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Abstract
Movement primitives are a well established approach for encoding and executing movements. While the primitives
themselves have been extensively researched, the concept of movement primitive libraries has not received similar
attention. Libraries of movement primitives represent the skill set of an agent. Primitives can be queried and sequenced
in order to solve specific tasks. The goal of this work is to segment unlabeled demonstrations into a representative
set of primitives. Our proposed method differs from current approaches by taking advantage of the often neglected,
mutual dependencies between the segments contained in the demonstrations and the primitives to be encoded. By
exploiting this mutual dependency, we show that we can improve both the segmentation and the movement primitive
library. Based on probabilistic inference our novel approach segments the demonstrations while learning a probabilistic
representation of movement primitives. We demonstrate our method on two real robot applications. First, the robot
segments sequences of different letters into a library, explaining the observed trajectories. Second, the robot segments
demonstrations of a chair assembly task into a movement primitive library. The library is subsequently used to assemble
the chair in an order not present in the demonstrations.

Introduction

A key goal of modern robotics is to provide robots with
the ability to learn new tasks. A commonly followed
concept to achieve such behavior is imitation learning.
The robot is provided with one or more demonstrations
of a task, which the robot subsequently reproduces
and improves. Often, an entire task consists of a
single motion, encoded as a single movement primitive
(Mülling et al. 2010),(Paraschos et al. 2013). This
concept has been applied in a variety of tasks, including
hitting movements in table tennis (Mülling et al. 2010)
and locomotion (Nakanishi et al. 2004).

Solving more complex, non-monolithic tasks with a
single movement primitive may result in a great loss
of generality. Considering complex tasks as a sequence
of primitives offers multiple advantages. For example,
primitives can be easily generalized and optimized
between the points where they connect. The same
set of primitives can be reused to execute different
tasks, and the movement plan can be adapted by
replacing one primitive within the sequence by another
one. A fundamental problem of such approaches is
the autonomous acquisition of these primitives without
relying on hand labeled demonstrations. In this paper,
we address this problem by proposing a framework for

segmenting unlabeled demonstrations into a library of
movement primitives.

Essentially, such movement primitive acquisition
consists of two problems, the segmentation of observed
trajectories and the learning of the underlying
movement primitive library. In this paper we tackle
these two problems in conjunction. Each demonstrated
trajectory can be considered a multidimensional time
series. A common way to segment time series data is to
apply heuristics. However, the quality of such heuristics
and therefore, the corresponding segmentation is often
task dependent. For instance, while an assembly
task consisting of point to point motions might
be well segmented at zero crossing velocities, the
same heuristic applied on continuously written words
might achieve poor, meaningless results. Furthermore,
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Figure 1. The robot platform used for a chair assembly
experiment. We used a seven DoF KUKA lightweight arm
equipped with a five finger DLR HIT Hand II as end effector.
The executed movement primitives were learned by
segmenting human demonstrations.

different parts of the data could be best explained
by different heuristics, which raises the problem of
identifying at what point to apply which heuristic.
Our approach starts from the premise that a

task-specific heuristic can only segment a given
trajectory sub-optimally, therefore, leading to a low-
quality library. As a consequence, some movement
primitives may not be meaningful while others will
suitably describe the data. Our method applies
probabilistic inference to reason iteratively over all
possible segmentations by learning a probabilistic
representation of movement primitives from a weighted
set of segments. In return, the learned primitives
are used to improve the set of segments by down-
weighting segments that are less plausible given the
current movement primitive library. We provide the
mathematical formulation for the solution of this
problem as an iterative Expectation-Maximization
(EM) algorithm and show that our algorithm converges
to a compact set of movement primitives given over-
segmented demonstrations.
Another interesting aspect is the relationship

between the size of the library and the complexity of
the contained primitives. The learned primitives should
be complex enough to represent a dedicated motion,
while being simple enough to qualify as a modular unit.
The size of the library is not directly proportional to
the complexity of the contained primitives. The most
complex primitive is the one learned from an entire
demonstration. This choice would lead to a library the
same size as the number of demonstrations. Simpler
primitives that are shared by multiple demonstration,
however, can result in a more compact library. A
useful metric, that we apply in this paper, is the
bit-encoding of the observed demonstrations. The

encoding is described in more detail in the experiment
section.

In summary, the main contribution of this article
is the Probabilistic Segmentation (ProbS) algorithm
that concurrently improves a given segmentation and
the library of movement primitives. The method was
validated on a real robot platform. We evaluated and
compared our method on a letter segmentation task.
The robot was taught different sequences of letters and
subsequently executed the primitives learned by ProbS.
Additionally, we applied ProbS to a chair assembly
task. The required movement primitive library was
learned by segmenting the human motion of a chair
assembly. Subsequently, movement primitives were
sequenced from the learned library to assemble the
chair in a previously undemonstrated order. Parts
of this paper consolidate previous work presented in
(Lioutikov et al. 2015).

The paper is organized as follows. First the problem
statement and the used notation is given. Next,
related work is presented and discussed. Followed by
the introduction of the Probabilistic Segmentation
approach. Afterwards, we compare the proposed
method to a baseline method and a state-of-the-art
segmentation method, using a writing and an assembly
task. Both tasks were performed on a real robot
platform and show the capabilities of our method.
Additionally, we use the method to segment table
tennis strokes from kinesthetic teaching.

