based one on the mountain-car benchmark. Additionally, we evaluate policy search methods
on the multidimensional robotic tasks Tetherball Target Hitting and Casting. As a significantly more
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Open Parameters DoF | Rollouts | Policy Platform Algorithms
4.3.2 | 10 (shape) 1 4400 MP simulation | FDG, VPG, eNAC,
eRWR, PoOWER
4.3.3 | 2 (switching) 1 80 bang- simulation | FDG, PoOWER,
bang kKNN-TD(A)
4.3.4 | 6 (positions) 1 200 rhythmic | simulation | FDG, PoOWER
4.3.5 | 10 (goal & shape) 1 200/100 | MP simu/robot | FDG, VPG, eNAC,
eRWR, POWER
4.3.6 | 10 (shape) 2 200 MP simulation | eNAC, POWER
4.3.7 | 217 (shape) 7 100 MP robot PoWER

Table 4.1: Overview of the Experiments: 4.3.2 Basic Motor Learning, 4.3.3 Mountain-Car, 4.3.4 Tetherball
Target Hitting, 4.3.5 Underactuated Swing-Up, 4.3.6 Casting, and 4.3.7 Ball-in-a-Cup

complex motor learning task, we will show how the robot can learn a high-speed Ball-in-a-Cup movement
[Sumners, 1997] with motor primitives for all seven degrees of freedom of our Barrett WAM robot arm.
An overview of the experiments is presented in Table 4.1.

4.3.1 Dynamical Systems Motor Primitives as Stochastic Policies

In the analytically tractable cases, episodic Reinforcement Learning (RL) problems have been studied
deeply in the optimal control community. In this field it is well-known that for a finite horizon prob-
lem, the optimal solution is non-stationary [Kirk, 1970] and, in general, cannot be represented by a
time-independent policy. The motor primitives based on dynamical systems [Ijspeert et al., 2002a,b,
Schaal et al., 2003, 2007] represent a particular type of time-variant policy that has an internal phase,
which corresponds to a clock with additional flexibility (for example, for incorporating coupling effects,
perceptual influences, etc.). Thus, they can represent optimal solutions for finite horizons. We embed this
internal clock or movement phase into our state and from an optimal control perspective have ensured
that the optimal solution can be represented. See Chapter 3 for a more detailed discussion.

One of the biggest advantages of this motor primitive framework [Ijspeert et al., 2002a,b, Schaal et al.,
2003, 2007] is that the second system, in Equation (3.2), is linear in the policy parameters # and is
therefore well-suited for both imitation learning as well as for the presented reinforcement learning
algorithms. For example, if we would have to learn only a motor primitive for a single degree of freedom
q;, then we could use a motor primitive in the form q; = ¢(s)'@ where s = [q;,q;,z] is the state and
where time is implicitly embedded in z. We use the output of g; = ¢(s)'0 = a as the policy mean. The
perturbed accelerations §; = a = a + ¢ are given to the system.

In Sections 4.3.5 and 4.3.7, we use imitation learning from a single example to generate a sensible
initial policy. This step can be performed efficiently in the context of dynamical systems motor primitives
as the policy is linear in its parameters, see Section 3.2.4.

4.3.2 Benchmark Comparison I: Basic Motor Learning Examples

As a benchmark comparison, we follow a previously studied scenario in order to evaluate, which method
is best-suited for our problem class. We perform our evaluations on exactly the same benchmark problems
as in [Peters and Schaal, 2006] and use two tasks commonly studied in motor control literature for
which the analytic solutions are known. The first task is a reaching task, wherein a goal has to be
reached at a certain time, while the used motor commands have to be minimized. The second task is a
reaching task of the same style with an additional via-point. The task is illustrated in Figure 4.1. This
comparison mainly shows the suitability of our algorithm (Algorithm 4.4) and that it outperforms previous
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Figure 4.1: This figure shows the initial and the final trajectories for the two motor control tasks. Both
start at 0 and have to go to 1 with minimal accelerations. From T /2 = 0.75 on the trajectory
has to be as close to 1 as possible. For the passing through task the trajectory additionally has
to pass through p,, = 0.5 at time M = 7/40T indicated by the circle.

methods such as Finite Difference Gradient (FDG) methods [Sehnke et al., 2010, Peters and Schaal,
2006], see Algorithm 4.5, ‘Vanilla’ Policy Gradients (VPG) with optimal baselines [Williams, 1992, Sutton
et al., 1999, Lawrence et al., 2003, Peters and Schaal, 2006], see Algorithm 4.1, the episodic Natural
Actor Critic (eNAC) [Peters et al., 2003, 2005], see Algorithm 4.2, and the new episodic version of the
Reward-Weighted Regression (eRWR) algorithm [Peters and Schaal, 2007], see Algorithm 4.3. MATLAB
implementations of all algorithms are available at http://www.robot-learning.de/Member/JensKober.
For all algorithms except POWER, we used batches to update the policy. A sliding-window based approach
is also possible. For VPG, eNAC, and eRWR a batch size of H = 2N and for FDG a batch size of H =N + 1
are typical. For POWER, we employed an importance sampling based approach, although a batch based
update is also possible.

We consider two standard tasks taken from [Peters and Schaal, 2006], but we use the newer form of the
motor primitives from [Schaal et al., 2007]. The first task is to achieve a goal with a minimum-squared
movement acceleration and a given movement duration, that gives a return of

T/2 T
RW=->air~ > o((e—-2)’+a)
t=0 t=T/2+1

for optimization, where T = 1.5, ¢; = 1/100 is the weight of the transient rewards for the movement
duration T /2, while ¢, = 1000 is the importance of the final reward, extended over the time interval
[T/2+ 1, T] which insures that the goal state g = 1.0 is reached and maintained properly. The initial
state of the motor primitive is always zero in this evaluation.

The second task involves passing through an intermediate point during the trajectory, while minimizing
the squared accelerations, that is, we have a similar return with an additional punishment term for missing
the intermediate point p,, at time M given by

T/2 T
R(r)=—2516i?— Z G ((qt—g)2+éﬁ)—?3 (qm —Pu)’
t=0 t=T/2+1

where ¢; = 1/10000, ¢, = 200, ¢; = 20000. The goal is given by g = 1.0, the intermediate point a value
of py; = 0.5 at time M = 7/40T, and the initial state was zero. This return yields a smooth movement,
which passes through the intermediate point before reaching the goal, even though the optimal solution
is not identical to the analytic solution with hard constraints.
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Figure 4.2: This figure shows the mean performance of all compared methods in two benchmark tasks
averaged over twenty learning runs with the error bars indicating the standard deviation.
Policy learning by Weighting Exploration with the Returns (POWER) clearly outperforms Finite
Difference Gradients (FDG), ‘Vanilla’ Policy Gradients (VPG), the episodic Natural Actor Critic
(eNACQ), and the adapted Reward-Weighted Regression (eRWR) for both tasks. Note that this
plot has logarithmic scales on both axes, thus a unit difference corresponds to an order of
magnitude. The omission of the first twenty rollouts was necessary to cope with the log-log
presentation.

Algorithm 4.5 Finite Difference Gradients (FDG)

Input: initial policy parameters 6,
repeat
Generate policy variations: AQ" ~ U —_np

Abmax] for h=1{1,...,H} rollouts.

min»

Sample: Perform h = {1,...,H} rollouts using a = (0 + AOh)TqS(s, t) as policy and collect all

(t,sf,al,sh el Yfort={1,2,...,T+1}.

T+1 _p

Compute: Return R"(0 + A") = Doy ! from rollouts.

Compute Gradient:
(85, Rer] = (A07AO) ' AGR

T

T
AQ’,...,A0" ] and R = [Rl,...,RH] .

w1thA®=|: 1.1

Update policy using
0111 =0y + agpp.

until Convergence 0, ; ~ 0.
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(@) The tasks consists of driving the un- (b) This figure shows the mean accumulated returns of the meth-
derpowered car to the target on the ods compared on the mountain car benchmark. The results are
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star. standard deviation. Policy learning by Weighting Exploration

with the Returns (PoWER) and Finite Difference Gradients

(FDG) clearly outperform kNN-TD(A). All methods converge

to the optimal solution.

Figure 4.3: This figure shows an illustration of the mountain-car task and the mean accumulated returns
of the compared methods.

All open parameters were manually optimized for each algorithm in order to maximize the performance
while not destabilizing the convergence of the learning process. When applied in the episodic scenario,
Policy learning by Weighting Exploration with the Returns (POWER) clearly outperformed the episodic
Natural Actor Critic (eNAC), ‘Vanilla’ Policy Gradient (VPG), Finite Difference Gradient (FDG), and the
episodic Reward-Weighted Regression (eRWR) for both tasks. The episodic Reward-Weighted Regression
(eRWR) is outperformed by all other algorithms suggesting that this algorithm does not generalize well
from the immediate reward case. While FDG gets stuck on a plateau, both eNAC and VPG converge to the
same good final solution. POWER finds the a slightly better solution while converging noticeably faster.
The results are presented in Figure 4.2.

4.3.3 Benchmark Comparison Il: Mountain-Car

As a typical reinforcement learning benchmark we chose the mountain-car task [Sutton and Barto, 1998]
as it can be treated with episodic reinforcement learning. In this problem we have a car placed in a
valley, and it is supposed to go on the top of the mountain in front of it, but does not have the necessary
capabilities of acceleration to do so directly. Thus, the car has to first drive up the mountain on the
opposite side of the valley to gain sufficient energy. The dynamics are given in [Sutton and Barto, 1998]
as

X1 = X.+0.001la, —0.0025cos (3x,),

Xey1 = Xe+ Xeqa,

with position —1.2 < x,,; < 0.5 and velocity —0.07 < x,,; < 0.07. If the goal x,,; > 0.5 is reached the
episode is terminated. If the left bound is reached the velocity is reset to zero. The initial condition of
the car is x, = —0.5 and X, = 0. The reward is r, = —1 for all time-steps until the car reaches the goal.
We employed an undiscounted return. The set of actions a, is slightly different to the setup proposed
by Sutton and Barto [1998]. We only have two actions, the full throttle forward (a, = +1) and the full
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Figure 4.4: This figure shows an illustration of the Tetherball Target Hitting task and the mean returns of
the compared methods.

throttle reverse (a, = —1). From a classical optimal control point of view, it is straightforward to see that a
bang-bang controller can solve this problem. As an initial policy we chose a policy that accelerates forward
until the car cannot climb the mountain further, accelerates reverse until the car cannot climb the opposite
slope further, and finally accelerates forward until the car reaches the goal. This policy reaches the goal
but is not optimal as the car can still accumulate enough energy if it reverses the direction slightly earlier.
As a parametrization for the policy search approaches we chose to encode the switching points of the
acceleration. The two parameters of the policy indicate at which timestep t the acceleration is reversed.
For this kind of policy only algorithms that perturb the parameters are applicable and we compare a Finite
Difference Gradient approach to POWER. This parametrized policy is entirely different to motor primitives.
Additionally we included a comparison to a value function based method. The Q-function was initialized
with our initial policy. As the kNN-TD(A) algorithm [Martin H. et al., 2009] won the Reinforcement
Learning Competitions in 2008 and 2009, we selected it for this comparison. This comparison is contrived
as our switching policy always starts in a similar initial state while the value function based policy can start
in a wider range of states. Furthermore, the policy search approaches may be sped up by the initialization,
while kNN-TD(A) will learn the optimal policy without prior knowledge and does not benefit much from
the initialization. However, the use of a global approach, such as kKNN-TD(A) requires a global search of
the state space. Such a global search limits the scalability of these approaches. The more local approaches
of policy search are less affected by these scalability problems. Figure 4.3b shows the performance of
these algorithms. As kKNN-TD(A) initially explores the unseen parts of the Q-function, the policy search
approaches converge faster. All methods find the optimal solution.

4.3.4 Benchmark Comparison lll: Tetherball Target Hitting

In this task, a table tennis ball is hanging on an elastic string from the ceiling. The task consists of hitting
the ball with a table tennis racket so that it hits a fixed target. The task is illustrated in Figure 4.4a. The
return is based on the minimum distance between the ball and the target during one episode transformed
by an exponential. The policy is parametrized as the position of the six lower degrees of freedom of
the Barrett WAM. Only the first degree of freedom (shoulder rotation) is moved during an episode.
The movement is represented by a rhythmic policy with a fixed amplitude and period. Due to the
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Figure 4.5: This figure shows the time series of the Underactuated Swing-Up where only a single joint of
the robot is moved with a torque limit ensured by limiting the maximal motor current of that
joint. The resulting motion requires the robot to (ii) first move away from the target to limit
the maximal required torque during the swing-up in (iii-v) and subsequent stabilization (vi).
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Figure 4.6: This figure shows the performance of all compared methods for the swing-up in simulation
and the mean performance averaged over 20 learning runs with the error bars indicating the
standard deviation. POWER outperforms the other algorithms from 50 rollouts on and finds a
significantly better policy.

parametrization of the task only POWER and Finite Difference Gradients are applicable. We observed
reliable performance if the initial policy did not miss the target by more than approximately 50cm. In this
experiment it took significantly less iterations to find a good initial policy than to tune the learning rate of
Finite Difference Gradients, a problem from which POWER did not suffer as it is an EM-like algorithm.
Figure 4.4b illustrates the results. POWER converges significantly faster.

4.3.5 Benchmark Comparison IV: Underactuated Swing-Up

As an additional simulated benchmark and for the real-robot evaluations, we employed the Underactuated
Swing-Up [Atkeson, 1994]. Here, only a single degree of freedom is represented by the motor primitive
as described in Section 4.3.1. The goal is to move a hanging heavy pendulum to an upright position and
to stabilize it there. The objective is threefold: the pendulum has to be swung up in a minimal amount of
time, has to be stabilized in the upright position, and achieve these goals with minimal motor torques.
By limiting the motor current for this degree of freedom, we can ensure that the torque limits described
in [Atkeson, 1994] are maintained and directly moving the joint to the right position is not possible.
Under these torque limits, the robot needs to first move away from the target to reduce the maximal
required torque during the swing-up, see Figure 4.5. This problem is similar to the mountain-car problem
(Section 4.3.3). The standard mountain-car problem is designed to get the car to the top of the mountain
in minimum time. It does not matter if it stops at this point or drives at a high speed as usage of the
accelerator and brake is not punished. Adding the requirement of stabilizing the car at the top of the
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Figure 4.7: This figure shows the improvement of the policy over rollouts. The snapshots from the video
show the final positions. (0) Initial policy after imitation learning (without torque limit). (1)
Initial policy after imitation learning (with active torque limit). (20) Policy after 20 rollouts,
going further up. (30) Policy after 30 rollouts, going too far. (40) Policy after 40 rollouts, going
only a bit too far. (65) Final policy after 65 rollouts.
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Figure 4.8: This figure shows the performance of all compared methods for the swing-up on the real robot
and the mean performance averaged over 3 learning runs with the error bars indicating the
standard deviation. POWER outperforms the other algorithms and finds a significantly better
policy.

mountain makes the problem significantly harder. These additional constraints exist in the Underactuated
Swing-Up task where it is required that the pendulum (the equivalent of the car) stops at the top to fulfill
the task. The applied torque limits were the same as in [Atkeson, 1994] and so was the reward function,
except that the complete return of the trajectory was transformed by an exp(:) to ensure positivity. The
reward function is given by

2 u(t)

r(t)=—c,q(t)" +cylogcos ((23 ),
max

where the constants are ¢; = 5/7% ~ 0.507, ¢, = (2/7)? &~ 0.405, and c; = /2 ~ 1.571. Please note that
7t refers to the mathematics constant here, and not to the policy. The first term of the sum is punishing
the distance to the desired upright position ¢ = 0, and the second term is punishing the usage of motor
torques u. A different trade-off can be achieved by changing the parameters or the structure of the
reward function, as long as it remains an improper probability function. Again all open parameters of
all algorithms were manually optimized. The motor primitive with nine shape parameters and one goal
parameter was initialized by imitation learning from a kinesthetic teach-in. Kinesthetic teach-in means
“taking the robot by the hand”, performing the task by moving the robot while it is in gravity-compensation
mode, and recording the joint angles, velocities, and accelerations. This initial demonstration needs to
include all the relevant features of the movement, e.g., it should first move away from the target and
then towards the upright position. The performance of the algorithms is very robust, as long as the initial

policy with active torque limits moves the pendulum approximately above the horizontal orientation.
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Weighting Exploration with the Returns (PoOWER) clearly
outperforms episodic Natural Actor Critic (eNAC).

Figure 4.9: This figure illustrates the Casting task and shows the mean returns of the compared methods.

As the batch size, and, thus the learning speed, of the gradient based approaches depend on the number
of parameters (see Section 4.3.2), we tried to minimize the number of parameters. Using more parameters
would allow us to control more details of the policy which could result in a better final policy, but would
have significantly slowed down convergence. At least nine shape parameters were needed to ensure
that the imitation can capture the movement away from the target, which is essential to accomplish the
task. We compared all algorithms considered in Section 4.3.2 and could show that POWER would again
outperform the others. The convergence is a lot faster than in the basic motor learning examples (see
Section 4.3.2), as we do not start from scratch but rather from an initial solution that allows significant
improvements in each step for each algorithm. The results are presented in Figure 4.6. See Figure 4.7
and Figure 4.8 for the resulting real-robot performance.

4.3.6 Benchmark Comparison V: Casting

In this task a ball is attached to the endeffector of the Barrett WAM by a string. The task is to place the
ball into a small cup in front of the robot. The task is illustrated in Figure 4.9a. The return is based on
the sum of the minimum distance between the ball and the top, the center, and the bottom of the cup
respectively during one episode. Using only a single distance, the return could be successfully optimized,
but the final behavior often corresponded to a local maximum (for example hitting the cup from the
side). The movement is in a plane and only one shoulder DoF and the elbow are moved. The policy is
parametrized using motor primitives with five shape parameters per active degree of freedom. The policy
is initialized with a movement that results in hitting the cup from the side in the upper quarter of the
cup. If the ball hits the cup below the middle, approximately 300 rollouts were required for POWER and
we did not achieve reliable performance for the episodic Natural Actor Critic. We compare the two best
performing algorithms from the basic motor learning examples (see Section 4.3.2) and the Underactuated
Swing-Up (see Section 4.3.5), namely eNAC and PoWER. Figure 4.9b illustrates the results. POWER again
converges significantly faster.
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Figure 4.10: This figure illustrates how the reward is calculated. The plane represents the level of the
upper rim of the cup. For a successful rollout the ball has to be moved above the cup first and
is then flying in a downward direction into the opening of the cup. The reward is calculated
as the distance d of the center of the cup and the center of the ball on the plane at the
moment the ball is passing the plane in a downward direction. If the ball is flying directly into
the center of the cup, the distance is 0 and through the transformation exp(—d?) yields the
highest possible reward of 1. The further the ball passes the plane from the cup, the larger
the distance and thus the smaller the resulting reward.

4.3.7 Ball-in-a-Cup on a Barrett WAM

The children’s motor skill game Ball-in-a-Cup [Sumners, 1997], also known as Balero, Bilboquet, and
Kendama, is challenging even for adults. The toy has a small cup which is held in one hand (or, in our
case, is attached to the end-effector of the robot) and the cup has a small ball hanging down on a string
(the string has a length of 40cm in our setup). Initially, the ball is hanging down vertically in a rest
position. The player needs to move fast in order to induce a motion in the ball through the string, toss it
up, and catch it with the cup. A possible movement is illustrated in Figure 4.11 in the top row.

Note that learning of Ball-in-a-Cup and Kendama has previously been studied in robotics. We are
going to contrast a few of the approaches here. While we learn directly in the joint space of the robot,
Takenaka [1984] recorded planar human cup movements and determined the required joint movements
for a planar, three degree of freedom (DoF) robot, so that it could follow the trajectories while visual
feedback was used for error compensation. Both Sato et al. [1993] and Shone et al. [2000] used motion
planning approaches which relied on very accurate models of the ball and the string while employing
only one DoF in [Shone et al., 2000] or two DoF in [Sato et al., 1993] so that the complete state-space
could be searched exhaustively. Interestingly, exploratory robot moves were used in [Sato et al., 1993] to
estimate the parameters of the employed model. Probably the most advanced preceding work on learning
Kendama was carried out by Miyamoto et al. [1996] who used a seven DoF anthropomorphic arm and
recorded human motions to train a neural network to reconstruct via-points. Employing full kinematic
knowledge, the authors optimize a desired trajectory.

The state of the system can be described by joint angles and joint velocities of the robot as well as the
the Cartesian coordinates and velocities of the ball. The actions are the joint space accelerations where
each of the seven joints is driven by a separate motor primitive, but with one common canonical system.
The movement uses all seven degrees of freedom and is not in a plane. All motor primitives are perturbed
separately but employ the same joint final reward given by

T'(t): exp (_a (xc_xb)z_a(yc_yb)z) ift:tc,
0 otherwise,

where we denote the moment when the ball passes the rim of the cup with a downward direction by ¢,
the cup position by [x,, y.,2.] € R3, the ball position by [x}, y;,2;,] € R3, and a scaling parameter by
a = 100 (see also Figure 4.10). The algorithm is robust to changes of this parameter as long as the reward
clearly discriminates good and suboptimal trials. The directional information is necessary as the algorithm
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(@) Schematic Drawings of the Ball-in-a-Cup Motion

(b) Kinesthetic Teach-In

(c) Final learned Robot Motion

Figure 4.11: This figure shows schematic drawings of the Ball-in-a-Cup motion (a), the final learned robot
motion (c), as well as a kinesthetic teach-in (b). The arrows show the directions of the current
movements in that frame. The human cup motion was taught to the robot by imitation
learning with 31 parameters per joint for an approximately 3 seconds long trajectory. The
robot manages to reproduce the imitated motion quite accurately, but the ball misses the cup
by several centimeters. After approximately 75 iterations of our Policy learning by Weighting
Exploration with the Returns (POWER) algorithm the robot has improved its motion so that
the ball goes in the cup. Also see Figure 4.12.
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Figure 4.12: This figure shows the expected return of the learned policy in the Ball-in-a-Cup evaluation
averaged over 20 runs.

could otherwise learn to hit the bottom of the cup with the ball. This solution would correspond to a
local maximum whose reward is very close to the optimal one, but the policy very far from the optimal
one. The reward needs to include a term avoiding this local maximum. PoWER is based on the idea
of considering the reward as an improper probability distribution. Transforming the reward using the
exponential enforces this constraint. The reward is not only affected by the movements of the cup but
foremost by the movements of the ball, which are sensitive to small changes in the cup’s movement. A
small perturbation of the initial condition or during the trajectory can change the movement of the ball
and hence the outcome of the complete movement. The position of the ball is estimated using a stereo
vision system and is needed to determine the reward.

Due to the complexity of the task, Ball-in-a-Cup is a hard motor learning task for children, who usually
only succeed at it by observing another person playing combined with a lot of improvement by trial-
and-error. Mimicking how children learn to play Ball-in-a-Cup, we first initialize the motor primitives by
imitation learning and, subsequently, improve them by reinforcement learning. We recorded the motions
of a human player by kinesthetic teach-in to obtain an example for imitation as shown in Figure 4.11b.
A single demonstration was used for imitation learning. Learning from multiple demonstrations did
not improve the performance as the task is sensitive to small differences. As expected, the robot fails
to reproduce the presented behavior even if we use all the recorded details for the imitation. Thus,
reinforcement learning is needed for self-improvement. The more parameters used for the learning, the
slower the convergence is. Due to the imitation, the ball must go above the rim of the cup such that
the algorithm gets at least a small positive reward for all rollouts. This way exhaustive exploration is
avoided as the algorithm can compare the performance of the different rollouts. We determined that
31 shape-parameters per motor primitive are needed. With less parameters the ball does not go above
the rim of the cup in the initial trial and the algorithm does not receive any meaningful information
about the trial using the aforementioned reward function. More shape-parameters will lead to a more
accurate reproduction of the demonstrated movement and, thus, to a better initial policy. However, there
is a trade-off between this better initial policy and a potentially lower learning speed. Using three times
as many parameters the algorithm converged at roughly the same time. The hyper-parameters o;; are
initially set in the same order of magnitude as the median of the parameters for each motor primitive and
are then optimized alongside the shape-parameters by POWER. The performance of the algorithm is fairly
robust for values chosen in this range. Figure 4.12 shows the expected return over the number of rollouts
where convergence to a maximum is clearly recognizable. The robot regularly succeeds at bringing the
ball into the cup after approximately 75 iterations. Figure 4.13 shows the improvement of the policy
over the rollouts. From our experience, nine year old children get the ball in the cup for the first time
after about 35 trials while the robot gets the ball in for the first time after 42-45 rollouts. However, after
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Figure 4.13: This figure shows the improvement of the policy over rollouts. The snapshots from the video
show the position of the ball closest to the cup during a rollout. (1) Initial policy after imitation
learning. (15) Policy after 15 rollouts, already closer. (25) Policy after 25 rollouts, going too
far. (45) Policy after 45 rollouts, hitting the near rim. (60) Policy after 60 rollouts, hitting the
far rim. (100) Final policy after 100 rollouts.

100 trials, the robot exhibits perfect runs in every single trial while children do not have a comparable
success rate. Of course, such a comparison with children is contrived as a robot can precisely reproduce
movements unlike any human being, and children can most likely adapt faster to changes in the setup.

4.4 Discussion & Conclusion

In Section 4.4.1, we will discuss robotics as a benchmark for reinforcement learning, in Section 4.4.2 we
discuss different simulation to robot transfer scenarios, and we will draw our conclusions in Section 4.4.3.

4.4.1 Discussion: Robotics as Benchmark for Reinforcement Learning?

Most reinforcement learning algorithms are evaluated on synthetic benchmarks, often involving discrete
states and actions. Agents in many simple grid worlds take millions of actions and episodes before
convergence. As a result, many methods have focused too strongly on such problem domains. In contrast,
many real world problems such as robotics are best represented with high-dimensional, continuous
states and actions. Every single trial run is costly and as a result such applications force us to focus on
problems that will often be overlooked accidentally in synthetic examples. Simulations are a helpful
testbed for debugging algorithms. Continuous states and actions as well as noise can be simulated,
however simulations pose the temptation of using unrealistically many iterations and also allow us to
exploit the perfect models.

Our typical approach consists of testing the algorithm in a simulation of the robot and the environment.
Once the performance is satisfactory we replace either the robot or the environment with its real
counterpart depending on the potential hazards. Replacing the robot is always possible as we can still
simulate the environment taking into account the state of the real robot. Learning with a simulated
robot in the real environment is not always a possibility especially if the robot influences the observed
environment, such as in the Ball-in-a-Cup task. The final evaluations are done on the real robot in the
real environment.

Our experience in robotics show that the plant and the environment can often not be represented
accurately enough by a physical model and that the learned policies are thus not entirely transferable. If
sufficiently accurate models were available, we could resort to the large body of work on optimal control
[Kirk, 1970], which offers alternatives to data driven reinforcement learning. However, when a model
with large errors is used, the solution suffers severely from an optimization bias as already experienced by
Atkeson [1994]. Here, the reinforcement learning algorithm exploits the imperfections of the simulator
rather than yielding an optimal policy.

None of our learned policies could be transferred from a simulator to the real system without changes
despite that the immediate errors of the simulator have been smaller than the measurement noise.
Methods which jointly learn the models and the policy as well as perform some of the evaluations and
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updates in simulation (such as Dyna-like architectures as in [Sutton, 1990]) may alleviate this problem.
In theory, a simulation could also be used to eliminate obviously bad solutions quickly. However, the
differences between the simulation and the real robot do accumulate over time and this approach is only
feasible if the horizon is short or the simulation very accurate. Priming the learning process by imitation
learning and optimizing in its vicinity achieves the desired effect better and has thus been employed in
this chapter.

Parametrized policies greatly reduce the need of samples and evaluations. Choosing an appropriate
representation like motor primitives renders the learning process even more efficient.

One major problem with robotics benchmarks is the repeatability of the experiments. The results are tied
to the specific hardware and setup used. Even a comparison with simulated robots is often not possible as
many groups rely on proprietary simulators that are not freely available. Most of the benchmarks presented
in this chapter rely on initial demonstrations to speed up the learning process. These demonstrations
play an important part in the learning process. However, these initial demonstrations are also tied to the
hardware or the simulator and are, thus, not straightforward to share. Comparing new algorithms to
results from different authors usually requires the reimplementation of their algorithms to have a fair
comparison.

Reproducibility is a key requirement for benchmarking but also a major challenge for robot reinforce-
ment learning. To overcome this problem there are two orthogonal approaches: (i) a central organizer
provides an identical setup for all participants and (ii) all participants share the same setup in a bench-
marking lab. The first approach has been majorly pushed by funding agencies in the USA and Europe. In
the USA, there have been special programs on robot learning such as DARPA Learning Locomotion (L2),
Learning Applied to Ground Robotics (LAGR) and the DARPA Autonomous Robot Manipulation (ARM)
[DARPA, 2010c,b,a]. However, the hurdles involved in getting these robots to work have limited the par-
ticipation to strong robotics groups instead of opening the robot reinforcement learning domain to more
machine learning researchers. Alternative ways of providing identical setups are low cost standardized
hardware or a system composed purely of commercially available components. The first suffers from
reproducibility and reliability issues while the latter results in significant system integration problems.
Hence, it may be more suitable for a robot reinforcement learning challenge to be hosted by a robot
learning group with significant experience in both domains. The host lab specifies tasks that they have
been able to accomplish on a real robot system. The hosts also need to devise a virtual robot laboratory
for allowing the challenge participants to program, test and debug their algorithms. To limit the workload
and the risk of the organizers, a first benchmarking round would be conducted using this simulated setup
to determine the promising approaches. Successful participants will be invited by the host lab in order
to test these algorithms in learning on the real system where the host lab needs to provide significant
guidance. To our knowledge, no benchmark based on this approach has been proposed yet. We are
currently evaluating possibilities to organize a challenge using such a shared setup in the context of the
PASCAL2 Challenge Program [PASCALZ2, 2010].

To successfully apply reinforcement learning to robotics, a fair level of knowledge on the limitations
and maintenance of the robot hardware is necessary. These limitations include feasible actions, feasible
run-time, as well as measurement delay and noise. Cooperation with a strong robotics group is still
extremely important in order to apply novel reinforcement learning methods in robotics.

4.4.2 Discussion on Simulation to Robot Transfer Scenarios

In this chapter, we have discussed reinforcement learning for real robots with highly dynamic tasks. The
opposite extreme in robotics would be, for example, a maze navigation problem where a mobile robot that
has macro-actions such as “go left” and the lower level control moves the robot exactly by a well-defined
distance to the left. In this scenario, it would probably be easier to transfer simulation results to real
systems. For highly dynamic tasks or environments, accurate simulations are generically difficult. Besides
fast moving objects and many interacting objects as well as deformable objects (often called soft bodies),
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Figure 4.14: This figure illustrates the Ball-Paddling task in simulation and on the real robot. The difference
between simulation and robotics can be particularly emphasized in this problem where
unrealistically many trials were needed on the simulation for reinforcement learning while the
real world behavior could be learned by imitation learning. It illustrates the energy-consuming
scenario and the difficulties of realistic learning in the presence of contact forces.

like cloth, string, fluids, hydraulic tubes and other elastic materials are hard to simulate reliably and, thus,
have an enormous impact on transferability. Additionally, the level and quality of measurement noise has
a direct implication on the difficulty and the transferability of the learning task.

Better simulations often alleviate some of these problems. However, there is always a trade-off as more
detailed simulations also require more precise model identification, higher temporal resolution, and,
frequently even finite elements based simulations. Such detailed simulations may even be much slower
than real-time, thus defeating one of the major advantages of simulations.

Aside from these clear difficulties in creating simulations that allow the transfer to real systems, we have
observed three critically different scenarios for reinforcement learning in robotics. These scenarios are
characterized by the energy flow between the policy and the system. In the energy-absorbing scenario, the
task has passive dynamics and, hence, it is safer and easier to learn on a real robot. We are going to discuss
the examples of Ball-Paddling, foothold selection in legged locomotion, and grasping (see Section 4.4.2).
The second scenario has a border-line behavior: the system conserves most of the energy but the policy
also only needs to inject energy into the system for a limited time. We will discuss Ball-in-a-Cup, Tetherball
Target Hitting, and Mountain-Car as examples for this scenario (see Section 4.4.2). In the energy-emitting
scenario energy is inserted due to the system dynamics even if the policy does not transfer energy into the
system. The classical examples are Cart-Pole and inverted helicopters, and we also have the Underactuated
Swing-Up which has to stabilize at the top (see Section 4.4.2). These different scenarios have implications
on the relative utility of simulations and real robots.

As we are discussing our experience in performing such experiments, it may at times appear anecdotal.
We hope the reader benefits from our insights nevertheless. However, the resulting classification bears
similarities with insights on control law derivation [Fantoni and Lozano, 2001].

Energy-Absorbing Scenario

In this scenario, the system absorbs energy from the actions. As shown in Figure 4.14, we learned a
Ball-Paddling task where a ping-pong ball is attached to a paddle by an elastic string and the ball has
to be kept in the air by repeatedly hitting it from below. In this setup, the elastic string pulls the ball
back towards the center of the paddle and the contact forces between the ball and the paddle are very
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complex. We modeled the system in as much detail as possible, including friction models, restitution
models, dampening models, models for the elastic string, and air drag. However, in simulation the
paddling behavior was still highly unpredictable and we needed a few thousand iterations to learn an
optimal frequency, amplitude, and movement shape. The number of simulated trials exceeded the feasible
amount on a real system. In contrast, when learning on the real system, we obtained a stable paddling
behavior by imitation learning using the initial demonstration only and no further reinforcement learning
was needed.

In general, scenarios with complex contact forces often work better in a real-world experiment. This
problem was particularly drastic in locomotion experiments on rough terrain where the real world was
an easier learning environment due to favorable friction properties during foot contact [Peters, 2007].
In this experiment, learning was significantly harder in simulation and the learned policy could not be
transferred. The same effect occurs in grasping when objects often cannot be grasped in simulation due
to slip but the real world friction still allows them to be picked up. Hence, in this scenario, policies from
simulations are frequently not helpful and learning in simulation is harder than on the real system. The
results only transfer in a few cases. A simulation is therefore only recommended as a feasibility study and
for software debugging. As most contacts differ significantly due to the current properties (which vary
with time and temperature) of the two interacting objects, only a learned simulator is likely to grasp all
relevant details.

Border-Line Scenario

In this scenario, adding too much energy to a system does not necessarily lead to a negative outcome. For
example, in the Mountain-Car problem (see Section 4.3.3), inserting more energy and driving through
the goal at a higher velocity does not affect task achievement. In contrast not inserting enough energy
will result in a failure as the car cannot reach the top of the mountain. The Tetherball Target Hitting
application presented in Section 4.3.4 exhibits a very similar behavior. The Ball-in-a-Cup experiment
(see Section 4.3.7) highlights the resulting similarities between learning in good simulations and the real
world for this scenario. Success is possible if more energy is inserted and the ball flies higher. However,
when using too little energy the ball will stay below the opening of the cup. In this favorable scenario
the “classical” strategy can be applied: learn how to learn in simulation. The policy learned in simulation
does not necessarily transfer to the real world and the real-world scenario can be highly different but the
learning speed and behavior are similar. Hence, hyper-parameters such as learning and exploration rates
can be tuned in simulation. The learning algorithm may take longer due to increased errors, modeling
problems and uncertainty. Still, good practice is to create a sufficiently accurate simulator and to adapt
the learning strategy subsequently to the real system.