Related Work

Algorithms for automatic segmentation have been
investigated extensively, not only for the purposes of
generation of robot movement primitives but mainly as
a general tool for movement analysis and classification.
Hidden Markov Models (HMMs) have been widely
adopted in this context. For example, (Brand and
Kettnaker 2000) analyzed video images to train a
HMM to classify if a person is walking, running
or crouching. (Takano and Nakamura 2006) used
automatic segmentation of motion patterns based on
HMMs to group segments hierarchically, where higher
level representations of symbols can then be used to
orchestrate and generate low level robot movements.
More recently, (Kulic et al. 2009) proposed an on-line
segmentation method based on HMMs that creates a
tree of primitives; the lower nodes representing detailed
movements with generality increasing towards the root.
HMMs have also been used in conjunction with the
superposition of movement primitives for the specific
case of handwriting analysis, (Williams et al. 2008).
In, (Krishnan et al. 2015) a Dirichlet Process Gaussian
Mixture Model is learned to identify the transition
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points between the segments. The transition points
are subsequently clustered spatially and temporally. In
general, HMMs and methods that explicitly address
temporal sequences, e.g. (d’Avella and Tresch 2001),
have been generally accepted for segmentation. In this
paper, however, we opt for a shape-based clustering
approach on the basis that our desired library must
be invariant to the possible combinations of movement
primitives transitions. The encoding of trajectories
that do have a sequential pattern are naturally
addressed by our method as it maintains only the most
probable combinations of segments.

Our work takes advantage of movement primitive
representations that are time invariant, such as
Dynamical Movement Primitives (DMPs), (Ijspeert
et al. 2013), or Probabilistic Movement Primitives
(ProMPs), (Paraschos et al. 2013). Segmentation with
movement primitives is particularly suited for library
construction as segments with the same profile, but
with different time scales are treated as the same
primitive. (Chiappa and Peters 2010), for example, had
to take the expected time scales of possible segments
into account with the introduction of a heuristic about
the minimum and maximum duration of the movement
primitives; in our approach such user-defined inputs are
not necessary.

From the movement primitive perspective, our
algorithm relates to the work of (Meier et al. 2011),
and (Niekum et al. 2013) where DMPs have been
used in different ways. In the first approach, a library
of primitives is assumed given, while in our work
we design our algorithm to start from an empty set.
Compared to the work of (Niekum et al. 2013), the
authors treat segmentation as an independent initial
step which therefore, later affects the reconstruction
of a task, in this case using finite state automatons.
As a consequence, interactive corrections given by a
human demonstrator are introduced. In contrast, our
approach treats segmentation and primitive learning
as an iterative optimization process where both are
intrinsically connected.

Hierarchical skills have been explored by (Takano
and Nakamura 2006), (Kulic et al. 2009), (Konidaris
et al. 2012), and (Yamane et al. 2011), and can be
very efficient for on-line applications or to represent
different granularities in the task. The philosophy
of our method differs in the sense that we do not
enrich a model by adding branches, but instead
prune unnecessary segments given by a possibly
erroneous initial heuristic. We leverage on batch, off-
line learning to essentially reconstruct the movement
primitive library, iteratively. This leads to a single level

representation which decreases the number of segments
as the library is improved after each EM iteration.

A general problem in movement segmentation and
library generation is the trade off between the
generality of the method and its tractability, the latter
usually achieved by the introduction of heuristics. For
example, Zero Crossing Velocity (ZCV) has usually
been used as an intuitive criterion to obtain the
initial segmentation of trajectories (Fod et al. 2002),
(Nakazawa et al. 2002), (Barbič et al. 2004). In
the context of movement primitives, however, ZCV
usually leads to over-segmentation, especially when
the robot moves at low speeds. (Lemme et al.
2014) proposed segmenting demonstrations based on
geometric similarities. (Wächter and Asfour 2015)
introduced a two layer hierarchical approach is
proposed to segment 6D motion trajectories. The top
layer identifies segments based on semantic criteria, e.g.
contact between objects. The bottom layer applies a
heuristic to identify keyframes based on the difference
of the adjacent trajectory parts. (Endres et al. 2013)
apply bayesian binning in order to segment end-effector
trajectories into pieces with different parameter values
of the two-third power law. Other heuristics applied
to segmentation include velocity profiles and minimum
jerk, (Rohrer and Hogan 2006), changes of the system
dynamics, (Kroemer et al. 2014). Our work differs
by being insensitive to the particular choice of the
heuristic. Our assumption is that a given heuristic will
lead to an initial number of excessive segments, which
will be then optimized by decreasing the occurrence of
cuts among them when necessary.

Problem Statement and Notation

Given a set of observed trajectories
T = {τ 1, . . . , τ |T |}, the goal of this work is to
learn a set of underlying movement primitives
M = {m1, . . . ,m|M|} which explains T , i.e., the
movement primitive library which produced T . Since
we are interested in the underlying libraryM of a task
domain, the trajectories in T can describe the same
or multiple tasks, as long as they belong to the same
domain, and, therefore, can be explained by the same
library. The duration of each individual demonstration
τ might be different. An example of a one dimensional
trajectory is illustrated in Figure 2(a). For each
trajectory τ ∈ T , a set of possible cutting points Cτ is
defined. Each cutting point h, i, j ∈ Cτ separates two
subsequent segments, e.g., sh,i and si,j . The indices
of si,j denote that the segment starts at the ith and
ends at the jth cutting point. We will drop the indices
whenever it is irrelevant at which cutting point the
segment starts s := si,j .
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Figure 2. An illustration of a possible segmentation. (a) shows a one dimensional, continuous observation. (b) shows four
initially suggested cuts, illustrated as black bars, and the five resulting segments, if all cuts were true positives. (c) shows a
possible segmentation. The fourth cut was identified as a false positive cut, illustrated as a gray bar. Two primitives m1 and
m2 were learned from the resulting four segments.

The set Cτ splits τ into a set of segments Sτ ,
which represents a possible segmentation of τ . We
assume that Cτ over-segments τ , i.e., the cutting points
producing the correct segmentation S∗τ are a subset of
the initial cutting points C∗τ ⊆ Cτ . The cutting points
included in the correct set of cuts C∗τ are referred
to as true positive cuts and, respectively, the cutting
points not included, i.e., Cτ \ C∗τ are referred to as false
positive cuts.

Unfortunately, the true positive cuts are unknown.
Therefore, every possible subset C′τ ⊆ Cτ has to be
considered. Each C′τ results in a different segmentation.
The set of all possible segmentations will be denoted
as Sτ ∈ Dτ . Furthermore, some segments occur in
multiple segmentations, therefore, the set of all possible
segments is given as Aτ =

⋃
Sτ∈Dτ

Sτ and the set of
all segmentations containing a particular segment s is
defined as Ds = {S|s ∈ S,∀S ∈ D}.
Our method tackles two challenges simultaneously:

eliminating all false positive cuts Cτ \ C∗τ , therefore
determining the correct segmentation S∗τ ∈ Dτ and
learning the underlying MP libraryM from the chosen
segments sτ ∈ S∗τ ,∀τ ∈ T . The segments sτ ∈ Aτ , the
segmentations Sτ ∈ Dτ and the cuts Cτ are always
defined with respect to a single trajectory τ ∈ T . For
simplicity, we will drop the subscript τ from now
on. Table 1 summarizes the defined entities alongside
others that will be defined later in the paper.

Learning Movement Primitive Libraries
using Probabilistic Segmentation

We assume that each observed trajectory τ ∈ T can be
represented by one of the corresponding segmentations
S ∈ D. The trajectory τ can be explained by
concatenating the segments contained in S.
The method is initialized with a set of possible

cutting points C, which divides each trajectory into
multiple segments as shown in Figure 2. We assume
that C weakly over-segments τ and that there is a
subset of true positive cuts C∗ ⊆ C which results in the
correct segmentation S∗ ∈ D.

Our goal is to determine the correct segmentation S∗
while simultaneously learning the underlying library
M. Since S∗ is not known, we treat S∗ as a
latent variable. Our proposed approach assesses the
quality of all possible segmentations S ∈ D by applying
probabilistic inference methods to learn locally optimal
M and S in conjunction. The size of the library |M|,
i.e. the number of learned primitives, is determined
by applying a bisecting k-means algorithm on the
segments s ∈ S defined by the current segmentation.
Therefore, no prior knowledge about the number
of primitives is expected. Furthermore, given that
the segmentation itself is learned, the number of
primitives change with the segmentation estimate.
Figure 2 illustrates the segmentation process of our
method. The found movement primitives are shown in
Figure 2(c), the observed trajectories in Figure 2(a)
and the cutting points in Figure 2(b).

Defining the Cutting Points C The results of the
proposed method depend on the set of possible cuts
C. Given the Expectation-Maximization like nature
of the method, it is unfeasible to initialize it with a
cutting point for every time step of the observation.
A possibility to restrict C to a manageable size is to
initially use heuristics to determine C. These heuristics
can be chosen task specifically and different heuristics
can also be combined seamlessly. However, the method
only considers the cuts contained in C, i.e., it is
restricted to eliminate false positive cuts. Therefore, C
has to provide a weak over-segmentation, i.e., C∗ ⊆ C,
where C∗ denotes the set of true positive cuts.

Movement Primitive Representation

In this work we use Probabilistic Movement Primitives
(ProMPs) as the primitive representation, (Paraschos
et al. 2013). ProMPs project trajectories into a lower
dimensional weight space using a ridge regression.
Therefore, each segment s has a matching projected
segment w

w =
(
ΦΦT + εI

)−1

Φs, (1)
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Symbol Description

τ an observed multidimensional, unlabeled
trajectory

T a set of trajectories T =
{
τ 1, . . . , τ |T |

}
mk a movement primitive parameterized by

θk

θk a parameterization of primitive mk

M a set of primitivesM =
{
m1, . . . ,m|M|

}
Θ a set of all primitive parameters, i.e.,

Θ =
{
θ1, . . . ,θ|M|

}
C := Cτ a set of possible cutting points for τ
s := si,j a segment, i.e. the part of τ between

cutting point i and j
w a lower dimensional projection of the

segment s
W a set of all projections across

all trajectories, i.e, W =
{w |w = v (s) ,∀s ∈ Aτ ,∀τ ∈ T }

αs, αw a segment weighting defining how likely
s is part of the underlying segmentation

S := Sτ a possible segmentation of τ , i.e., a set
of segmentations defined by a subset of

Cτ , e.g., S [1]τ = {s0,1, s1,4, s4,5}, S [2]τ =

{s0,5}, S [3]τ = {s0,1, s1,2, s2,3, s3,5}
D := Dτ a set of all possible segmentations for τ ,

i.e., Dτ =
{
S [1]τ ,S [2]τ ,S [3]τ , . . .