Energy-Emitting Scenario

Energy emission causes very different problems. Uncertainty in states will cause overreactions, hence,
drastic failures are likely to occur when the system becomes unstable in a control theory sense. This
system excitability often makes the task significantly harder to learn on a real robot in comparison to a
simulated setup. Here, pre-studies in simulations are a necessary but not sufficient condition. Due to
unmodeled nonlinearities, the exploration will affect various algorithms differently. Classical examples
are helicopters in inverted flight [Ng et al., 2004b] and the pendulum in a Cart-Pole task in an upright
position [Sutton and Barto, 1998] as these have to be constantly stabilized. Additionally the pendulum
in the Swing-Up has to be stabilized in the final position or it will fall over and cause a failure. In this
chapter, we take the example of the Swing-Up to illustrate how some methods unexpectedly do better
in the real world as exhibited by Figures 4.6 and 4.8. The learning progress of all algorithms is noisier
and the eRWR performs better on the real robot. The form of exploration employed by POWER seems
to give it an additional advantage in the first 20 rollouts as direct exploration on the actions is partially
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obscured by measurement noise. In order to cope with differences to the real-world, simulations need to
be more stochastic than the real system (as suggested by Ng et al. [2004b]) and should be learned to
make transferring the results easier (as for example in [Schaal et al., 2002]).

4.4.3 Conclusion

In this chapter, we have presented a framework for deriving several policy learning methods that are
applicable in robotics and an application to a highly complex motor learning task on a real Barrett WAM
robot arm. We have shown that policy gradient methods are a special case of this framework. During
initial experiments, we realized that the form of exploration highly influences the speed of the policy
learning method. This empirical insight resulted in a novel policy learning algorithm, Policy learning by
Weighting Exploration with the Returns (PoOWER), an EM-inspired algorithm that outperforms several
other policy search methods both on standard benchmarks as well as on a simulated Underactuated
Swing-Up.

We have successfully applied this novel POWER algorithm in the context of learning two tasks on a
physical robot, namely the Underacted Swing-Up and Ball-in-a-Cup. Due to the curse of dimensionality,
we cannot start with an arbitrary solution. Instead, we mimic the way children learn Ball-in-a-Cup and
first present an example movement for imitation learning, which is recorded using kinesthetic teach-in.
Subsequently, our reinforcement learning algorithm learns how to move the ball into the cup reliably. After
only realistically few episodes, the task can be regularly fulfilled and the robot shows very good average
performance. After 100 rollouts, the hyper-parameters, such as the exploration rate, have converged
to negligible size and do not influence the outcome of the behavior any further. The experiments in
this chapter use the original variant of the motor primitives which cannot deal with large perturbations.
However, the extended variable-feedback variant presented in [Kober et al., 2008] can deal with a variety
of changes directly (for example, in the length of the string or the size or weight of the ball) while the
approach presented in this chapter will recover quickly by learning an adjusted policy in a few roll-outs.
In [Kober et al., 2008], we have also shown that learning a strategy of pulling the ball up and moving
the cup under the ball (as in Kendama) is possible in approximately the same number of trials. We have
discovered a variety of different human strategies for Ball-in-a-Cup in movement recordings, see [Chiappa
et al., 2009].

Our approach has already given rise to follow-up work in other contexts, for example, [Vlassis et al.,
2009, Kormushev et al., 2010]. Theodorou et al. [2010] have shown that an algorithm very similar to
PoWER can also be derived from a completely different perspective, that is, the path integral approach.

4.A Derivations

In this appendix, we provide the derivations of various algorithms in more details than in the main
text. We first present, how the episodic REINFORCE [Williams, 1992] can be obtained (Section 4.A.1).
Subsequently, we show how the episodic Reward Weighted Regression (eRWR) [Peters and Schaal, 2007]
can be generalized for the episodic case (Section 4.A.2), and finally we derive EM Policy learning by
Weighting Exploration with the Returns (PoWER) and show a number of simplifications (Section 4.A.3).

4.A.1 REINFORCE

If we choose a stochastic policy in the form a = 87 ¢ (s, t) + ¢, with &, ~ A (O, 02), we have

1 1 2
n(atlst, t) = a—meXp (—F a—BTqS) ),
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and, thus,
dplogm =02 (a — 0T¢) o'
Therefore, the gradient, in Equation (4.2), becomes
N T -2 /T T _ T -2 T
0yLy(8") = E {thlo (a—07¢) ¢ R} =E {thla £ R}, (4.5)

which corresponds to the episodic REINFORCE algorithm [Williams, 1992].

4.A.2 Episodic Reward Weighted Regression (eRWR)

Setting Equation (4.5) to zero

oyLo(0)=E{X 0% (a—07¢) ¢'R} =

we obtain

E{Sl 0 %R} =E{3_ 072 (67¢)Re"}.

Since o is constant, we have E {Zthl aR¢'}=0""E {Zthl ¢R$"}. The 0’ minimizing the least squares
error can be found by locally weighted linear regression (R as weights and ¢ as basis functions) considering
each time-step and rollout separately

6'= (¢'R2)  2'RA,

with & = [¢,....¢5.¢>,...,90",..., 71" , R = diag(R',...,RL,R?%...,RY,..,R"), and A =
lal,...,a},d?,...,d",...,a]" for H rollouts.

The same derivation holds if we use Equation (4.3) instead of Equation (4.2). Then R in the regression
is replaced by Q™ = diag(QT’l, . ..,Q;E’l,QT’Z, ... ,QT’H, .. .,Q?’H). Using the state-action value function
Q" yields slightly faster convergence than using the return R.

4.A.3 EM Policy learning by Weighting Exploration with the Returns (POWER)

If we choose a stochastic policy in the form a = (6 + st)T ¢ (s, t) with g, ~ A4(0, %), we have

1/2 —(a—9T¢)2

7 (as, t) = (al0T (s,0),¢(s,0)"S¢(s, 1)) = (219" S¢p) 20759

and, thus, 9 logm = (a — 0T¢) ¢/ (0T¢)2 . Therefore Equation (4.3) becomes
a— /T¢ ¢T
8pLg(0")=E {Z( ) Q" }.
Setting this equation to zero is equivalent to
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This equation yields

. L ((0+e) ¢)o" | [&oee” L\
v E{Z( ¢T5:¢) ? }E{Z¢TA¢Q}

and finally with W= ¢ ¢ (¢ 2¢)~! we get

0'=0 +E{ZtT:lWQ”}_lE{ZtT:letQ”}. (4.6)

If 32 is diagonal, that is, the exploration of the parameters is pairwise independent, all parameters employ
the same exploration, and the exploration is constant over rollouts, W simplifies to W= ¢ ¢ (¢ ¢p)~1.
Normalized basis functions ¢ further simplify W to W(s,t) = ¢ ¢".

If only one parameter is active at each time step, W (s, t) is diagonal and Equation (4.6) simplifies to

: (X0, 62/ (4789) e,Q7)
(N 4.7)
{31, 92/ (¢759) ")

E{¥, 0/ ,.Q7}
E {ZtT=1 Oi_lQn} ’

where 6/ is one individual parameter, ¢; and ¢;, are the corresponding elements of ¢ and ¢,, and
o, is the respective entry of the diagonal of %. If the o, are constant over the rollouts we get Qi’ =
0, +E {Zthl £,.Q"}/E {Zthl Q™}. The independence simplification in Equations (4.7, 4.8) works well in
practice, even if there is some overlap between the activations, such as in the case of dynamical system
motor primitives [Ijspeert et al., 2002a,b, Schaal et al., 2003, 2007]. Weighting the exploration with the
basis functions, as in Equation (4.7), yields slightly better results than completely ignoring the interactions,
as in Equation (4.8).
The policy can be equivalently expressed as

= 0+ (4.8)

7 (aclse,t) =p (aglse, t,e.) p (else, t) =p (aclse, t,e.) A (€,]0,%).
Applying Equation (4.3) to the variance ¥ we get
~ T .
32/L2 (2/) =F {thlaﬁ:/ log</V (stIO, 2/) Qn} ,

as p (a,|s,, t,&,) is independent from the variance. Setting this equation to zero and solving for 3 yields

E {ZT £ £TQ“}
r t=1%t%¢

E{Yl.Q7

which is the same solution as we get in standard maximum likelihood problems.

The same derivation holds if we use Equation (4.2) instead of Equation (4.3). Then, the state-action
value function Q" is replaced everywhere by the return R.

)
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5 Reinforcement Learning to Adjust Parametrized Motor Primitives to New Situations

Humans manage to adapt learned movements very quickly to new situations by generalizing learned
behaviors from similar situations. In contrast, robots currently often need to re-learn the complete
movement. In this chapter, we propose a method that learns to generalize parametrized motor plans by
adapting a small set of global parameters, called meta-parameters. We employ reinforcement learning to
learn the required meta-parameters to deal with the current situation, described by states. We introduce
an appropriate reinforcement learning algorithm based on a kernelized version of the reward-weighted
regression. To show its feasibility, we evaluate this algorithm on a toy example and compare it to several
previous approaches. Subsequently, we apply the approach to three robot tasks, i.e., the generalization of
throwing movements in darts, of hitting movements in table tennis, and of throwing balls where the tasks
are learned on several different real physical robots, i.e., a Barrett WAM, a BioRob, the JST-ICORP/SARCOS
CBi and a Kuka KR 6.

5.1 Introduction

Human movements appear to be represented using movement templates, also called motor primitives
[Schmidt and Wrisberg, 2000]. Once learned, these templates allow humans to quickly adapt their
movements to variations of the situation without the need of re-learning the complete movement. For
example, the overall shape of table tennis forehands are very similar when the swing is adapted to varied
trajectories of the incoming ball and a different targets on the opponent’s court. To accomplish such
behavior, the human player has learned by trial and error how the global parameters of a generic forehand
need to be adapted due to changes in the situation [Miilling et al., 2010, 2011].

In robot learning, motor primitives based on dynamical systems [Ijspeert et al., 2002b, Schaal et al.,
2007] can be considered a technical counterpart to these templates. They allow acquiring new behaviors
quickly and reliably both by imitation and reinforcement learning. Resulting successes have shown
that it is possible to rapidly learn motor primitives for complex behaviors such as tennis-like swings
[Tjspeert et al., 2002b], T-ball batting [Peters and Schaal, 2008a], drumming [Pongas et al., 2005], biped
locomotion [Nakanishi et al., 2004], ball-in-a-cup [Kober and Peters, 2011a], and even in tasks with
potential industrial applications [Urbanek et al., 2004]. While the examples are impressive, they do not
yet address how a motor primitive can be generalized to a different behavior by trial and error without
re-learning the task. Such generalization of behaviors can be achieved by adapting the meta-parameters
of the movement representation. Meta-parameters are defined as a small set of parameters that adapt
the global movement behavior. The dynamical system motor primitives can be adapted both spatially
and temporally without changing the overall shape of the motion [Ijspeert et al., 2002b]. In this chapter,
we learn a mapping from a range of changed situations, described by states, to the meta-parameters to
adapt the template’s behavior. We consider movements where it is sufficient to reshape (e.g., rescale the
motion spatially and/or temporally) the global movement by optimizing meta-parameters to adapt to a
new situation instead of tuning the movement primitive’s shape parameters that describe the fine details
of the movement.

Dynamical systems motor primitives have the capability to adapt the movement to a changed end
positions. Here, the end position is a meta-parameter. This was exploited in [Ijspeert et al., 2002b] for
tennis-like swings with static ball targets and in [Pastor et al., 2009] for object manipulation. In these
papers, the desired end position is given in Cartesian coordinates and the movement primitives operate in
Cartesian coordinates as well. Thus, the meta-parameters of the motor primitives are straightforward
to set. In this chapter, we are interested in non-intuitive connections, where the relation between the
desired outcome and the meta-parameters is not straightforward. There is related prior work in the
context of programming by demonstration by Ude et al. [2010] and Kronander et al. [2011] who employ
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supervised learning to learn a mapping from desired outcomes to meta-parameters for tasks such as
reaching, throwing, drumming, and mini-golf. They assume that a teacher has presented a number of
demonstrations that cannot be contradictory and the task is to imitate and generalize these demonstrations.
Lampariello et al. [2011] employ a global planner to provide demonstrations of optimal catching meta-
parameters and use supervised learning approaches to generalize these in real-time. In contrast, in
our setting the robot actively explores different movements and improves the behavior according to a
cost function. It can deal with contradictory demonstrations and actively generate its own scenarios by
exploration combined with self-improvement. As mentioned in [Ude et al., 2010], the two approaches
may even be complimentary: reinforcement learning can provide demonstrations for supervised learning,
and supervised learning can be used as a starting point for reinforcement learning.

Adapting movements to situations is also discussed in [Jetchev and Toussaint, 2009] in a supervised
learning setting. Their approach is based on predicting a trajectory from a previously demonstrated set
and refining it by motion planning. The authors note that kernel ridge regression performed poorly for
the prediction if the new situation is far from previously seen ones as the algorithm yields the global
mean. In our approach, we employ a cost weighted mean that overcomes this problem. If the situation is
far from previously seen ones, large exploration will help to find a solution.

In machine learning, there have been many attempts to use meta-parameters in order to generalize
between tasks [Caruana, 1997]. Particularly, in grid-world domains, significant speed-up could be
achieved by adjusting policies by modifying their meta-parameters, e.g., re-using options with different
subgoals [McGovern and Barto, 2001]. The learning of meta-parameters of the learning algorithm has
been proposed as a model for neuromodulation in the brain [Doya, 2002]. In contrast, we learn the
meta-parameters of a motor skill in this chapter. In robotics, such meta-parameter learning could be
particularly helpful due to the complexity of reinforcement learning for complex motor skills with high
dimensional states and actions. The cost of experience is high as sample generation is time consuming
and often requires human interaction (e.g., in cart-pole, for placing the pole back on the robot’s hand) or
supervision (e.g., for safety during the execution of the trial). Generalizing a teacher’s demonstration or a
previously learned policy to new situations may reduce both the complexity of the task and the number of
required samples. Hence, a reinforcement learning method for acquiring and refining meta-parameters of
pre-structured primitive movements becomes an essential next step, which we will address in this chapter.

This chapter does not address the problem of deciding whether it is more advantageous to generalize
existing generic movements or to learn a novel one. Similar to most reinforcement learning approaches,
the states and meta-parameters (which correspond to actions in the standard reinforcement learning
settings) as well as the cost or reward function need to be designed by the user prior to the learning
process. Here, we can only provide a few general indications with regard to the choice of these setting.
Cost functions need to capture the desired outcome of the reinforcement learning process. Often the
global target can be described verbally - but it is not obvious how the cost needs to be scaled and how to
take secondary optimization criteria into account. For example, when throwing at a target, the global
goal is hitting it. However, it is not always obvious which distance metric should be used to score misses,
which secondary criteria (e.g. required torques) should be included, and which weight each criterion
should be assigned. These choices influence both the learning performance and the final policy. Even
for human reaching movements, the underlying cost function is not completely understood [Bays and
Wolpert, 2007]. In practice, informative cost functions (i.e., cost functions that contain a notion of
closeness) often perform better than binary reward functions in robotic tasks. In this chapter, we used a
number of cost functions both with and without secondary objectives. In the future, inverse reinforcement
learning [Russell, 1998] may be a useful alternative to automatically recover underlying cost functions
from data as done already in other settings.

The state of the environment needs to enable the robot to obtain sufficient information to react
appropriately. The proposed algorithm can cope with superfluous states at a cost of slower learning.
Similarly, the meta-parameters are defined by the underlying representation of the movement. For
example, the dynamical systems motor primitives [Ijspeert et al., 2002b, Schaal et al., 2007] have meta-
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parameters for scaling the duration and amplitude of the movement as well as the possibility to change
the final position. Restricting the meta-parameters to task relevant ones, may often speed up the learning
process.

We present current work on automatic meta-parameter acquisition for motor primitives by reinforcement
learning. We focus on learning the mapping from situations to meta-parameters and how to employ
these in dynamical systems motor primitives. We extend the motor primitives of Ijspeert et al. [2002b]
with a learned meta-parameter function and re-frame the problem as an episodic reinforcement learning
scenario. In order to obtain an algorithm for fast reinforcement learning of meta-parameters, we view
reinforcement learning as a reward-weighted self-imitation [Peters and Schaal, 2008b, Kober and Peters,
2011a].

To have a general meta-parameter learning, we adopted a parametric method, the reward-weighed
regression [Peters and Schaal, 2008b], and turned it into a non-parametric one. We call this method Cost-
regularized Kernel Regression (CrKR), which is related to Gaussian process regression [Rasmussen and
Williams, 2006] but differs in the key aspects of incorporating costs and exploration naturally. We compare
the CrKR with a traditional policy gradient algorithm [Peters and Schaal, 2008a], the reward-weighted
regression [Peters and Schaal, 2008b], and supervised learning [Ude et al., 2010, Kronander et al., 2011]
on a toy problem in order to show that it outperforms available previously developed approaches. As
complex motor control scenarios, we evaluate the algorithm in the acquisition of flexible motor primitives
for dart games such as Around the Clock [Masters Games Ltd., 2010], for table tennis, and for ball target
throwing.