}
DÑ

s a set containing all segmentations of
the partial trajectory that starts at the
beginning of τ and ends at the beginning
of s

DÐ
s a set containing all segmentations of the

partial trajectory that starts at the end
of s and ends at the end of τ

A := Aτ a set of all possible segments across
all possible segmentations for τ , i.e.,
Aτ =

⋃
Sτ∈Dτ

Sτ
Astart a subset Astart

τ ⊆ Aτ that contains all
segments that start at the beginning of
τ

Aend a subset Astart
τ ⊆ Aτ that contains all

segments that end at the end of τ
Apred

s a subset Apred
s ⊂ Aτ that only contains

segments that end at the beginning of s
Asucc

s a subset Asucc
s ⊂ Aτ that only contains

segments that begin at the end of s
γÑ
s , δÑ

s , forward messages send from or towards
s respectively

γÐ
s , δÐ

s , backward messages send from or towards
s respectively

Table 1. The main entities defined across the paper. In the
paper the subscript τ and the segment indices i, j are
dropped whenever irrelevant.

where Φ denotes the feature matrices as defined in
(Paraschos et al. 2013). The features Φ are usually
represented as radial basis functions and depend on the
duration |s| of s, and, therefore, render the projected
segment w invariant to the duration of the segment
itself. This invariance is in particular interesting, since
it allows to compare segments of different durations
purely on their shape. The duration |s| corresponds to
the number of time steps in s. Such projections into
a lower dimensional space are not unique to ProMPs,
but are quite common in movement primitives, e.g, in
Dynamic Movement Primitives (Ijspeert et al. 2013). In
addition, ProMPs define a Gaussian distribution over
the projected trajectories.

Therefore, if the segment s is a valid segment, there
exists an underlying movement primitive mk which
produced the corresponding projected segment

w ∼ N (w |µk,Σk ) . (2)

The primitive p (s |θk ) can now be described as a
distribution over the segment s parameterized by θk =
{µk,Σk}.

We only consider correlations between the dimen-
sions and not between the time steps, i.e.

p (st |θk ) = p (st |θk, st−1 ) ,

where st describes the segment s at the time step t, i.e.,
st is the tth entry of s. Therefore, the probability of a
segment s given a movement primitive mk is defined
as

p (s |θk ) =

|s|∏
t=1

p (st |θk ) ,

and, the probability for a single time step t given the
movement primitive mk is

p (st |θk ) = N
(
st

∣∣∣φT
t µk, φT

t Σkφt

)
,

where the feature vectors φT
t are the corresponding

rows of the feature matrix Φ.

Probabilistic Inference on Segmentations

Each movement primitive m ∈M is represented by a
parameterized, generative model

p (s |θk ) , (3)

with θk denoting the parameters of the kth movement
primitive mk. However, we do not consider the
single primitives independently but assume that each
segment was drawn from the entire library, modeled as
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a mixture of primitives

s ∼ p (s |Θ ) ,

p (s |Θ ) =

|M|∑
k=1

λkp (s |θk ) , with (4)

Θ =
{
(λ1,θ1) , . . . ,

(
λ|M|,θ|M|

)}
,

where λk denotes the mixing coefficient for movement
primitive mk.
Furthermore, we assume that every observed

trajectory τ ∈ T was drawn from a parameterized
generative model

τ ∼ p (τ |Θ,S∗ ) =
∏
s∈S∗

p (s |Θ ) . (5)

Since S∗ is unknown, we treat it as a latent variable,
and integrate it out, which leads to

p (τ |Θ ) =
∑
S∈D

p (S)
∏
s∈S

p (s |Θ ) . (6)

The most likely model Θ is now determined by
maximizing the log-likelihood

Θ∗ = argmax
Θ

∑
τ∈T

log p (τ |Θ ) .

Optimizing this log-likelihood directly is unfeasible.
Therefore, we resort to the EM algorithm (Bishop
2006), which finds a locally optimal model Θ by
iterating between computing the expectation over the
latent variables and maximizing the model parameters.
In our approach, the EM algorithm repeatedly

maximizes the auxiliary function

Θ = argmax
Θ

Q
(
Θ,Θ′) , with

Q
(
Θ,Θ′) = ∑

τ∈T

∑
S∈D

p
(
S
∣∣τ ,Θ′ ) log (p (S) p (τ |Θ,S ))

(7)

until convergence. In this formulation, Θ′ denotes the
model parameters found in the previous iteration. The
prior p (S) is defined as a product of priors over cutting
points p (cs)

p (S) = pc
∏
s∈S

p (cs) ,with (8)

p (cs) = (1− pc)
cspc,

where cs is the number of possible cutting points the
segment s spans over. The constant 0 < pc < 1 defines
how probable it is that a cut is a true positive cut.
For pc < 0.5 segments which span over multiple cutting

points are preferred, whereas pc > 0.5 indicates that
shorter segments are preferable.

Solving Equation (7) is computationally expensive,
since the number of segmentations, |S| = 2|C|, grows
exponentially with the number of cuts |C|.

However, we can reformulate Equation (7) such
that it sums over all possible segments s ∈ A,
which are only quadratic in the number of cuts
|A| = 0.5(|C|+ 1)(|C|+ 2). Inserting Equation (5) and
Equation (8) into Equation (7), moving the log inside
the product and dropping the constant term yields

Q
(
Θ,Θ′) = ∑

τ∈T

∑
S∈D

p
(
S
∣∣τ ,Θ′ )∑

s∈S
log (p (cs) p (s |Θ )) .

Pulling the coefficient p
(
S
∣∣τ ,Θ′ ) inside the third

sum and subsequently swapping the second and the
third sum results in a weighted maximum-a-posteriori
formulation

Q
(
Θ,Θ′) = ∑

τ∈T

∑
s∈A

αs log (p (cs) p (s |Θ )) ,

with αs =
∑
S∈Ds

p
(
S
∣∣τ ,Θ′ ) . (9)

After swapping the sums we first iterate over
all possible segments s ∈ A and then over the
segmentations S. It is important to make sure that
we only iterate over segmentations that contain the
respective segment S ∈ Ds, since it would not be an
equivalent transformation of Q

(
Θ,Θ′) otherwise. The

set of segmentations that contain s is defined as Ds =
{S|s ∈ S,∀S ∈ D}.