5.2 Meta-Parameter Learning for Motor Primitives

The goal of this chapter is to show that elementary movements can be generalized by modifying only the
meta-parameters of the primitives using learned mappings based on self-improvement. In Section 5.2.1,
we first review how a single primitive movement can be represented and learned. We discuss how
meta-parameters may be able to adapt the motor primitive spatially and temporally to the new situation.
In order to develop algorithms that learn to automatically adjust such motor primitives, we model meta-
parameter self-improvement as an episodic reinforcement learning problem in Section 5.2.2. While this
problem could in theory be treated with arbitrary reinforcement learning methods, the availability of few
samples suggests that more efficient, task appropriate reinforcement learning approaches are needed. To
avoid the limitations of parametric function approximation, we aim for a kernel-based approach. When a
movement is generalized, new parameter settings need to be explored. Hence, a predictive distribution
over the meta-parameters is required to serve as an exploratory policy. These requirements lead to the
method which we derive in Section 5.2.3 and employ for meta-parameter learning in Section 5.2.4.

5.2.1 Motor Primitives with Meta-Parameters

In this section, we review how the dynamical systems motor primitives [Ijspeert et al., 2002b, Schaal et al.,
2007] discussed in Chapter 3 can be used for meta-parameter learning. The dynamical system motor
primitives are a powerful movement representation that allows ensuring the stability of the movement?,
choosing between a rhythmic and a discrete movement and is invariant under rescaling of both duration
and movement amplitude. These modification parameters can become part of the meta-parameters of the
movement.

In this chapter, we focus on single stroke movements which appear frequently in human motor control
[Wulf, 2007, Schaal et al., 2007]. Therefore, we will always focus on the discrete version of the dynamical
system motor primitives in this chapter.

! Note that the dynamical systems motor primitives ensure the stability of the movement generation but cannot guarantee

the stability of the movement execution [Ijspeert et al., 2002b, Schaal et al., 2007].
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Figure 5.1: This figure illustrates a table tennis task. The situation, described by the state s, corresponds
to the positions and velocities of the ball and the robot at the time the ball is above the net.
The meta-parameters 7 are the joint positions and velocity at which the ball is hit. The policy
parameters represent the backward motion and the movement on the arc. The meta-parameter
function 7(s), which maps the state to the meta-parameters, is learned.

The motor primitive policy is invariant under transformations of the initial position x(lJ, the initial
velocity xg, the goal g, the goal velocity g, the amplitude A, and the duration T as discussed in Chapter 3.
These six modification parameters can be used as the meta-parameters 7 of the movement. Obviously,
we can make more use of the motor primitive framework by adjusting the meta-parameters y depending
on the current situation or state s according to a meta-parameter function ¥(s). The meta-parameter y
is treated as a random variable where the variance correspond to the uncertainty. The state s can for
example contain the current position, velocity and acceleration of the robot and external objects, as well
as the target to be achieved. This paper focuses on learning the meta-parameter function 7(s) by episodic
reinforcement learning.

lllustrations of the Learning Problem

We discuss the resulting learning problem based on the two examples shown in Figures 5.1 and 5.2.

As a first illustration of the meta-parameter learning problem, we take a table tennis task which is
illustrated in Figure 5.1 (in Section 5.3.3, we will expand this example to a robot application). Here, the
desired skill is to return a table tennis ball. The motor primitive corresponds to the hitting movement.
When modeling a single hitting movement with dynamical-systems motor primitives [Ijspeert et al.,
2002b], the combination of retracting and hitting motions would be represented by one movement
primitive and can be learned by determining the movement parameters 0. These parameters can either
be estimated by imitation learning or acquired by reinforcement learning. The return can be adapted
by changing the paddle position and velocity at the hitting point. These variables can be influenced by
modifying the meta-parameters of the motor primitive such as the final joint positions and velocities. The
state consists of the current positions and velocities of the ball and the robot at the time the ball is directly
above the net. The meta-parameter function 7(s) maps the state (the state of the ball and the robot
before the return) to the meta-parameters 7 (the final positions and velocities of the motor primitive). Its
variance corresponds to the uncertainty of the mapping.

In a 2D dart throwing task with a dart on a launcher which is illustrated in Figure 5.2 (in Section 5.3.2,
we will expand this example to a robot application) the desired skill is to hit a specified point on a
wall with a dart. The dart is placed on the launcher and held there by friction. The motor primitive
corresponds to the throwing of the dart. When modeling a single dart’s movement with dynamical-systems
motor primitives [Ijspeert et al., 2002b], the combination of retracting and throwing motions would be
represented by the movement parameters @ of one movement primitive. The dart’s impact position can be
adapted to a desired target by changing the velocity and the angle at which the dart leaves the launcher.
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Figure 5.2: This figure illustrates a 2D dart throwing task. The situation, described by the state s cor-
responds to the relative height. The meta-parameters 7 are the velocity and the angle at
which the dart leaves the launcher. The policy parameters represent the backward motion and
the movement on the arc. The meta-parameter function 7(s), which maps the state to the
meta-parameters, is learned.

These variables can be influenced by changing the meta-parameters of the motor primitive such as the
final position of the launcher and the duration of the throw. The state consists of the current position
of the hand and the desired position on the target. If the thrower is always at the same distance from
the wall the two positions can be equivalently expressed as the vertical distance. The meta-parameter
function 7(s) maps the state (the relative height) to the meta-parameters 7y (the final position g and the
duration of the motor primitive T).

The approach presented in this chapter is applicable to any movement representation that has meta-
parameters, i.e., a small set of parameters that allows to modify the movement. In contrast to [Lampariello
et al., 2011, Jetchev and Toussaint, 2009, Grimes and Rao, 2008, Bentivegna et al., 2004b] our approach
does not require explicit (re-)planning of the motion.

In the next sections, we derive and apply an appropriate reinforcement learning algorithm.

5.2.2 Problem Statement: Meta-Parameter Self-improvement

The problem of meta-parameter learning is to find a stochastic policy 7(y|x) = p(7|s) that maximizes the
expected return

J(m) = /S p(s) /G r(rIs)R(s, y)d7 ds, 6.1

where S denotes the the space of states s, G denotes the the space of meta-parameters 7, and R(s,7)
denotes all the rewards following the selection of the meta-parameter y according to a situation described
by state s. Such a policy 7t(y|x) is a probability distribution over meta-parameters given the current state.
The stochastic formulation allows a natural incorporation of exploration, and the optimal time-invariant
policy has been shown to be stochastic in the case of hidden state variables [Sutton et al., 1999, Jaakkola
et al., 1993]. The return of an episode is R(s,7) = T~} ZtT:O rt with number of steps T and rewards
rt. For a parametrized policy 7 with parameters w it is natural to first try a policy gradient approach
such as finite-difference methods, vanilla policy gradient approaches and natural gradients. While we
will denote the shape parameters by 6, we denote the parameters of the meta-parameter function by w.
Reinforcement learning of the meta-parameter function 7(s) is not straightforward as only few examples
can be generated on the real system and trials are often quite expensive. The credit assignment problem
is non-trivial as the whole movement is affected by every change in the meta-parameter function. Early
attempts using policy gradient approaches resulted in tens of thousands of trials even for simple toy
problems, which is not feasible on a real system.
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Algorithm 5.1 Meta-Parameter Learning
Preparation steps:

Learn one or more motor primitives by imitation and/or reinforcement learning (yields shape parame-
ters 0).

Determine initial state s°, meta-parameters y°, and cost C° corresponding to the initial motor primitive.
Initialize the corresponding matrices S,T’, C.
Choose a kernel k, K.

Set a scaling parameter A.

for all iterations j do
Determine the state s’ specifying the situation.

Calculate the meta-parameters 7’ by:
Determine the mean of each meta-parameter i 7;(s’) = k(s’)T (K4 AC)™' T},
Determine the variance o2(s’) = k(s/,s') — k(s/)T (K+ AC) 1 k(s/),
Draw the meta-parameters from a Gaussian distribution y/ ~ A (y|7(s’), o2(s’)I)
Execute the motor primitive using the new meta-parameters.
Calculate the cost ¢/ at the end of the episode.

Update S, T, C according to the achieved result.

end for

Dayan and Hinton [1997] showed that an immediate reward can be maximized by instead minimizing
the Kullback-Leibler divergence D(7t(y|s)R(s,7)||7t'(7|s)) between the reward-weighted policy 7t(y|s) and
the new policy 7t'(y|s). As we are in an episodic setting, this form of optimization solves the considered
problem. Williams [1992] suggested to use Gaussian noise in this context; hence, we employ a policy of
the form

n(rls) = A (7]7(s), o*(s)D),

where we have the deterministic mean policy 7(s) = ¢ (s)"w with basis functions ¢ (s) and parameters
w as well as the variance o2(s) that determines the exploration € ~ A4(0,o(s)I) as e.g., in [Peters and
Schaal, 2008a]. The parameters w can then be adapted by reward-weighted regression in an immediate
reward [Peters and Schaal, 2008b] or episodic reinforcement learning scenario (see Chapter 4). The
reasoning behind this reward-weighted regression is that the reward can be treated as an improper
probability distribution over indicator variables determining whether the action is optimal or not.

5.2.3 A Task-Appropriate Reinforcement Learning Algorithm

Designing good basis functions is challenging, a nonparametric representation is better suited in this
context. There is an intuitive way of turning the reward-weighted regression into a Cost-regularized
Kernel Regression. The kernelization of the reward-weighted regression can be done straightforwardly
(similar to Section 6.1 of [Bishop, 2006] for regular supervised learning). Inserting the reward-weighted
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regression solution w = (#'R® + AI) '®"RI; and using the Woodbury formula? [Welling, 2010], we
transform reward-weighted regression into a Cost-regularized Kernel Regression

7= ¢(s)"w=¢(s)" (8"R& + A1) &"RI;
= ¢(s)'®" (#2" +2R') T, (5.2)

where the rows of @ correspond to the basis functions ¢ (s;) = ®; of the training examples, T'; is a vector
containing the training examples for meta-parameter component 7;, and A is a ridge factor. Next, we
assume that the accumulated rewards R, are strictly positive R, > 0 and can be transformed into costs by
¢k = 1/R;. Hence, we have a cost matrix C =R~ = diag(R;",...,R; ") with the cost of all n data points.
After replacing k(s) = ¢(s)'®" and K= ®&", we obtain the Cost-regularized Kernel Regression

7. =7:(8)=k(s)" (K+ €)',

which gives us a deterministic policy. Here, costs correspond to the uncertainty about the training
examples. Thus, a high cost is incurred for being further away from the desired optimal solution at a
point. In our formulation, a high cost therefore corresponds to a high uncertainty of the prediction at this
point.

In order to incorporate exploration, we need to have a stochastic policy and, hence, we need a predictive
distribution. This distribution can be obtained by performing the policy update with a Gaussian process
regression and we directly see from the kernel ridge regression that

o2(s) = k(s,s) + A —k(s)T (K+ AC) ' k(s),

where k(s,s) = ¢(s)'¢(s) is the norm of the point in the kernel space. We call this algorithm Cost-
regularized Kernel Regression. Algorithm 5.1 describes the complete learning procedure, where the rows
of S correspond to the states of the training examples s; = S;.

The algorithm corresponds to a Gaussian process regression where the costs on the diagonal are
input-dependent noise priors. The parameter A acts as a exploration-exploitation trade-off parameter as
illustrated in Figure 5.5. Gaussian processes have been used previously for reinforcement learning [Engel
et al., 2005] in value function based approaches while here we use them to learn the policy.

5.2.4 Meta-Parameter Learning by Reinforcement Learning

As a result of Section 5.2.3, we have a framework of motor primitives as introduced in Section 5.2.1
that we can use for reinforcement learning of meta-parameters as outlined in Section 5.2.2. We have
generalized the reward-weighted regression policy update to instead become a Cost-regularized Kernel
Regression (CrKR) update where the predictive variance is used for exploration. In Algorithm 1, we show
the complete algorithm resulting from these steps.

The algorithm receives three inputs, i.e., (i) a motor primitive that has associated meta-parameters
v, (i) an initial example containing state s°, meta-parameter 7° and cost C°, as well as (iii) a scaling
parameter A. The initial motor primitive can be obtained by imitation learning [Ijspeert et al., 2002b]
and, subsequently, improved by parametrized reinforcement learning algorithms such as policy gradients
[Peters and Schaal, 2008a] or Policy learning by Weighting Exploration with the Returns (PoWER)
[Kober and Peters, 2011a, Chapter 4]. The demonstration also yields the initial example needed for
meta-parameter learning. While the scaling parameter is an open parameter, it is reasonable to choose it
as a fraction of the average cost and the output noise parameter (note that output noise and other possible
hyper-parameters of the kernel can also be obtained by approximating the unweighted meta-parameter
function).

2 The equality (®"R® + AI)"'®"R = ®"(®®" + AR™!)"! is straightforward to verify by left and right multiplying the
non-inverted terms: ®"R(®®" + AR™!) = ("R + A)®".
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(a) Intial Policy based on Prior: R=0 (b) Policy after 2 updates: R=0.1 (c) Policy after 9 updates: R=0.8 (d) Policy after 12 updates: R=0.9
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Figure 5.3: This figure illustrates the meaning of policy improvements with Cost-regularized Kernel Regres-
sion. Each sample consists of a state, a meta-parameter and a cost where the cost is indicated
the blue error bars. The red line represents the improved mean policy, the dashed green
lines indicate the exploration/variance of the new policy. For comparison, the gray lines show
standard Gaussian process regression. As the cost of a data point is equivalent to having more
noise, pairs of states and meta-parameter with low cost are more likely to be reproduced than
others with high costs.

lllustration of the Algorithm

In order to illustrate this algorithm, we will use the example of the table tennis task introduced in
Section 5.2.1. Here, the robot should hit the ball accurately while not destroying its mechanics. Hence,
the cost could correspond to the distance between the ball and the paddle, as well as the squared torques.
The initial policy is based on a prior, illustrated in Figure 5.3(a), that has a variance for initial exploration
(it often makes sense to start with a uniform prior). This variance is used to enforce exploration. To return
a ball, we sample the meta-parameters from the policy based on the current state. After the trial the cost
is determined and, in conjunction with the employed meta-parameters, used to update the policy. If the
cost is large (e.g., the ball was far from the racket), the variance of the policy is large as it may still be
improved and therefore needs exploration. Furthermore, the mean of the policy is shifted only slightly
towards the observed example as we are uncertain about the optimality of this action. If the cost is small,
we know that we are close to an optimal policy (e.g., the racket hit the ball off-center) and only have to
search in a small region around the observed trial. The effects of the cost on the mean and the variance
are illustrated in Figure 5.3(b). Each additional sample refines the policy and the overall performance
improves (see Figure 5.3(c)). If a state is visited several times and different meta-parameters are sampled,
the policy update must favor the meta-parameters with lower costs. If several sets of meta-parameters
have similarly low costs, where it converges depends on the order of samples. The cost function should
be designed to avoid this behavior and to favor a single set. The exploration has to be restricted to safe
meta-parameter ranges. Algorithm 1 exhibits this behavior as the exploration is only local and restricted
by the prior (see Figure 5.3). If the initial policy is safe, exploring the neighboring regions is likely to
be safe as well. Additionally, lower level controllers as well as the mechanics of the robot ensure that
kinematic and dynamic constrains are satisfied and a term in the cost function can be used to discourage
potentially harmful movements.

In the example of the 2D dart throwing task, the cost is similar. Here, the robot should throw darts
accurately while not destroying its mechanics. Hence, the cost could correspond to the error between
desired goal and the impact point, as well as the absolute velocity of the end-effector. Often the state
is determined by the environment, e.g., the ball trajectory in table tennis depends on the opponent.
However, for the dart setting, we could choose the next target and thus employ CrKR as an active learning
approach by picking states with large variances. In the dart throwing example we have a correspondence
between the state and the outcome similar to a regression problem. However, the mapping between the
state and the meta-parameter is not unique. The same height can be achieved by different combinations
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Figure 5.4: This figure shows the performance of the compared algorithms averaged over 10 complete
learning runs. Cost-regularized Kernel Regression finds solutions with the same final perfor-
mance two orders of magnitude faster than the finite difference gradient (FD) approach and
twice as fast as the reward-weighted regression. At the beginning FD often is highly unstable
due to our attempts of keeping the overall learning speed as high as possible to make it a
stronger competitor. The lines show the median and error bars indicate standard deviation.
The initialization and the initial costs are identical for all approaches. However, the omission of
the first twenty rollouts was necessary to cope with the logarithmic rollout axis. The number
of rollouts includes the rollouts not used to update the policy.

of velocities and angles. Averaging these combinations is likely to generate inconsistent solutions. The
regression must hence favor the meta-parameters with the lower costs. CrKR can be employed as a
regularized regression method in this setting.

5.3 Evaluations and Experiments

In Section 5.2, we have introduced both a framework for meta-parameter self-improvement as well as
an appropriate reinforcement learning algorithm used in this framework. In this section, we will first
show that the presented reinforcement learning algorithm yields higher performance than off-the shelf
approaches. Hence, we compare it on a simple planar cannon shooting problem [Lawrence et al., 2003]
with the preceding reward-weighted regression, an off-the-shelf finite difference policy gradient approach,
and show the advantages over supervised learning approaches.

The resulting meta-parameter learning framework can be used in a variety of settings in robotics. We
consider three scenarios here, i.e., (i) dart throwing with a simulated Barrett WAM, a real Kuka KR 6,
and the JST-ICORP/SARCOS humanoid robot CBi [Cheng et al., 2007], (ii) table tennis with a simulated
robot arm and a real Barrett WAM, and (iii) throwing a ball at targets with a MATLAB simulation and a
real BioRob [Lens et al., 2010].

5.3.1 Benchmark Comparison: Toy Cannon Shots

In the first task, we only consider a simple simulated planar cannon shooting where we benchmark
our Reinforcement Learning by Cost-regularized Kernel Regression approach against a finite difference
gradient estimator and the reward-weighted regression. Additionally we contrast our reinforcement
learning approach to a supervised one. Here, we want to learn an optimal policy for a 2D toy cannon
environment similar to [Lawrence et al., 2003]. This benchmark example serves to illustrate out approach
and to compare it to various previous approaches.
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Figure 5.5:

average cost
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This figure illustrates the influence of the parameter A for the Cost-regularized Kernel Regres-
sion. The red curve (A = 0.5) corresponds to the red curve (Cost-regularized Kernel Regression)
in Figure 5.4(c). The parameter A trades off the exploration versus the exploitation. A higher
A leads to larger exploration and, thus, faster convergence to a suboptimal solution. The
results are averaged over 10 complete learning runs. The lines show the median and error bars
indicate standard deviation. The number of rollouts includes the rollouts not used to update
the policy.
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In this figure, we compare Gaussian process regression (GPR) in a supervised learning setting
as proposed by [Ude et al., 2010, Kronander et al., 2011] to Cost-regularized Kernel Regression
(CrKR) in a reinforcement learning setting. The red curve corresponds to the red curve (Cost-
regularized Kernel Regression) in Figure 5.4. The GPR is trained with samples from the prior
used for the CrkR (blue line) and with samples of the final CrKR policy (cyan line) respectively.
The black line indicates the cost after CrKR has converged. GPR with samples drawn from the
final policy performs best. Please note that this comparison is contrived as the role of CrkR is
to discover the policy that is provided to "GPR structured policy”. GPR can only reproduce the
demonstrated policy, which is achieved perfectly with 1000 samples. GPR can reproduce the
demonstrated policy more accurately if more samples are available. However, it cannot improve
the policy according to a cost function and it is impacted by contradictory demonstrations. The
results are averaged over 10 complete learning runs. The lines show the median and error bars
indicate standard deviation. The number of rollouts includes the rollouts not used to update
the policy.
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The setup is given as follows: A toy cannon is at a fixed location [0.0,0.1] m. The trajectory of the
cannon ball depends on the angle with respect to the ground and the speed at which it leaves the cannon.
The flight of the canon ball is simulated as ballistic flight of a point mass with Stokes’s drag as wind
model. The cannon ball is supposed to hit the ground at a desired distance. The desired distance [1..3] m
and the wind speed [0..1] m/s, which is always horizontal, are used as input states, the velocities in
horizontal and vertical directions are the meta-parameters (which influences the angle and the speed
of the ball leaving the cannon). In this benchmark we do not employ the motor primitives but set the
meta-parameters directly. Lower speed can be compensated by a larger angle. Thus, there are different
possible policies for hitting a target; we intend to learn the one which is optimal for a given cost function.
This cost function is defined as

¢ = (b, —s,)*+0.01 (bi + bzz) ,

where b, is the impact position on the ground, s, the desired impact position as indicated by the state,
and B{X’Z} are the horizontal and vertical velocities of the cannon ball at the impact point respectively. It
corresponds to maximizing the precision while minimizing the employed energy according to the chosen
weighting. The input states (desired distance and wind speed) are drawn from a uniform distribution
and directly passed to the algorithms. All approaches performed well in this setting, first driving the
position error to zero and, subsequently, optimizing the impact velocity. The experiment was initialized
with [1,10] m/s as initial ball velocities and 1 m/s as wind velocity. This setting corresponds to a very
high parabola, which is far from optimal. For plots, we evaluate the policy on a test set of 25 uniformly
randomly chosen points that remain the same throughout of the experiment and are never used in the
learning process but only to generate Figure 5.4.

We compare our novel algorithm to a finite difference policy gradient (FD) method [Peters and Schaal,
2008a] and to the reward-weighted regression (RWR) [Peters and Schaal, 2008b]. The FD method uses a
parametric policy that employs radial basis functions in order to represent the policy and perturbs the
parameters. We used 25 Gaussian basis functions on a regular grid for each meta-parameter, thus a total
of 50 basis functions. The number of basis functions, the learning rate, as well as the magnitude of the
perturbations were tuned for best performance. We used 51 sets of uniformly perturbed parameters for
each update step. The perturbed policies were evaluated on a batch of 25 input parameters to avoid
over-fitting on specific input states.The FD algorithm converges after approximately 2000 batch gradient
evaluations, which corresponds to 2,550,000 shots with the toy cannon.

The RWR method uses the same parametric policy as the finite difference gradient method. Exploration
is achieved by adding Gaussian noise to the mean policy. All open parameters were tuned for best
performance. The reward transformation introduced by Peters and Schaal [2008b] did not improve
performance in this episodic setting. The RWR algorithm converges after approximately 40,000 shots
with the toy cannon. For the Cost-regularized Kernel Regression (CrKR) the inputs are chosen randomly
from a uniform distribution. We use Gaussian kernels and the open parameters were optimized by
cross-validation on a small test set prior to the experiment. Each trial is added as a new training point if it
landed in the desired distance range. The CrKR algorithm converges after approximately 20,000 shots
with the toy cannon. The bandwidth of the kernels used for CrKR is in the same order of magnitude as the
bandwidth of the basis functions. However, due to the non-parametric nature of CrKR, narrower kernels
can be used to capture more details in order to improve performance. Figure 5.5 illustrates the influence
of the parameter A for the CrKR.

After convergence, the costs of CrKR are the same as for RWR and slightly lower than those of the FD
method. The CrKR method needs two orders of magnitude fewer shots than the FD method. The RWR
approach requires twice the shots of CrKR demonstrating that a non-parametric policy, as employed by
CrKR, is better adapted to this class of problems than a parametric policy. The squared error between the
actual and desired impact is approximately 5 times higher for the finite difference gradient method, see
Figure 5.4.
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Figure 5.7: This figure shows a dart throw in a physically realistic simulation.
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Figure 5.8: This figure shows a dart throw on the real JST-ICORP/SARCOS humanoid robot CBi.

Compared to standard Gaussian process regression (GPR) in a supervised setting, CrKR can improve
the policy over time according to a cost function and outperforms GPR in settings where different
combinations of meta-parameters yield the same result. For details, see Figure 5.6.

5.3.2 Robot Dart-Throwing Games

Now, we turn towards the complete framework, i.e., we intend to learn the meta-parameters for motor
primitives in discrete movements. We compare the Cost-regularized Kernel Regression (CrKR) algorithm
to the reward-weighted regression (RWR). As a sufficiently complex scenario, we chose a robot dart
throwing task inspired by [Lawrence et al., 2003]. However, we take a more complicated scenario and
choose dart games such as Around the Clock [Masters Games Ltd., 2010] instead of simple throwing at a
fixed location. Hence, it will have an additional parameter in the state depending on the location on the
dartboard that should come next in the sequence. The acquisition of a basic motor primitive is achieved
using previous work on imitation learning [Ijspeert et al., 2002b]. Only the meta-parameter function
is learned using CrKR or RWR. For the learning process, the targets (which are part of the state) are
uniformly distributed on the dartboard. For the evaluation the targets are placed in the center of the
fields. The reward is calculated based on the impact position observed by a vision system in the real robot
experiments or the simulated impact position.

The dart is placed on a launcher attached to the end-effector and held there by stiction. We use the
Barrett WAM robot arm in order to achieve the high accelerations needed to overcome the stiction. See
Figure 5.7, for a complete throwing movement. The motor primitive is trained by imitation learning with
kinesthetic teach-in. We use the Cartesian coordinates with respect to the center of the dart board as input
states. In comparison with the benchmark example, we cannot directly influence the release velocity in
this setup. Hence, we employ the parameter for the final position g, the time scale of the motor primitive
7 and the angle around the vertical axis (i.e., the orientation towards the dart board to which the robot
moves before throwing) as meta-parameters instead. The popular dart game Around the Clock requires
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Figure 5.9: This figure shows the cost function of the dart-throwing task for a whole game Around the
Clock in each rollout. The costs are averaged over 10 runs with the error-bars indicating
standard deviation. The number of rollouts includes the rollouts not used to update the policy.
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Figure 5.10: This figure shows a dart throw on the real Kuka KR 6 robot.

the player to hit the numbers in ascending order, then the bulls-eye. As energy is lost overcoming the
stiction of the launching sled, the darts fly lower and we placed the dartboard lower than official rules
require. The cost function is defined as

c=10 d~—s~2+’r,
Z (l 1

ie{x,z}

where d; are the horizontal and vertical positions of the dart on the dartboard after the throw, s; are
the horizontal and vertical positions of the target corresponding to the state, and T corresponds to the
velocity of the motion. After approximately 1000 throws the algorithms have converged but CrKR yields
a high performance already much earlier (see Figure 5.9). We again used a parametric policy with
radial basis functions for RWR. Here, we employed 225 Gaussian basis function on a regular grid per
meta-parameter. Designing a good parametric policy proved very difficult in this setting as is reflected by
the poor performance of RWR.

This experiment has also being carried out on three real, physical robots, i.e., a Barrett WAM, the
humanoid robot CBi (JST-ICORP/SARCOS), and a Kuka KR 6. CBi was developed within the framework

5.3 Evaluations and Experiments 81



=
-

"

s

(@) The robot isin the (b) The arm swings (c) The arm strikes (d) The arm follows (e) The arm returns to
rest posture. back. the ball. through and decel- the rest posture.

erates.

7
--=

Figure 5.11: This figure shows the phases of a table tennis stroke on the real Barrett WAM.

of the JST-ICORP Computational Brain Project at ATR Computational Neuroscience Labs. The hardware
of the robot was developed by the American robotic development company SARCOS. CBi can open and
close the fingers which helps for more human-like throwing instead of the launcher employed by the
Barrett WAM. See Figure 5.8 for a throwing movement.

We evaluated the approach on a setup using the Kuka KR 6 robot and a pneumatic gripper. The robot
automatically picks up the darts from a stand. The position of the first degree of freedom (horizontal
position) as well as the position of the fifth degree of freedom and the release timing (vertical position)
were controlled by the algorithm. Due to inaccurate release timing the vertical position varied in a range
of 10cm. Additionally the learning approach had to cope with non-stationary behavior as the outcome
of the same set of parameters changed by one third of the dart board diameter upward. Despite these
additional complications the robot learned to reliably (within the reproduction accuracy of 10cm as noted
above) hit all positions on the dart board using only a total of 260 rollouts. See Figure 5.10 for a throwing
movement.

5.3.3 Robot Table Tennis

In the second evaluation of the complete framework, we use the proposed method for hitting a table
tennis ball in the air. The setup consists of a ball gun that serves to the forehand of the robot, a Barrett
WAM and a standard sized table. The movement of the robot has three phases. The robot is in a rest
posture and starts to swing back when the ball is launched. During this swing-back phase, the open
parameters for the stroke are to be learned. The second phase is the hitting phase which ends with
the contact of the ball and racket. In the final phase, the robot gradually ends the stroking motion and
returns to the rest posture. See Figure 5.11 for an illustration of a complete episode and Chapter 3 for a
more detailed description. The movements in the three phases are represented by three motor primitives
obtained by imitation learning. We only learn the meta-parameters for the hitting phase.

The meta-parameters are the joint positions g and velocities g for all seven degrees of freedom at
the end of the second phase (the instant of hitting the ball) and a timing parameter t;, that controls
when the swing back phase is transitioning to the hitting phase. For this task we employ a variant of
the motor primitives that allows to set non-zero end velocities [Kober et al., 2010a]. We learn these 15
meta-parameters as a function of the state, which corresponds to the ball positions and velocities when
it is directly over the net. We employed a Gaussian kernel and optimized the open kernel parameters
according to typical values for the input and output beforehand. As cost function we employ

Z (bi (trie) = pi (tnie) )

ie{x,y,z}

where b; (ty,;;) are the Cartesian positions of the ball and p; (ty;;) are the Cartesian positions of the center
of the paddle, both at the predicted hitting time t;;,. The policy is evaluated every 50 episodes with
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Figure 5.12: This figure shows samples of the learned forehands. Note that this figure only illustrates the
learned meta-parameter function in this context but cannot show timing (see Figure 5.13)
and velocity and it requires a careful observer to note the important configuration differences
resulting from the meta-parameters.
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Figure 5.13: This figure illustrates the effect of the velocity of the ball towards the robot on the time it
has until the ball needs to be hit. The plot was generated by sweeping through the velocity

component towards the robot, keeping the other position and velocity values fixed. The line
is the mean of 100 sweeps drawn from the same ball distribution as used during the learning.

25 ball launches picked randomly at the beginning of the learning. We initialize the behavior with five
successful strokes observed from another player. After initializing the meta-parameter function with only
these five initial examples, the robot misses approximately 95% of the balls as shown in Figure 5.15. Trials
are only used to update the policy if the robot has successfully hit the ball as they did not significantly
improve the learning performance and in order to keep the calculation sufficiently fast. Figures 5.12
and 5.14 illustrate different positions of the ball the policy is capable of dealing with after the learning.
Figure 5.13 illustrates the dependence of the timing parameter on the ball velocity towards the robot and
Figure 5.15 illustrates the costs over all episodes. For the results in Figure 5.15, we have simulated the
flight of the ball as a simple ballistic point mass and the bouncing behavior using a restitution constant for
the velocities. The state is directly taken from the simulated ball data with some added Gaussian noise. In
the real robot experiment (Figure 5.16), the ball is shot with a ball cannon. The position of the ball is
determined by two pairs of stereo cameras and the velocity is obtained by numerical differentiation. In
this second setting, the state information is a lot less reliable due to noise in the vision system and even
the same observed state can lead to different outcomes due to unobserved spin.
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Figure 5.14: This figure shows samples of the learned forehands on the real robot.
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Figure 5.15: This figure shows the cost function of the simulated table tennis task averaged over 10 runs
with the error-bars indicating standard deviation. The red line represents the percentage of
successful hits and the blue line the average cost. The number of rollouts includes the rollouts
not used to update the policy. At the beginning the robot misses the ball 95% of the episodes
and on average by 50 cm. At the end of the learning the robot hits almost all balls.

5.3.4 Active Learning of Ball Throwing

As an active learning setting, we chose a ball throwing task where the goal is to improve the throws while
trying to perform well in a higher level game. For this scenario, it is important to balance learning of
the individual actions by practicing them while at the same time, focusing on the overall performance in
order to achieve the complete skill. Prominent examples are leisure time activities such as sports or motor
skill games. For example, when playing darts with friends, you will neither always attempt the lowest risk
action, nor always try to practice one particular throw, which will be valuable when mastered. Instead,
you are likely to try plays with a reasonable level of risk and rely on safe throws in critical situations. This
exploration is tightly woven into higher order dart games.

The higher level is modeled as a standard reinforcement learning problem with discrete states and
actions. The lower level learning is done using CrKR. The higher level determines the target the robot is
supposed to hit. The lower level has to learn how to hit this target. The transition probabilities of the
higher level can be estimated from the learned meta-parameter function as explained in Section 5.3.4.
We will discuss the rules of the game in Section 5.3.4, a simulated experiment in Section 5.3.4, and the
results of an evaluation with a real BioRob in Section 5.3.4.
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Figure 5.16: This figure shows the cost function of the table tennis task on the real robot. The policy was
learned entirely on the real robot. The red line represents the percentage of successful hits
and the blue line the average cost. The number of rollouts includes the rollouts not used to
update the policy. At the beginning the robot misses the ball 70% of the episodes and on
average by 15cm. At the end of the learning the robot hits 80% of the balls.

Game used for the Evaluations

The game is reminiscent of blackjack as the goal is to collect as many points as possible without going
over a threshold. The player throws a ball at three targets. The three rewards of one, two, and three are
assigned to one target each. The setup of the game is illustrated in Figure 5.17. If the ball lands in the
target, the player receives the corresponding number of points. The player starts with zero points if he
gets more than 10 points he “busts” and incurs a loss of -10. The player has the option to “stand” (i.e.,
stop throwing and collect the accumulated number of points) at all times. Missing all targets does not
entail a cost.

Two-Level Learning Approach

Our framework considers a hierarchy of two levels: a strategy level and a behavior level. The strategy
level determines the strategy for the high-level moves, here termed “behaviors”, of the game. The behavior
level deals with executing these behaviors in an optimal fashion. The strategy level chooses the next
behavior, which is then executed by the behavior level. Upon completion of the behavior, the strategy
level chooses the next behavior. The setup is illustrated in Figure 5.18.

We assume that the game has discrete states s € S and discrete behaviors b € B. In the dart setting a
behavior could be attempting to hit a specific field and the state could correspond to the current score.
Given the current state, each behavior has an associated expected outcome o € Q. For example, the
behavior “throw at target X” has the outcome “change score by X” as a result of hitting target X. The
transition probabilities %g of the strategy level would express how likely it is to hit a different field.
The game can be modeled as an Markov decision process or MDP [Sutton and Barto, 1998], where the
states consist of the number of accumulated points (zero to ten) and two additional game states (“bust”
and “stand”). The behaviors correspond to attempting to throw at a specific target or to “stand” and are
fixed beforehand. We assume to have an episodic game with a finite horizon, which can be expressed
equivalently as an infinite horizon problem where we define an absorbing terminal state in which all
actions receive an immediate reward of 0.

On the behavior level, we augment the state space with continuous states that describe the robot and
the environment to form the combined state space s. This state space could, for example, include the
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Figure 5.17: This figure illustrates the side-stall game. The player throws the ball and if it lands in the
target (illustrated by a wall with target holes) gets the number of points written next to it.

Missing the targets is not punished, however, going over ten points leads to a loss of ten
points.
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Figure 5.18: This figure illustrates the setup of the roles of the different levels.
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position and velocity of the arm, the position of the targets as well as the current score. The actions are
considered to be continuous and could, for example, be the accelerations of the arm. As the strategy level
has to wait until the behavior is completed, the behaviors need to be of episodic nature as well. We have a
single motor primitive representing the three behaviors of aiming at the three targets. Hitting the desired
target is learned using CrKR. We employ Policy Iteration [Sutton and Barto, 1998] to learn on the strategy
level.