Pulling the log into the product results in an additive
constant,

∑
τ∈T

∑
s∈A αs log p (cs), which does only

depend on Θ′ and not on the argument of the
maximization Θ, and, hence, can be dropped yielding

Q
(
Θ,Θ′) = ∑

τ∈T

∑
s∈A

αs log p (s |Θ ) . (10)

The segment weighting αs determines how likely
the segment s belongs to the optimal segmentation
s ∈ S∗, given the current model estimate Θ′. The EM
algorithm iteratively computes the weighting αs in the
E-Step, according to Equation (9), and updates the
current model estimate, Θ′ ← Θ, in the M-Step by
choosing a Θ that maximizes Equation (10).

Expectation Step: Computing the Probability
of the Segments. In the E-Step, the segment weighting
αs , as described in Equation (9) is updated, and,
therefore, the segments s ∈ A in Equation (10) are re-
weighted. The weighting in Equation (9) is computed
by summing over all segmentations S ∈ Ds, which
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DÑ
s1,2

DÐ
s1,2

...
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s0,1
s1,2 s2,3
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s4,5s1,4
s0,5

Figure 3. The figure illustrates several segmentations of a
one dimensional trajectory with four potential cutting points,
including the start and end of the trajectory. The indices of
the segments denote at which cutting point the segment
begins and at which it ends. Assuming the segment s1,2 is of
interest, the blue segments occur alongside s1,2 in at least
one segmentation. The red segments contain s1,2 and can
therefore not occur in the same segmentation. The gray areas
illustrate all possible preceding and succeeding segmentations
of s1,2, denoted as DÑ

s1,2 and DÐ
s1,2 respectively.

contain the segment s. Computing αs according to
Equation (9) is therefore still of exponential complexity
with respect to the number cuts |C|. However, the
segment weighting αs can be computed much more
efficiently, by reformulating Equation (9) slightly.
Applying Bayes Theorem on Equation (9) yields

αs =
∑
S∈Ds

p
(
τ
∣∣S,Θ′ ) p (S)
p
(
τ
∣∣Θ′ ) .

We can pull the denominator out of the sum since it is a
constant with respect to the summation. Note, that the
prior p (S) as defined in Equation (8) does not depend
on the parameters Θ′.

αs =
1

Z

∑
S∈Ds

p
(
τ
∣∣S,Θ′ ) p (S)

Z = p
(
τ
∣∣Θ′ )

Inserting Equation (5), Equation (6) and Equation (8)
results in

αs =
1

Z

∑
S∈Ds

∏
s′∈S

f (s′) , (11)

Z =
∑
S∈D

∏
s′∈S

f (s′) ,

f (s′) = p (cs′) p
(
s′
∣∣Θ′ ) ,

where Z denotes the normalizing constant.

Such a formulation is well studied in Graphical
Models and can be solved efficiently using message
passing algorithms (Bishop 2006). In Equation (11) we
iterate over all possible segmentations containing the
segment s, S ∈ Ds. By definition, Ds is a combination
of all possible segmentations preceding s denoted as
DÑ

s , s itself, and all possible segmentations succeeding
s denoted as DÐ

s . The sets DÑ
s and DÐ

s are illustrated
as gray boxes in Figure 3 with s = s1,2 for a trajectory
with four possible cutting points, including the start
and end of the trajectory. The indices denote at
which cutting points the segment starts and ends.
The blue segments occur alongside s1,2 in at least
one segmentation, and therefore, have to be considered
when computing the segment weighting αs1,2 . In
contrast, the red segments already include s1,2, and
therefore, must not be considered. We can rewrite
Equation (11) as

αs =
1

Z
δÑ
s f (s) δÐ

s , (12)

δÑ
s =

∑
S∈DÑ

s

∏
s′∈S

f (s′) , (13)

δÐ
s =

∑
S∈DÐ

s

∏
s′∈S

f (s′) . (14)

The terms δÑ
s and δÐ

s are defined over all possible
preceding and succeeding segmentations respectively,
which are still exponential in the number of cutting
points. We can, however, reformulate both terms
as messages along a factor graph, resulting in a
significantly lower computational complexity. Each
segment represents a node in a factor graph, where
each segment has a dedicated factor node and segments
that share a possible cutting point are additionally
connected via factor nodes. Figure 4 shows the factor
graph corresponding to the example trajectory of
Figure 3. Analogously, s1,2 is the segment of interest
and the blue and red nodes correspond to the blue and
red segments.

Instead of iterating over all succeeding segmenta-
tions S ∈ DÐ

s , we can iterate over the direct successors
s′ ∈ Asucc

s , and their succeeding segmentations S ∈
DÐ

s′ . The set Asucc
s contains all segments, that begin

at the cutting point where s ends. Analogously, the
set Apred

s contains all segments that end immediately
before s. The reformulated Equation (13)

δÐ
s =

∑
s′∈Asucc

s

γÐ
s′ , (15)

γÐ
s′ = f (s′)

∑
S∈DÐ

s′

∏
s′′∈S

f (s′′) ,

γÐ
s′ = f (s′) δÐ

s′ , (16)
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Figure 4. The factor graph corresponds to an observed
trajectory shown in Figure 3. The nodes correspond to the
different segments. Analogously the segment s1,2 is of
interest and the blue and red nodes correspond to the blue
and red segments. All nodes directly connected to si,j are
considered its neighbors. Neighbors from above are
predecessors and neighbors to the right are successors, e.g,
Apred

s1,2 = {s0,1} and Asucc
s1,2 = {s2,3, s2,4, s2,5}. Additionally,

the sets Astart = {s0,1, s0,2, s0,3, s0,4, s0,5} and
Aend = {s0,5, s1,5, s2,5, s3,5, s4,5} contain all segments
starting at the beginning of the trajectory or ending at the
end of the trajectory respectively.