The rewards for the strategy learning are fixed by the rules of the game. The possible states and
behaviors also result from the way the game is played. The missing piece for the strategy learning is
the transition probabilities 32‘52. The behavior learning by CrKR associates each behavior with a variance.
Each of these behaviors correspond to an expected change in state, the outcome o. For example “aim at 2”
corresponds to “increase score by 2”. However, the meta-parameter function does not explicitly include
information regarding what happens if the expected change in state is not achieved. We assume that
there is a discrete set of outcomes o € O (i.e., change in state) for all behaviors b for a certain state s. For
example in this game hitting each target, and missing, is associated with either increasing the player’s
score, winning or to bust (i.e., going over ten). With the meta-parameter function, we can calculate
the overlaps of the ranges of possible meta-parameters for the different behaviors. These overlaps can
then be used to determine how likely it is to end up with a change of state associated with a behavior
different from the desired one. This approach relies on the assumption that we know for each behavior
the associated range of meta-parameters and their likelihood.

The meta-parameters are drawn according to a normal distribution, thus the overlap has to be weighted
accordingly. The probability of the outcome o when performing behavior b can be calculated as follows:

°(r)
ot = [ pP()e—e—dy,
/ p (Y)Zke@pk(ﬂ Y

where y is the meta-parameters, p?(y) is the probability of picking the meta-parameter y when performing
behavior b, p°(y) is the probability of picking the meta-parameter y when performing the action associated
to the considered outcome o, and ), _, p*(y) is the normalizing factor. This scenario has first been
treated in [Kober and Peters, 2011b].

Evaluation in Simulation

We first evaluated our approach using a MATLAB based simulation. The throw is modeled as a two
dimensional ballistic flight of a point mass. The targets correspond to segments of the ground line. The
meta-parameters are the initial horizontal and vertical velocities of the ball. The meta-parameters used to
initialize the learning make the ball drop in front of the first target. The cost function for the behavior
level is

c= Z b12+ (bx—Sx)Z,

ie{x,z}

where b; are the initial velocities, b, is the impact position and s, the desired impact position. The state
corresponds to the three targets and is determined by the higher level. Figure 5.19 illustrates how the
player learns to throw more accurately while playing. Figure 5.20 illustrates how learning to perform the
lower level actions more reliably enables the player to perform better in the game.

Evaluation on a real BioRob

We employ a BioRob to throw balls in a catapult like fashion. The arm is approximately 0.75m long, and it
can reach 1.55m above the ground. The targets are located at a distance of 2.5m from the robot at a height
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Figure 5.19: This figure illustrates the transition probabilities of the three behaviors to their associated

outcome in simulation. For example, the red line indicates the probability of gaining one
point when throwing at target 1. After approximately 50 throws the player has improved his
accuracy level such that he always hits the desired target. The plots are averaged over 10 runs
with the error-bars indicating standard deviations.
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Figure 5.20: This figure illustrates the improvement of the player over the number of games in simulation.

Due to the large penalty for busting the framework always uses a safe strategy. Already
after five completed games the player reaches almost always the maximum possible score
of 10. As the number of throws is not punished there are initially many throws that miss
the target. After 7 games the number of throws has converged to 4, which is the minimum
required number. The plots are averaged over 10 runs with the error-bars indicating standard
deviations.
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Figure 5.21: This figure illustrates the setup of the robot evaluation.
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Figure 5.22: This figure illustrates the transition probabilities of the three behaviors to their associated
outcome like in Figure 5.19. The skill improves a lot in the first 15 throws after that the
improvement levels of. Initially behavior 2, associated with target 2 (which lies in the center)
is most likely to succeed. The success rate of 60% corresponds to the level of reproducibility of

our setup. The framework manages to handle this large uncertainty by choosing to “stand”
early on. The plots are averaged over 4 runs with the error-bars indicating standard deviations.
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Figure 5.23: These frames illustrate one throwing motion with the BioRob.

of 0.9m, 1.2m, and 1.5m respectively. The ball is placed in a funnel-shaped receptacle. In this setup, the
initial horizontal and vertical velocities of the ball cannot directly be set. Instead, the meta-parameters
are defined as the duration and amount of acceleration for two joints that are in the throwing plane.
The robot starts in a fixed initial position, accelerates the two joints according to the meta-parameter
indicating the magnitude, and accelerates in the opposite direction after the time determined by the other
meta-parameter in order to break. Finally the robot returns to the initial position. See Figure 5.23 for an
illustration of one throwing motion. The state corresponds to the three targets and is determined by the
higher level. The outcome of the throw is observed by a vision system.

Executing the throw with identical parameters will only land at the same target in approximately 60%
of the throws, due to the high velocities involved and small differences in putting the ball in the holder.
Thus, the algorithm has to deal with large uncertainties. The cost function for the behavior level is

c= Z 62+ ¢2 + (b, —s.)°,

ie{1,2}

where 6, is the acceleration magnitude, t,.. the acceleration duration, b, is the impact position and s,
the desired impact position. The setup makes it intentionally hard to hit target 3. The target can only be
hit with a very restricted set of parameters. For targets 1 and 2 increasing the amount of acceleration
or the duration will result in a higher hit. Target 3 is at the limit where higher accelerations or longer
durations will lead to a throw in a downward direction with a high velocity.

The typical behavior of one complete experiment is as follows: At the beginning the robot explores in a
very large area and stands as soon as it reaches a score of 8, 9, or 10. Due to the large punishment it
is not willing to attempt to throw at 1 or 2 while having a large uncertainty, and, thus, a high chance
of busting. Later on, it has learned that attempting to throw at 2 has a very low chance of ending up
in 3 and hence will attempt to throw 2 points if the current score is 8. We setup the policy iteration to

90 5 Reinforcement Learning to Adjust Parametrized Motor Primitives to New Situations



favor behaviors with a higher number, if the values of the behaviors are identical. The first throws of
a round will often be aimed at 3, even if the probability of hitting target 2 using this action is actually
higher than hitting the associated target 3. Until 8 or more points have been accumulated, action 3 is safe
(i.e., cannot lead to busting), does not entrain a punishment if missing or hitting a lower target, and has a
large learning potential. Figure 5.22 illustrates how the robot learns to throw more accurately within the
physical limits of the system.

5.4 Conclusion & Future Work

In this chapter, we have studied the problem of meta-parameter learning for motor primitives. It is
an essential step towards applying motor primitives for learning complex motor skills in robotics more
flexibly. We have discussed an appropriate reinforcement learning algorithm for mapping situations to
meta-parameters.

We show that the necessary mapping from situation to meta-parameter can be learned using a Cost-
regularized Kernel Regression (CrKR) while the parameters of the motor primitive can still be acquired
through traditional approaches. The predictive variance of CrKR is used for exploration in on-policy
meta-parameter reinforcement learning. We compare the resulting algorithm in a toy scenario to a policy
gradient algorithm with a well-tuned policy representation and the reward-weighted regression. We show
that our CrKR algorithm can significantly outperform these preceding methods. We also illustrate the
advantages of our reinforcement learning approach over supervised learning approaches in this setting.
To demonstrate the system in a complex scenario, we have chosen the Around the Clock dart throwing
game, table tennis, and ball throwing implemented both on simulated and real robots. In these scenarios
we show that our approach performs well in a wide variety of settings, i.e. on four different real robots
(namely a Barrett WAM, a BioRob, the JST-ICORP/SARCOS CBi and a Kuka KR 6), with different cost
functions (both with and without secondary objectives), and with different policies in conjunction with
their associated meta-parameters.

In the ball throwing task, we have discussed first steps towards a supervisory layer that deals with
sequencing different motor primitives. This supervisory layer is learned by an hierarchical reinforcement
learning approach [Huber and Grupen, 1998, Barto and Mahadevan, 2003]. In this framework, the
motor primitives with meta-parameter functions could also be seen as robotics counterpart of options
[McGovern and Barto, 2001] or macro-actions [McGovern et al., 1997]. The presented approach needs to
be extended to deal with different actions that do not share the same underlying parametrization. For
example in a table tennis task the supervisory layer would decide between a forehand motor primitive
and a backhand motor primitive, the spatial meta-parameter and the timing of the motor primitive would
be adapted according to the incoming ball, and the motor primitive would generate the trajectory. Future
work will require to automatically detect which parameters can serve as meta-parameters as well as to
discovering new motor primitives.
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6 Learning Prioritized Control of Motor Primitives

Many tasks in robotics can be decomposed into sub-tasks that are performed simultaneously. In many
cases, these sub-tasks cannot all be achieved jointly and a prioritization of such sub-tasks is required to
resolve this issue. In this chapter, we discuss a novel learning approach that allows to learn a prioritized
control law built on a set of sub-tasks represented by motor primitives. The primitives are executed
simultaneously but have different priorities. Primitives of higher priority can override the commands of
the conflicting lower priority ones. The dominance structure of these primitives has a significant impact on
the performance of the prioritized control law. We evaluate the proposed approach with a ball bouncing
task on a Barrett WAM.

6.1 Introduction

When learning a new skill, it is often easier to practice the required sub-tasks separately and later on
combine them to perform the task — instead of attempting to learn the complete skill as a whole. For
example, in sports sub-tasks can often be trained separately. Individual skills required in the sport are
trained in isolation to improve the overall performance, e.g., in volleyball a serve can be trained without
playing the whole game.

Sub-tasks often have to be performed simultaneously and it is not always possible to completely fulfill
all at once. Hence, the sub-tasks need to be prioritized. An intuitive example for this kind of prioritizing
sub-tasks happens during a volleyball game: a player considers hitting the ball (and hence avoiding it
touching the ground and his team loosing a point) more important than locating a team mate and playing
the ball precisely to him. The player will attempt to fulfill both sub-tasks. If this is not possible it is often
better to “safe” the ball with a high hit and hope that another player recovers it rather than immediately
loosing a point.

In this chapter, we learn different sub-tasks that are represented by motor primitives that combined
can perform a more complicated task. For doing so, we will stack controls corresponding to different
primitives that represent movements in task space. These primitives are assigned different priorities and
the motor commands corresponding to primitives with higher priorities can override the motor commands
of lower priority ones. The proposed approach is outlined in Section 6.1.1 and further developed in
Section 6.2. We evaluate our approach with a ball-bouncing task (see Figure 6.1 and Section 6.3).

As the sub-tasks describe the movements in task space, we have to learn a control that is mapping to
the robot joint space. Unfortunately, this mapping is not a well-defined function for many robots. For
example, if the considered task space has less degrees of freedom than the robot, multiple solutions

Figure 6.1: This figure illustrates the ball-bouncing task on a Barrett WAM. The goal is to keep the ball
bouncing on the racket.
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are possible. This redundancy can be resolved by introducing a null-space control, i.e., a behavior that
operates on the redundant degrees of freedom. Such a null-space control can for example pull the robot
towards a rest posture [Peters and Schaal, 2008a], prevent getting close to joint limits [Chaumette and
Marchand, 2001], avoid obstacles [Khatib, 1986] or singularities [Yoshikawa, 1985]. Computing the task
space control often corresponds to an optimization problem, that can for example be solved by a gradient
based approach. A well known approach is the pseudo-inverse solution [Khatib, 1986, Peters and Schaal,
2008a]. An alternative is to learn an operational space control law that implicitly includes the null-space
behavior [Peters and Schaal, 2008b]. Once learned, it corresponds to a unique mapping from desired
actions in operational space to required actions in joint space.

The problem studied in this chapter is related to hierarchical control problems as discussed in [Findeisen
etal., 1980]. Using prioritized primitives in classical control has been explored in [Sentis and Khatib, 2005]
by using analytical projections into the null-space. In this chapter, we propose a learning approach that
does not require complete knowledge of the system, the constraints, and the task. In the reinforcement
learning community, the compositions of options (i.e., concurrent options), which is related to the
concurrent execution of primitives, has been studied by Precup et al. [1998]. Learning null-space control
has been explored in [Towell et al., 2010]. In contrast, we do not attempt to recover the implicit null-space
policy but build a hierarchical operational space control law from user demonstrated primitives.

6.1.1 Proposed Approach

Based on the observation that many tasks can be described as a superposition of sub-tasks, we want to
have a set of controls that can be executed simultaneously. As a representation for the sub-tasks, we chose
the dynamical systems motor primitives, which are discussed in more detail in Chapter 3. Such primitives
are well suited as representation for the sub-tasks as they ensure the stability of the movement generation.
They are invariant under transformations of initial position and velocity, the final position and velocity,
the duration as well as the movement amplitude.

In this chapter, these primitives are described in different task spaces, e.g., in the form

X; = m;(x;,%;,2)

where z denotes a share canonical system while x; are positions in task-space i. For example, if we have a
primitive “move end-effector up and down” its task space would correspond to the Cartesian position
indicating the height (as well as the corresponding velocities and accelerations) but not include the
sideways movement or the orientation of the end-effector. The dynamical systems motor primitives are
well suited to represent different kinds of vertical movements starting and ending at various states and of
different duration.

These primitives are prioritized such that

which reads a “task i dominates task i — 1”. If both sub-tasks can be fulfilled at the same time, our system
will do so — but if this should not be possible, sub-task i will be fulfilled at the expense of sub-task i —1. We
attempt to reproduce a complex task that consists of several sub-tasks, represented by motor primitives,

{my, 7, ., iy}
that are concurrently executed at the same time following the prioritization scheme

NzN-1=---zZ2=1.
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This approach requires a prioritized control law that composes the motor command out of the primitives
m;, i.e.,

u= f(ﬂ-l)ﬂ:Z,J'--:nN)qu)
where q, q are the joint position and joint velocity, u are the generated motor commands (torques or
accelerations).

We try to acquire the prioritized control law in three steps, which we will illustrate with the ball-bouncing
task:

1. We observe X;(t),%;(t),x;(t) individually for each of the primitives that will be used for the task.
For the ball-bouncing example, we may have the following sub-tasks: “move under the ball”, “hit
the ball”, and “change racket orientation”. The training data is collected by executing only one
primitive at a time without considering the global strategy, e.g., for the “change racket orientation”
primitive by keeping the position of the racket fixed and only changing its orientation without a
ball being present. This training data is used to acquire the task by imitation learning under the
assumption that these tasks did not need to overrule each other in the demonstration (Sect. 6.2).

2. We enumerate all possible dominance structures and learn a prioritized control law for each
dominance list that fusions the motor primitives. For the three ball-bouncing primitives there are six
possible orders, as listed in Table 6.1.

3. We choose the most successful of these approaches. The activation and adaptation of the different
primitives is handled by a strategy layer (Section 6.3.2). In the ball-bouncing task, we evaluate how
long each of the prioritized control laws keeps the ball in the air and pick the best performing one
(Section 6.3.3).

Clearly, enumerating all possible dominance structures only works for small systems (as the number of
possibilities grows with n!, i.e., exponentially fast).

6.2 Learning the Prioritized Control Law

By learning the prioritized control, we want to obtain a control law

u= q: f(nla’rCZ,:' ":ﬂ:Nﬁq:q)a
i.e., we want to obtain the required control u that executes the primitives 7,7, ,...,Ty. Here, the
controls correspond to the joint accelerations . The required joint accelerations not only depend on the
primitives but also on the current state of the robot, i.e., the joint positions q and joint velocities q. Any
control law can be represented locally as a linear control law. In our setting, these linear control laws can

be represented as

. AT

X;

u=1| q 0:¢T0,
q

where 0 are the parameters we want to learn and ¢ = [ X q q ] acts as features. Often the actions of
the primitive X; can be achieved in multiple different ways due to the redundancies in the robot degrees
of freedom. To ensure consistency, a null-space control is introduced. The null-space control can, for
example, be defined to pull the robot towards a rest posture q,, resulting in the null-space control

u, = -Kpq—Kp (q—qp),
where K, and K, are gains for the velocities and positions respectively.
To learn the prioritized control law, we try to generalize the learning operational space control approach
from [Peters and Schaal, 2008b] to a hierarchical control approach [Sentis and Khatib, 2005, Peters and
Schaal, 2008a].
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6.2.1 Single Primitive Control Law

A straightforward approach to learn the motor commands u, represented by the linear model u= ¢*9, is
using linear regression. This approach minimizes the squared error

T

B =3 (u - 970)’

t=1

between the demonstrated control of the primitive uief and the recovered linear policy u, = ¢E0, where

T is the number of samples. The parameters minimizing this error are
6=(2"2+21) 2", (6.1)

with @ and U containing the values of the demonstrated ¢ and u for all time-steps t respectively, and a
ridge factor A. If the task space and the joint-space coincide, the controls u = q are identical to the action
of the primitive X;. We also know that locally any control law that can be learned from data is a viable
control law [Peters and Schaal, 2008b]. The error with respect to the training data is minimized, however,
if the training data is not consistent, the plain linear regression will average the motor commands, which
is unlikely to fulfill the actions of the primitive.
In order to enforce consistency, the learning approach has to resolve the redundancy and incorporate
the null-space control. We can achieve this by using the program
minJ = (u—1u,) N(u-—up) (6.2)

u
s.t.X = m(x,X,2)

as discussed in [Peters and Schaal, 2008a]. Here the cost J is defined as the weighted squared difference
of the control u and the null-space control u,, where the metric N is a positive semi-definite matrix. The
idea is to find controls u that are as close as possible to the null-space control u, while still fulfilling the
constraints of the primitive 7. This program can also be solved as discussed in [Peters and Schaal, 2008b].
Briefly speaking, the regression in Equation (6.1) can be made consistent by weighting down the error by
weights w, and hence obtaining

6= (8"'We+21)  &"WU 6.3)

with W = diag(w,...,wy,) for T samples. This approach works well for linear models and can be
gotten to work with multiple locally linear control laws. Nevertheless, it maximizes a reward instead of
minimizing a cost. The cost J can be transformed into weights w, by passing it through an exponential
function

w, = exp (—aﬁfNﬁt) ,

where i, = (u, — u,). The scaling factor a acts as a monotonic transformation that does not affect the
optimal solution but can increase the efficiency of the learning algorithm.
Using the Woodbury formula [Welling, 2010] Equation (6.3) can be transformed into

u=¢(0)'e" (28" +W,) U (6.4)
with W, = diag (ﬁ{Nﬁl, cees ﬁZNﬁn). By introducing the kernels k(s) = ¢ (s)"®T and K = ®&" we obtain
u=k(s)" (K+W,)7'U,

which is related to the kernel regression [Bishop, 2006] and corresponds to the Cost-regularized Kernel
Regression introduced in Chapter 5. This kernelized form of Equation (6.4) overcomes the limitations of
the linear model at a cost of higher computational complexity.
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Algorithm 6.1 Learning the Prioritized Control Law

define null-space control u,, metric N, scaling factor a

collect controls u; , and features ¢, , for all primitives i € {1,...,N} and all time-steps t € {1,..., T}
separately

for primitives i = 1...N (N: highest priority) do
for time-steps t =1...T do
calculate offset controls
0, =u;, — Z;;i Ztoj — Ug,;
calculate weights w; , = exp (—aﬁItNﬁi,t
end for
build control matrix U; containing @;; .. g
build feature matrix ®; containing ¢; ;... ¢; r
build weight matrix W; = diag(w, ..., W; 1)
calculate parameters
6, = (2TW.&,+ 1) #'W,0,
end for
end for

6.2.2 Prioritized Primitives Control Law

In the previous section, we have described how the control law for a single primitive can be learned.
To generalize this approach to multiple primitives with different priorities, we want a control law that
always fulfills the primitive with the highest priority and follows the remaining primitives as much as
possible according to their place in the hierarchy. Our idea is to represent the higher priority control laws
as correction term with respect to the lower priority primitives. The control of the primitive with the
lowest priority is learned first. This control is subsequently considered to be a baseline and the primitives
of higher priority only learn the difference to this baseline control. The change between the motor
commands resulting from primitives of lower priority is minimized. The approach is reminiscent of online
passive-aggressive algorithms [Crammer et al., 2006]. Hence, control laws of higher priority primitives
only learn the offset between their desired behavior and the behavior of the lower priority primitives.
This structure allows them to override the actions of the primitives of lesser priority and, therefore, add
more detailed control in the regions of the state space they are concerned with. The combined control of
all primitives is

N
u:u0+ZAun,

n=1

where u, is the null-space control and Au,, are the offset controls of the N primitives.
Such control laws can be expressed by changing the program in Equation (6.2) to

i—1 T i—1
minJ = ui—ZAuj—uo N ui—ZAuj—uO
j=1 j=1

u;

StXl == ﬂ:i(xiyxi,z))
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(@) Exaggerated schematic drawing. The green arrows indicate velocities.
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(b) Paddling movement for the simulated robot. The black ball represents the virtual target (see Section 6.3.2)

(c) Paddling movement for the real Barrett WAM.

Figure 6.2: This figure illustrates a possible sequence of bouncing the ball on the racket in a schematic
drawing, in simulation, and on the real robot.

where the primitives need to be learned in the increasing order of their priority, the primitive with the
lowest priority is learned first, the primitive with the highest priority is learned last. The regression in
Equation (6.3) changes to

-~ -1 PPN
0, = (/W + 1) &W,0,

- . N i—1 .
where U; contains the offset controls @; , = ui,t_z;=1 Au; . —u, . for all time-steps ¢, where Au; , = ¢1.Tt0 i

The weighting matrix W; now has the weights w, = exp (—aﬁiT tNﬁi’t) on its diagonal and matrix U,
contains offset controls @; .. The kernelized form of the prioritized control law can be obtained analogously.
The complete approach is summarized in Algorithm 6.1.

6.3 Evaluation: Ball-Bouncing

In order to evaluate the proposed prioritized control approach, we chose a ball bouncing task. We describe
the task in Section 6.3.1, explain a possible higher level strategy in Section 6.3.2, and discuss how the
proposed framework can be applied in Section 6.3.3.
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Figure 6.3: This figure illustrates the employed strategy for bouncing the ball on the racket. The highest
point of the ball trajectory is supposed to coincide with the red target. The racket is always
hitting the ball in a fixed height, i.e., the hitting plane. The strategy is to play the ball in a way
that the next intersection with the hitting plane is directly below the target and the maximum
height of the ball trajectory corresponds to the height of the target. If the bounce works
exactly as planned, the ball needs to be hit only once to return to a strictly vertical bouncing
behavior.

6.3.1 Task Description

The goal of the task is to bounce a table tennis ball above a racket. The racket is held in the player’s hand,
or in our case attached to the end-effector of the robot. The ball is supposed to be kept bouncing on the
racket. A possible movement is illustrated in Figure 6.2.

It is desirable to stabilize the bouncing movement to a strictly vertical bounce, hence, avoiding the need
of the player to move a lot in space and, thus, leaving the work space of the robot. The hitting height is a
trade-off between having more time until the next hit at the expense of the next hitting position possibly
being further away. The task can be sub-dived into three intuitive primitives: hitting the ball upward,
moving the racket under the ball before hitting, and changing the orientation of the racket to move the
ball to a desired location. A possible strategy is outlined in the next section.

The ball is tracked using a stereo vision setup and its positions and velocities are estimated by a Kalman
filter. To initialize the ball-bouncing task, the ball is thrown towards the racket.

6.3.2 Bouncing Strategy

The strategy employed to achieve the desired bouncing behavior is based on an imagined target that
indicates the desired bouncing height. This target is above the default posture of the racket. The top point
of the ball trajectory is supposed to hit this target, and the stable behavior should be a strictly vertical
bounce. This behavior can be achieved by defining a hitting plane, i.e., a height at which the ball is always
hit (which corresponds to the default posture of the racket). On this hitting plane, the ball is always hit
the in a manner that the top point of its trajectory corresponds to the height of the target and the next
intersection of the ball trajectory with the hitting plane is directly under the target. See Figure 6.3 for an
illustration.

To achieve this desired ball behavior, the racket is always moved to the intersection point of the ball
trajectory and the hitting plane. By choosing the hitting velocity and the orientation of the racket, the
velocity and direction of the ball after being hit can be changed. The required hitting velocity and
orientation are calculated using a model of the ball and the racket. The ball is modeled as a point mass
that moves according to the ballistic flight equations. For the relatively low speeds and small distances air
resistance is negligible. The contact with the racket is modeled as a reflection with a restitution factor.
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Number of Hits
in Simulation | on Real Robot

single model 5.70+0.73 1.10£0.99
hit>=move>orient 11.35+2.16 2.30£0.67
hit>orient>=move 10.85+1.46 1.70£0.95
move>hit>orient 9.05+0.76 1.40£0.70
move>orient>=hit 7.75+£1.48 1.40£0.84
orient>=hit>move 5.90+0.85 1.30£0.67
orient=move>hit 5.35+0.49 1.301+0.48

Dominance Structure

Table 6.1: This table shows the suitability of the possible dominance structures (mean=std). The “hit the
ball” primitive clearly is the dominant one, followed by the “move under the ball” primitive.
The prioritized control laws work significantly better than a single model learned using the
combined training data of the three primitives. Preliminary results on the real robot confirm
this ordering.

Using this strategy the ball can be brought back to a strictly vertical bouncing behavior with a single
hit. However, this method requires the knowledge of the ball position and velocity, as well as a model of
the ball behavior. An alternative strategy that stabilizes the behavior in a completely open loop behavior
by employing a slightly concave paddle shape has been suggested in [Reist and D’Andrea, 2009]. A
method similar to the proposed strategy has been employed by Kulchenko [2011] and Miiller et al. [2011].
Buehler et al. [1994] proposed the mirror law for this task. The ball bouncing task has also be employed
to study how humans stabilize a rhythmic task [Schaal et al., 1996].

6.3.3 Learning Results

As discussed in Section 6.3.1, the task can be described by three primitives: “move under the ball”, “hit the
ball”, and “change racket orientation”. Training data is collected in the relevant state space independently
for each primitive. For doing so, the parameters corresponding to the other primitives are kept fixed
and variants of the primitive are hence executed from various different starting positions. The primitive
“move under the ball” corresponds to movements in the horizontal plane, the primitive “hit the ball” to up
and down movements, and the primitive “change racket orientation” only changes the orientation of the
end-effector. We collected 30 seconds of training data for each primitive, corresponding to approximately
60 bounces.

Having only three primitives allows it to enumerate all six possible dominance structures, to learn the
corresponding prioritized control law, and to evaluate the controller. As intuitive quality measure we
counted the number of bounces until the robot missed, either due to imprecise control or due to the ball
being outside of the safely reachable work-space.

Table 6.1 illustrates the resulting dominance structures. The most relevant primitive is the “hit the
ball” primitive, followed by the “move under the ball” primitive. In the table it is clearly visible that
inverting the order of two neighboring primitives that are in the preferred dominance order always results
in a lower number of hits. Compared to a single model, that was trained using the combined training
data of the three primitives, all but two prioritized control laws work significantly better. The ordering
may appear slightly counter-intuitive as moving under the ball seems to be the most important primitive
in order to keep the ball in the air, allowing for later corrections. However, the robot has a fixed base
position and the ball moves quickly out of the safely reachable work-space, resulting in a low number of
hits. Additionally, the default position of the racket is almost vertical, hence covering a fairly large are of
the horizontal plane resulting in robustness with respect to errors in this primitive.
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6.4 Conclusion

In this chapter, we have presented a prioritized control learning approach that is based on the superposition
of movement primitives. We have introduced a novel framework for learning prioritized control. The
controls of the lower priority primitives are fulfilled as long as they lay in the null-space of the higher
priority ones and get overridden otherwise. As representation for the primitives, we employ the dynamical
systems motor primitives [Ijspeert et al., 2002a, Schaal et al., 2007], which yield controls in the form
of desired accelerations. These primitives are executed separately to collect training data. Local linear
models are trained using a weighted regression technique incorporating the various possible dominance
structures. In the presented ball bouncing task, the movement is restricted to a space where the controls
are approximately linear. Hence, a single linear model per primitive was sufficient. This limitation can be
overcome by either considering multiple local linear models [Peters and Schaal, 2008b] or by kernelizing
the weighted regression, as described in Section 6.2.1 and 6.2.2.

The dominance structure of the task was determined by testing all possible structures exhaustively.
Intuitively, the lower priority primitives represent a global behavior and the high priority primitives
represent specialized corrections, hence overriding the lower priority controls. In most cases, the resulting
prioritized control works significantly better than a single layer one that was trained with the combined
training data of all primitives. As illustrated by the evaluations, the dominance structure can have a
significant influence on the global success of the prioritized control. Enumerating all possible dominance
structures is factorial in the number of primitives and hence unfeasible in practice for more than four
primitives. In this case, smarter search strategies are needed.

The success of the different dominance structures not only depends on the task but also on the employed
strategy of activating and adapting the different primitives. An interesting area for future research could
be to jointly learn the prioritized control and the strategy.

The presented approach has been evaluated both in simulation and on a real Barrett WAM and we have
demonstrated that our novel approach can successfully learn a ball-bouncing task.
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7 Conclusion

In this thesis, we have discussed reinforcement learning approaches for motor skills represented by motor
primitives. In the next section, we provide an overview of the key contributions in this thesis and then we
discuss possible directions for extending the presented research.

7.1 Summary

The contributions of this paper are for the state-of the-art in both machine learning and in robotics.

7.1.1 Algorithms

In this thesis, we have proposed a framework of policy search based on reward-weighted imitation.
The resulting EM-inspired algorithms are applicable both to parametrized and non-parametric policies.
The policy search algorithms presented in this thesis perform local optimization which results in fast
convergence but also poses the risk of converging to bad local optima. For all the presented application
scenarios, good initial policies are available, which mitigates the problem of bad local optima and renders
the approaches applicable in practice.

In Section 1.2.1, we have discussed requirements for robotic reinforcement learning approaches, i.e.,
they should avoid damage to the robot, and should be fast, both in terms of convergence and computation
time. Having a sample-efficient algorithm, only very few open parameters, and the ability to incorporate
prior knowledge all are essential for fast convergence. In the following we will discuss how the proposed
algorithms meet these requirements.

Policy learning by Weighting Exploration with the Returns (POWER)

PoWER (Chapter 4) is an EM-inspired policy search algorithm relying on a parametrized policy and
structured exploration in the parameter space. The algorithm is particularly suitable for motor primitives
(Chapter 3). We introduce a framework of reward weighted imitation that yields several well known policy
search algorithms: episodic REINFORCE [Williams, 1992], the policy gradient theorem [Sutton et al.,
1999], episodic natural actor critic [Peters and Schaal, 2008c], a generalization of the reward-weighted
regression [Peters and Schaal, 2008b].

PoWER is unlikely to damage the robot as it only explores locally and usually is initialized by an initial
policy. Using importance sampling, the policy can be updated after each rollout, hence it is sample efficient.
Prior knowledge can be incorporated both in the form of the initial policy and by defining the policy
structure via the parametrization. The main open parameter is the exploration magnitude. This parameter
only needs to be set once initially and can then be automatically adjusted during the learning process as
discussed in Section 4.A.3. The policy structure is also an open parameter. The dynamical systems motor
primitives essentially only have a single open parameter, i.e., the number of basis functions as an open
parameter which corresponds to the amount of detail that the policy can capture. The bottleneck of the
update calculation is a matrix inversion that can be avoided by making some additional independence
assumptions that work well in conjunction with the dynamical systems motor primitives.

PoWER outperformed various other policy search approaches (i.e., finite difference gradients, episodic
REINFORCE, ‘vanilla’ policy gradients with optimal baselines, episodic natural actor critic, and episodic
reward-weighted regression) on benchmarks and robotic tasks. Our approach has inspired follow-up work
in other contexts, for example [Vlassis et al., 2009, Kormushev et al., 2010]. Theodorou et al. [2010]
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have derived algorithms based on the path integral approach that are very similar to POWER and have
also been successfully employed for robotic tasks [Buchli et al., 2011, Kalakrishnan et al., 2011, Pastor
et al., 2011, Stulp et al., 2011, Tamosiunaite et al., 2011].

Cost-regularized Kernel Regression (CrKR)

CrKR (Chapter 5) is an EM-inspired policy search algorithm employing a non-parametric policy representa-
tion. CrKR is based on a kernelized version of the episodic reward-weighted regression [Peters and Schaal,
2008b, Chapter 4]. Similar to Gaussian process regression, CrKR yields a predictive variance that can be
employed to guide the exploration. In this thesis it is employed to generalize movements to new situations.
This type of learning relies on a policy representation that has a number of meta-parameters that allow
to generalize the movement globally while retaining the details of the motion. The motor primitives
(Chapter 3) inherently have six modification parameters (the initial position x(l), the initial velocity xg, the
goal g, the goal velocity g, the amplitude A, and the duration T') which serve as meta-parameters.

CrKR explores locally similar to POWER. It can include an initial policy in the form of a prior or
initial samples. The policy is updated after each rollout. Instead of fixing a parametrized policy, the
kernel hyper-parameters need to be determined, which results in a more flexible policy representation as
demonstrated in comparisons with finite difference gradients and episodic reward-weighted regression.
The hyper-parameters can be estimated from initial demonstrations. The update equation also includes
a matrix inversion, which theoretically could be replaced by a sparse approximation. However, in the
proposed setting the sample size was sufficiently small to allow full matrix inversion.

7.1.2 Applications

The applications focus mainly on dynamical systems motor primitives as policy representations but we
also demonstrated the approaches using various different parametrization. All approaches have been
extensively evaluated on benchmark tasks as well as with simulated and real robots, namely a Barrett
WAM, a BioRob, the JST-ICORP/SARCOS CBi and a Kuka KR 6.

We successfully learned the single movements of Tetherball Target Hitting, Casting, Underactuated
Swing-Up, and Ball-in-a-Cup using imitation learning and subsequent reinforcement learning. Compared
to alternative approaches the proposed algorithm consistently converged to a better solution in less
rollouts. In the Ball-in-a-Cup task the number of optimized parameters would result in an unrealistic
amount of rollouts for gradient based policy search approaches.

We learned to generalize the motor skills of dart throwing and table tennis strikes. In contrast to
previous work on generalizing dynamical systems motor primitives, we employ reinforcement learning to
discover a non-intuitive mapping between states and actions. We compared the proposed non-parametric
approach to parametric ones and showed that it is hard to find a good parametrization in this setting.

We have demonstrated initial steps towards hierarchical learning with a ball target throwing task. In
this task we learn how to hit targets while keeping in mind a higher level strategy. Finally, we employed
a ball-bouncing task to explore first ideas towards learning to perform a task based on the concurrent
execution of several motor primitives.

7.2 Open Problems

In this thesis, we have contributed to the state of art of autonomous acquisition of motor skill by robots
by developing approaches for learning motor primitives via reinforcement learning in robotics. In the
following, we briefly discuss possible extensions of the presented work and future lines of research.

104 7 Conclusion



Learning Motor Skills

The presented learning approaches have been applied to episodic tasks that correspond to sports and
games. We present several ideas to render them applicable to a wider variety of tasks and how to overcome
some of their current limitations.

Rhythmic Motor Tasks

This thesis focused on discrete motor tasks in an episodic setting. However, there are also many
interesting rhythmic motor task that could be learned, e.g., the ball paddling movement, briefly discussed
in Section 4.4.2, could be optimized to consume less energy. Several periods of such rhythmic tasks
could be grouped into rollouts and the presented algorithms would be directly applicable. However, it is
not obvious how such tasks could be learned online without frequent restarts. Deciding when complete
restarts are required is an interesting challenge. Rhythmic tasks often require a start-up phase until
transitioning into a stable rhythmic behavior. Similarly, even if a stable behavior with a high reward
is achieved after online learning and exploration, it is not obvious to ensure that this state is directly
reachable.