is now defined in terms of the backward messages, δÐ
s

and γÐ
s of the described factor graph. The forward

messages are derived analogously,

δÑ
s =

∑
s′∈Apred

s

γÑ
s′ , (17)

γÑ
s′ = f (s′) δÑ

s′ . (18)

The γÑ
s messages are always send from segment nodes

to factor nodes and contain the product of the segment
probability and all incoming δÑ

s messages. In our
case each segment node has at most one incoming
δÑ
s message. The δÑ

s messages are send from factor
nodes to segment nodes and are simply the sum of all
incoming γÑ

s messages. The same applies equivalently
to the backward messages γÐ

s and δÐ
s . Because of

this representation as a sum of products this type
of message passing is also referred to as sum-product
algorithm.
The normalizing constant Z can also be expressed in

terms of either the forward or backward messages

Z =
∑

s∈Astart

γÐ
s =

∑
s∈Aend

γÑ
s ,

Apred
si,j

Asucc
si,j

s0,i sj,j+1

...
si,j ...

si−1,i sj,N

α
s
i
,j

δÑ
si,j

γ Ñ
s
0,i

γ
Ñ
s i

−
1,
i

δÐ
si,j

γ
Ð
s j

,j
+
1

γ Ð
s
j,N

Figure 5. The factor graph illustrates the computation of
the segment weighting αsi,j , formulated as massage passing.
The δÑ

si,j and δÐ
si,j messages are the sums of the incoming

γÑ
s0..i−1,i

and γÐ
sj,j+1..N

messages. The messages γÑ
s0..i−1,i

and γÐ
sj,j+1..N

are passed by the preceding and succeeding

nodes respectively, Apred
si,j and Asucc

si,j . The weighting αsi,j is
the product of the incoming forward and backward messages
time f (si,j) /Z, as described in Equation (12).

where the set of segments Astart contains all possible
segments that start at the beginning of the observed
trajectory. Simultaneously the set Aend contains all
possible segments that end at the end of the trajectory.

The recursive nature of the messages explains the
reduced computational complexity. Each forward or
backward message is a combination of the incoming
forward or backward messages respectively, and has to
be computed exactly once. To compute the forward
messages, we begin at the start nodes, Astart, and
pass the messages towards all of the end nodes, Aend.
To compute the backward messages we reverse the
process, i.e., begin at the end nodes, Aend, and pass
the messages towards the start nodes, Astart.

The segment weighting αs can now be interpreted
as the message send from the node s to the dedicated
factor node, as visualized in Figure 5, where the left
subtree consists of all preceding segments and the right
subtree of all succeeding segments.

Maximization Step: Learning the Movement Primitive
Library. In the maximization step, the model param-
eters Θ are updated by maximizing Q

(
Θ,Θ′). We

assume that all observed demonstrations were gener-
ated by the same underlying model, implying that the
model update considers all possible segments indepen-
dently of their corresponding demonstration.

Following (Paraschos et al. 2013), we update the
model based on the projected segments rather than the
segments directly. Therefore, the maximization step is
defined over the set of all projected segments of all
observed trajectories

W = {w |w = v (s) ,∀s ∈ Aτ ,∀τ ∈ T } , (19)
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Algorithm 1: Probabilistic Segmentation
input : The initial set of cutting points C
output : The underlying mixture model Θ∗

The underlying segmentation S∗

K : current number of clusters
L : current labeling of the segments
while not converged do

E-Step : compute the weighting αs

as described in Equation (12)

M-Step: 1. compute W according
to Equation (19)

2. determine K and L by applying
Gaussian-means on W

3. update Θ∗ by using a weighted
EM-GMM on W with K clusters,
initial labeling L and weights αw

where v is the ridge regression defined in Equation (1)
and the set Aτ contains all possible segments of
the observed trajectory τ . Besides the significantly
lower dimensionality of each projected segment w
compared to s, working in the projected space has
the advantage of comparing different segments time
invariantly, purely based on their shape. Therefore,
similar segments, which mainly differ in their execution
speed, will be assigned to the same primitive.
Accordingly, we define αs over the projected segments

αw = αs ⇐⇒ w = v (s) .

Given these definitions, the reformulated auxiliary
function

QW
(
Θ,Θ′) = ∑

w∈W
αw log p (w |Θ ) , (20)

p (w |Θ ) =

|M|∑
k=1

λkp (w |θk ) , with (21)

takes the form of a weighted log-likelihood, where
p (w |Θ ) is defined as standard Gaussian Mixture
Model (GMM), given Equation (2). Because W was
defined as a set which contains all the projected
segments for all trajectories τ ∈ T , the sum over W
replaces both sums over τ and s.

It is unknown which projected segment belongs to
which movement primitive, resulting in p (w |Θ ) being
a mixture model with latent variables. Therefore, it is
unfeasible to maximize Q

(
Θ,Θ′) directly with respect

to the parameters Θ.

It is, however, possible to estimate Θ by maximizing
the weighted maximum log-likelihood. Given our
model we can again apply a weighted EM algorithm
for GMMs. Instead of maximizing the log-likelihood
for a single projected segment log p (w |Θ ), we can

maximize the auxiliary function

Qw

(
Θ,Θ′) = |M|∑

k=1

βk,w log λkp (w |θk ) ,

where the mixing coefficients
∑|M|

k=1 λk = 1 sum up to
one and βk,w = p

(
k
∣∣w,Θ′ ) are typically referred to as

responsibilities. Replacing log p (w |Θ ) for Qw

(
Θ,Θ′)

in Equation (22),

QW
(
Θ,Θ′) = ∑

w∈W
αw

|M|∑
k=1

βk,w log λkp (w |θk ) ,

and rearranging the sums yields the standard auxiliary
function of a weighted EM for GMMs

QW
(
Θ,Θ′) = |M|∑

k=1

∑
w∈W

αwβk,w log λkp (w |θk ) . (22)

Since the set W is defined across all observed
trajectories, the model will contain primitives learned
from segments of different observed trajectories. The
EM algorithm for GMMs is widely applied and well
known. In the expectation step, the responsibilities are
updated

βk,w =
λ′
kp

(
w
∣∣θ′

k

)∑|M|
k′=1 λ

′
k′p

(
w
∣∣θ′

k′

) ,
which emerges from applying Bayes theorem.

Maximizing the auxiliary function QW
(
Θ,Θ′)

represents a constrained optimization problem, which
can be solved by applying the method of Lagrangian
multipliers. Solving the Lagrangian leads to the model
updates performed in the maximization step. The
updates for each parameter are given by

λk =

∑
w∈W αwβk,w∑

w∈W αw
,

µk =

∑
w∈W αwβk,ww∑
w∈W αwβk,w

and

Σk =

∑
w∈W αwβk,w (w − µk) (w − µk)

T∑
w∈W αwβk,w

.

A known disadvantage of EM for mixture models
is that the number of components is generally
assumed to be known a priori. Additionally, the
number of movement primitives |M| in our approach
depends on the latent segmentation, and can therefore
change every time we change the weighting of the
segments. We circumvent this problem by using the
Gaussian-means algorithm (Hamerly and Elkan 2003)
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(a) While holding a pen, the robot was demonstrated writing trajectories on a white board using kinesthetic teaching.

(b) The robot executes a trajectory which was sequenced from the learned movement primitive library.

Figure 6. The experimental setup of the real robot writing task. The executed sequence is not restricted to three letter
words, except by the whiteboard. The observed trajectories were demonstrated by kinesthetic teaching. Subsequently a
movement primitive library was learned by segmenting the trajectories using ProbS. Finally sequences of the learned
movement primitive library were executed on the real robot platform.

to determine the number of movement primitives,
including an initial labeling for the EM algorithm.
The Gaussian-means algorithm is a bisecting k-means
algorithm which uses a test based on the Anderson-
Darling statistic to determine if the data assigned to a
cluster is Gaussian or not. If the data is not Gaussian,
the cluster is split. We summarize our Probabilistic
Segmentation (ProbS) method in Algorithm 1.

Convergence of ProbS and Complexity of the Auxiliary
Function Q

(
Θ,Θ′). The maximization step of the

proposed method is itself an EM for GMMs, which
is known to converge to a local maximum of the log-
likelihood. Furthermore, maximizing QW

(
Θ,Θ′) will

at least find a local maximum for Q
(
Θ,Θ′), which

guarantees the convergence of the proposed method
(Wu 1983). Due to the number of segmentations
|D| = 2|C|, the initial formulation in Equation (7)
is in O

(
2|C|

)
. After the reformulations given in

Equation (10) and Equation (12) the problem is
defined over the segments. The number of segments
is quadratic in the number of cuts, |A| = 0.5(|C|+
1)(|C|+ 2), and therefore, computing Equation (10)
is in O

(
|C|2

)
. The reformulation therefore allows to

consider significantly more cuts.

Experimental Evaluation of ProbS

We evaluated our method on a real robot writing task.
We compared it to a baseline method, Expectation-
Maximization algorithm Gaussian mixture models,
and a state-of-the-art non-parametric segmentation
method, Beta Process Autoregressive Hidden Markov

Model,(Fox 2009),(Niekum et al. 2012). In (Lioutikov
et al. 2015) we performed a real robot chair assembly
task. In order to show that useful movement primitives
were extracted, we replayed the movement primitives
on the real robot, while conditioning the movement
primitives to assemble the chair in and undemonstrated
order. In both tasks the experimental platform was a
seven DoF KUKA lightweight arm equipped with a
five finger DLR HIT Hand II as end effector, as shown
in Figure 1. Additionally, we segmented multiple
demonstrations of a barrett wam robot platform
returning balls in table tennis setup. In this task
ProbS successfully identified primitives for forehand
and backhand swings.

Setup of the Real Robot Writing Task

In the robot writing task the robot was demonstrated
how to write trajectories as continuous motions via
kinesthetic teaching, while holding a pen and drawing
on a white board, as shown in Figure 6(a). A
total of 27 words were demonstrated. Each word
based on a three letter alphabet, containing the
letters, “a”, “u” and “y”. The recorded data were
the two dimensional trajectories on the whiteboard-
plane. The initial over-segmentation was produced
by a curvature-based heuristic, where the cutting
points were identified by the curvature exceeding
a certain threshold. The heuristic resulted in 11
cuts per observation leading to a total of 55296
possible segmentations or equivalently 2106 segments.
ProbS reduced the number of active cutting points
significantly, as illustrated in Figure 7(a). In average

Prepared using sagej.cls



Lioutikov, Neumann, Maeda, Peters 11

1 3 6 9 12 15 18 21 24 27

5

10

Observed trajectories

N
u
m
b
er

of
cu
ts

initial
ProbS
ProbS avg

(a) number of active cuts

1 3 6 9 12 15 18 21 24 27

10

30

50

70

90

110

130

150

Observed trajectories

N
u
m
b
er

of
b
it
s

1 3 6 9 12 15 18 21 24 27

103

104

Observed trajectories

L
og
-l
ik
el
ih
o
o
d

ProbS BPARHMM EM-GMM
avg avg avg

(b) bits needed for encoding (c) LOOCV

Figure 7. (a) ProbS is able to reduce the number of active cuts significantly, leading to a compact representation of the
observations. (b) The quality of the found segments is quantified by the number of bits each observations requires to be
encoded. Less is better. (c) The learned movement primitives are evaluated using a LOOCV. ProbS shows the advantage of
including the movement primitive learning in the segmentation process.