Compliance

The presented policy parametrizations are all based on positions, velocities and accelerations in joint
or task space. Force controlled robots additionally allow to adapt their compliance and stiffness during
the movement. When humans learn a new motor skill, they are often fairly tense initially but soon start
to figure out during which parts of the movement they can relax their muscles. Decreasing the stiffness
of the robot renders direct interactions with humans and its environment safer and has the additional
benefit of being more energy efficient. Hence, the robot needs to remain compliant unless the specific part
of the movement requires higher forces or precise positioning. Extending the dynamical systems motor
primitives to include global or directional stiffness would render the presented algorithms applicable in
this setting. A related approach has already been discussed by Kalakrishnan et al. [2011] for this problem.

Sparse Approximations

We employed CrKR (Chapter 5) to generalize motor skills to new situations. In the current implementa-
tion we rely on the fact that the sample size is typically small enough to compute the updates in real-time.
In Chapter 6, we employed a related approach to learn prioritized control, which is straightforward
to kernelize. However, only a few seconds of training data could be used for real-time computations
due to the high sampling rate. The matrix inversion is the main bottleneck, but also calculating the
kernel between the current state and all stored samples can pose problems. As an alternative a local
approximation or a sparse approximation could be considered [Nguyen-Tuong and Peters, 2011]. For the
local models, the state-space is divided into smaller local ones, hence reducing the number of training
points. In a sparse approximation, only the most informative points are considered. The most challenging
question for these approaches remains how to construct the local models or to decide which points to
discard, include, or merge.

Continuous Adaptation

In Chapter 5, we evaluated tasks that only required a one-time adaptation to the situation. Especially
for the table tennis task, continuously adapting the hitting movement to the ball’s movement would
render the task more reliable. Ball spin is hard to determine from the vision data before the ball bounces.
However, due to acceleration limits of the robot, the hitting movement needs to be initiated before the
bounce. Conceptually CrKR can handle this setting as well, however considering the whole state-space
will result in significantly more samples, rendering real-time computations more challenging (see above),
and also make generalizations more difficult due to the curse of dimensionality. Experiments need to
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be done in order to evaluate the feasibility and to determine whether additional components such as
dimensionality reduction or models would be beneficial.

Manipulation

Compared to the presented applications (related to games and sports), grasping and manipulation often
require less dynamic movements but in contrast have a higher dimensional state space due to the more
complicated interactions between the robot and the objects. Grasping and manipulation are essential
building blocks for many household tasks and have to be able to generalize to novel objects and tools. For
example, opening a door needs to take into account a wide variety of handles and would benefit from
adaptive compliance levels (as discussed above) for approaching the handle, pushing the handle, and
opening the door.

Using Models

In Chapter 2, we identified the use of models as one of the promising approaches to make reinforcement
learning for robotics tractable. We mainly employed a model of the robot and environment for debugging
purposes, before testing the algorithms on the real robot. The approaches indirectly employ a model of
the robot by using, e.g., the inverse dynamics controller of the robot. Pre-training in simulation can be
helpful if the models are sufficiently accurate. An interesting extension of the proposed approaches would
be to employ mental rehearsal with learned models in between real robot rollouts.

Hierarchical Reinforcement Learning

The hierarchical reinforcement learning approach presented in Chapter 5 is very specific to the problem
setting. A more general hierarchical reinforcement learning approach would need the ability to choose
between different motor primitives, the ability to discover new options, i.e., decide when it is better to
generate a new one than to generalize an old one, and the ability to learn the shape parameters jointly
with the meta-parameters. In a table tennis scenario we could have a library of already learned motor
primitives. The hierarchical reinforcement learning approach would need to pick the most appropriate
primitive (a forehand, a backhand, a smash, etc.) from this library according to the incoming ball, the
current state of the robot, as well as strategic considerations. The template primitives will have to be
generalized according to the current situation, either based on a single primitive or by combining several
primitives. An approach based on the mixture of motor primitives has been recently proposed by Miilling
et al. [2010]. Especially at the beginning of the learning process it will often be advantageous to learn
and add a new primitive to the library instead of generalizing an old one.

Sequencing Motor Primitives

Another interesting direction for research is learning to optimally transition between motor primitives,
e.g., to change from a forehand to a backhand. The transition needs to take into account external
constraints such as self-collision and decide whether there is sufficient time for a successful transition.
This problem is highly related to motion blending [Kovar, 2004]. It would be very interesting to see how
well the approaches developed by the computer graphics community transfer to robotics.

Superposition of Motor Primitives

In our daily lives we often perform several motor skills simultaneously like balancing a tray while
walking or sidestepping and keeping balance while hitting a table tennis ball. In order to perform
multiple motor skills simultaneously a system could for example overly, combine and prioritize motor
primitives. First ideas have been explored in Chapter 6. Similar to inverse reinforcement learning, it
would be interesting to try to recover a dominance structure of primitives from human demonstrations.
Alternatively, reinforcement learning could be employed to determine the best ordering for a given reward.
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Learning Layers Jointly

For the ball-bouncing task (Chapter 6), we assumed that both the motor primitives and the strategy
layer are fixed. In this task, better performance could be achieved if not only the prioritized control would
be adapted but the primitives and the strategy as well. For example, the primitives could be adapted to
compensate for shortcomings of the learned control or the strategy could be adapted. A straightforward
idea would be to run a reinforcement learning algorithm after the prioritized control has been learned.
PoWER could be employed to learn the parameters of the underlying primitives. The approach presented
in Chapter 5 is a first attempt to tackle this kind of hierarchical problems.

Multiple Strategies

Learning single motor skills with POWER (Chapter 4) relied on a single initial demonstration. Combining
several demonstrations can potentially provide a better understanding of the important features of the
movement. However, using a weighted average of multiple demonstrations of different strategies is
unlikely to succeed. Keeping multiple strategies in mind and figuring out which parts of the movement
can be learned jointly and which parts have to be learned separately might lead to faster and more robust
learning. Daniel et al. [2012] employ a hierarchical reinforcement learning framework to learn different
strategies for a thetherball task jointly.

7.3 Publications

Excerpts of the research presented in this thesis have led to the following publications:

Journal Papers
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2011.

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: a survey. International Journal of
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robot motion (c), as well as a kinesthetic teach-in (b). The green arrows show the directions
of the current movements in that frame. The human cup motion was taught to the robot
by imitation learning with 31 parameters per joint for an approximately 3 seconds long
movement. The robot manages to reproduce the imitated motion quite accurately, but
the ball misses the cup by several centimeters. After approximately 75 iterations of the
Policy learning by Weighting Exploration with the Returns (PoOWER) algorithm the robot
has improved its motion so that the ball regularly goes intothecup. . . . ... ... .....

This figure illustrates the different phases of a table tennis stroke. The blue box on the
left represents a ping-pong ball launcher, the table is shown in green and the different
states of the robot are superposed. A typical racket trajectory is indicated by the dark gray
solid line while the orange dashed line represents the ball’s trajectory. The robot goes
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In this figure, we convey the intuition of the presented reactive templates for learning
striking movements. The Ijspeert formulation can be seen as a nonlinear spring damper
system that pulls a degree of freedom to a stationary goal while exhibiting a learned
movement shape. The presented approach allows hitting a target with a specified velocity
without replanning if the target is adapted and, in contrast to the Ijspeert formulation, can
be seen as a degree of freedom pulled towards a moving goal. . ................

Target velocity adaptation is essential for striking movements. This figure illustrates
how different versions of the dynamical system based motor primitives are affected by
a change of the target velocity. Here, an artificial training example (i.e., ¢ = 2t +
cos(4tm) — 1) is generated. After learning, all motor primitive formulations manage to
reproduce the movements accurately from the training example for the same target velocity
and cannot be distinguished. When the target velocity is tripled, this picture changes
drastically. For Ijspeert’s original model the amplitude modifier a had to be increased to
yield the desired velocity. The increased amplitude of the trajectory is clearly visible for the
positions and even more drastic for the velocities and accelerations. The reformulations
presented in this paper, stay closer to the movement shape and amplitude. Particularly the
velocities and accelerations exhibit that the new approach allows much better generalizing
of the learned behavior. This figure furthermore demonstrates how a large initial step in
acceleration appears for Ijspeert’s original model (and the reformulation for hitting) even
if a transformation function is used to partially suppress it for the training example. . . . .

An important aspect of the Ijspeert framework is that such primitives are guaranteed
to be stable and, hence, safe for learning. A problem of the regular formulation highly
unevenly distributed acceleration with a jump at the beginning of the movement of its
unaltered dynamics. These high accelerations affect the movement when the behavior is
either generalized to new goals or when during trial-and-error learning where the initial
parameters are small. Some of these problem have previously been noted by Park et al.
[2008], and are particularly bad in the context of fast striking movements. Here, we
compare the different formulations with respect to their acceleration in the unaltered
dynamics case (i.e., w = 0). For a better comparison, we set the goal velocity to zero
(g = 0). The Ijspeert formulation clearly shows the problem with the large acceleration, as
does the reformulation for hitting (with a hitting speed of § = 0 both are identical). While
the Park modification starts without the jump in acceleration, it requires almost as high
accelerations shortly afterwards. The acceleration-safe reformulation for hitting also starts
out without a step in acceleration and does not require huge accelerations. . ..... ...

This figure demonstrates the generalization of an imitated behavior to a different target that
is 15cm away from the original target. Note that this trajectory is for a static target, hence
the slow motion. The depicted degree of freedom (DoF) is shoulder adduction-abduction
(i.e., the second DoF). The solid gray bars indicate the time before and after the main
movement, the gray dashed lines indicate the phase borders also depicted in Figure 3.1
and the target is hit at the second border. . . ... ... ... ... ... ... ... ... ...,

This figure presents a hitting sequence from the demonstration, a generalization on the
robot with a ball attached by a string as well as a generalization hitting a ball shot by a
ping-pong ball launcher. The demonstration and the flying ball generalization are captured
by a 25Hz video camera, the generalization with the attached ball is captured with 200Hz
through our vision system. From left to right the stills represent: rest posture, swing-back
posture, hitting point, swing-through and rest posture. The postures (D-®) are the same
asin Figure 3.2. . . . . . e e e e e e e e e

Generalization to various targets (five different forehands at posture ®) are shown approx-
imately when hitting theball. . ... ... ... ... . ... . .. . .
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4.7 This figure shows the improvement of the policy over rollouts. The snapshots from the
video show the final positions. (0) Initial policy after imitation learning (without torque
limit). (1) Initial policy after imitation learning (with active torque limit). (20) Policy after
20 rollouts, going further up. (30) Policy after 30 rollouts, going too far. (40) Policy after
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real robot and the mean performance averaged over 3 learning runs with the error bars
indicating the standard deviation. POWER outperforms the other algorithms and finds a
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4.9 This figure illustrates the Casting task and shows the mean returns of the compared methods. 57

4.10 This figure illustrates how the reward is calculated. The plane represents the level of the
upper rim of the cup. For a successful rollout the ball has to be moved above the cup
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plane at the moment the ball is passing the plane in a downward direction. If the ball is
flying directly into the center of the cup, the distance is 0 and through the transformation
exp(—d?) yields the highest possible reward of 1. The further the ball passes the plane
from the cup, the larger the distance and thus the smaller the resulting reward. . . . . . . . 58
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4.11 This figure shows schematic drawings of the Ball-in-a-Cup motion (a), the final learned
robot motion (c), as well as a kinesthetic teach-in (b). The arrows show the directions
of the current movements in that frame. The human cup motion was taught to the robot
by imitation learning with 31 parameters per joint for an approximately 3 seconds long
trajectory. The robot manages to reproduce the imitated motion quite accurately, but the
ball misses the cup by several centimeters. After approximately 75 iterations of our Policy
learning by Weighting Exploration with the Returns (PoWER) algorithm the robot has
improved its motion so that the ball goes in the cup. Also see Figure 4.12. . . ... ... ..

4.12 This figure shows the expected return of the learned policy in the Ball-in-a-Cup evaluation
averaged over 20 TUMS. . . . . . o v v it i e e e e e e e e e e e e e e e e

4.13 This figure shows the improvement of the policy over rollouts. The snapshots from the
video show the position of the ball closest to the cup during a rollout. (1) Initial policy
after imitation learning. (15) Policy after 15 rollouts, already closer. (25) Policy after 25
rollouts, going too far. (45) Policy after 45 rollouts, hitting the near rim. (60) Policy after
60 rollouts, hitting the far rim. (100) Final policy after 100 rollouts.. . . . .. ... ... ..

4.14 This figure illustrates the Ball-Paddling task in simulation and on the real robot. The
difference between simulation and robotics can be particularly emphasized in this problem
where unrealistically many trials were needed on the simulation for reinforcement learning
while the real world behavior could be learned by imitation learning. It illustrates the
energy-consuming scenario and the difficulties of realistic learning in the presence of
CONLACt fOTCES. . . . v o i e e e e e e

5.1 This figure illustrates a table tennis task. The situation, described by the state s, corresponds
to the positions and velocities of the ball and the robot at the time the ball is above the
net. The meta-parameters 7 are the joint positions and velocity at which the ball is hit.
The policy parameters represent the backward motion and the movement on the arc. The
meta-parameter function 7(s), which maps the state to the meta-parameters, is learned. .

5.2 This figure illustrates a 2D dart throwing task. The situation, described by the state s
corresponds to the relative height. The meta-parameters y are the velocity and the angle at
which the dart leaves the launcher. The policy parameters represent the backward motion
and the movement on the arc. The meta-parameter function 7(s), which maps the state to
the meta-parameters, islearned. . . . . . . . . .. ...

5.3 This figure illustrates the meaning of policy improvements with Cost-regularized Kernel
Regression. Each sample consists of a state, a meta-parameter and a cost where the cost is
indicated the blue error bars. The red line represents the improved mean policy, the dashed
green lines indicate the exploration/variance of the new policy. For comparison, the gray
lines show standard Gaussian process regression. As the cost of a data point is equivalent
to having more noise, pairs of states and meta-parameter with low cost are more likely to
be reproduced than others with highcosts. . ... .. ... ... ... .. ... ......

5.4 This figure shows the performance of the compared algorithms averaged over 10 complete
learning runs. Cost-regularized Kernel Regression finds solutions with the same final
performance two orders of magnitude faster than the finite difference gradient (FD)
approach and twice as fast as the reward-weighted regression. At the beginning FD often
is highly unstable due to our attempts of keeping the overall learning speed as high as
possible to make it a stronger competitor. The lines show the median and error bars
indicate standard deviation. The initialization and the initial costs are identical for all
approaches. However, the omission of the first twenty rollouts was necessary to cope with
the logarithmic rollout axis. The number of rollouts includes the rollouts not used to update
the POLiCY. . . . o . o e
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5.5 This figure illustrates the influence of the parameter A for the Cost-regularized Kernel
Regression. The red curve (A = 0.5) corresponds to the red curve (Cost-regularized
Kernel Regression) in Figure 5.4(c). The parameter A trades off the exploration versus
the exploitation. A higher A leads to larger exploration and, thus, faster convergence to
a suboptimal solution. The results are averaged over 10 complete learning runs. The
lines show the median and error bars indicate standard deviation. The number of rollouts
includes the rollouts not used to update the policy.. . . . .. ... ... . ... ..... 78

5.6 In this figure, we compare Gaussian process regression (GPR) in a supervised learning
setting as proposed by [Ude et al., 2010, Kronander et al., 2011] to Cost-regularized Kernel
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samples are available. However, it cannot improve the policy according to a cost function
and it is impacted by contradictory demonstrations. The results are averaged over 10
complete learning runs. The lines show the median and error bars indicate standard
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5.15 This figure shows the cost function of the simulated table tennis task averaged over 10 runs

with the error-bars indicating standard deviation. The red line represents the percentage
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was learned entirely on the real robot. The red line represents the percentage of successful
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target (illustrated by a wall with target holes) gets the number of points written next to it.
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Abbreviations

In this PhD thesis we use the following mathematical notation throughout this thesis:

Notation

{x1,%0,...,x,}
R
X = [X1,X0,..., X, ]

X

xT

A= [aj,a,,...,a,]

Q;

Description

set with elements x, xo,..., X,

real numbers

a vector

the i component of the vector x
transpose of vector

a matrix

the i™ vector of the matrix A

the i, j™ component of the matrix A
transpose of matrix

matrix inverse

matrix pseudo-inverse

matrix root

derivative with respect to parameter 6;
derivative with respect to parameters 6;
partial derivative

probability density of x

expectation of x

sample average of x
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As symbols in this PhD thesis, the following symbols are used in several sections:

Symbol

S1:T+1

a.r

T = [SlzT-i-l: al:T:|
T

7t (a.ls;, t)

J(0)

D (pliq)
Q" (s,a,t)
F(0)

€

H

n

k
g=Vof(0)
[0

Y ()

c

h

At

A

k(s,s),K

Description

time

task space position, velocity, acceleration

joint space position, velocity, acceleration

state (at time t)

action (at time t)

series of states s, with t € {1,2,..., T + 1}

series of actions a, with t € {1,2,...

rollout, episode, trial
rollout length

policy

set of all possible paths

reward (at time t)

series of rewards r, with t € {1,2,...

return

expected return
Kullback-Leibler divergence
value function of policy 7
Fisher information matrix
exploration

number of rollouts

index of parameter

index of iteration
gradient

update rate

weights

centers

widths

time step

ridge factor

kernel, Gram matrix

motor command

,T}

JT}
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