ProbS reduced the number of cutting points to four
per observation.

In order to demonstrate the advantage of opti-
mizing both the segmentation and the movement
primitive library iteratively, we chose an Expectation-
Maximization algorithm over Gaussian mixture models
(EM-GMM) as a baseline, where the number of clusters
as well as the initial labeling is determined by the
Gaussian-means algorithm(Hamerly and Elkan 2003).
In addition, we compared our method to the state-
of-the-art, non-parametric segmentation method Beta
Process Autoregressive Hidden Markov Model (BP-
AR-HMM), as applied in (Fox 2009) and (Niekum
et al. 2012). Given the found number of movement
primitives and the initial labeling of the Gaussian-
means algorithm, the EM-GMM baseline identified

a total of eight movement primitives. The BP-AR-
HMM method does not rely on an initial segmentation,
however, due to the sampling process, the algorithm
is computationally very expensive. In our evaluation
the best solutions were found with an autoregressive
order of two. Furthermore, the segmentation had to be
performed on the velocity of the trajectories, since the
method was otherwise not able to identify the same
movement primitive at different absolute positions.
The final segmentation identified seven movement
primitives.

ProbS was able to identify six underlying movement
primitives, which are shown in Figure 8. The brighter
colored background illustrates the variance of each
primitive. In each demonstration, the letter “a” begins
further right than “u” or “y” and is therefore proceeded
by a longer tail than the other letters. ProbS separated
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Figure 8. The six movement primitives learned by ProbS. From left to right. 1: The letter “y” when proceeding an “a”.
2:The corpus of an “u”. 3: The tail of the letters “a” and “u” when not followed by an “a”. 4: The corpus of an “a”. 5: the
letter “y” when not proceeding an “a”. 6: The tail of the letters “a” and “u” when followed by an “a”.
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Figure 9. Comparison of ProbS, BP-AR-HMM, EM-GMM on the letter segmentation task. All methods resulted in a similar
number of movement primitives (8, 6, 7), but the resulting segmentations differed significantly. Same color within one row
indicates the assignment to the same movement primitive.

those variations for “a” and “u” into their corpus
and the two different tails, leading to the movement
primitives 2,3,4 and 6. Movement primitives 1 and
5 show the two variations of the letter “y”. These
variations were not merged into a single primitive,
because the merged skill would achieve a significantly
lower average likelihood across all “y”-segments than
the two learned primitives achieve for their respective
“y”-segments. Additional demonstrations in between
those two variants would most likely yield a single “y”
primitive.

Comparison on the Letter Segmentation. A comparison
of the methods is shown in Figure 9. While ProbS and
the EM-GMM benefit from the initial segmentation,
the BP-AR-HMM found very different segments.
However, many of the segments found by BP-AR-
HMM occur in very different shapes and lengths, which
results in movement primitives with high variance.
Given the curvature based heuristic the segments found
by ProbS and the EM-GMM appear semantically
meaningful and have a high recall value throughout
the observations.

Encoding Lengths of the Different Segmentations. As a
metric to quantify the value of the segmentation we
computed the number of bits necessary to encode each
observed trajectory τ given the identified segments
Nτ = |Sτ |NM. Sτ is the learned segmentation for
trajectory τ andNM = dlog2 |M|e denotes the number
bits necessary to encode each learned primitive
uniquely. The coding length for each observation as
well as the average, is shown in Figure 7(b). As the
EM-GMM does not change the number of segments
in any observation the encoding solely depends on
the predefined number of cluster, which in this case
leads to a fixed length of 48 bits per observation.
By reducing the number of active cuts and learning
a small set of movement primitives ProbS achieved
an average encoding length of 15 bits. While BP-AR-
HMM found a similar number of movement primitives,
each observation was explained by significantly more
segments than in either the EM-GMM or ProbS. BP-
AR-HMM achieved a high average encoding length of
113 bits. This evaluation shows, that ProbS was able
to find segments, which allow a compact representation
of the observations.
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(a) Demonstration of the chair assembly recorded via the OptiTrack motion capture system.

(b) Execution of the learned movement primitives.

Figure 10. Demonstration and execution of the chair assembly task. The human was tracked during the chair assembly. The
observed demonstrations were subsequently segmented using ProbS. The movement primitives of the learned library were
subsequently sequenced and executed on a robot platform to assemble the chair.

Leave-One-Out Cross Validation of the Learned Move-
ment Primitives. Another important aspect of ProbS is
the quality of the learned movement primitives. We
compared to the other two methods by applying a
leave-one-out cross validation (LOOCV) on each of the
learned segmentations. Thus, learning the movement
primitives excluding one observation and subsequently
computing the average log-likelihood of each segment
in the excluded observation given the learned move-
ment primitives. Let Sτ and and DT = {Sτ |∀τ ∈ T }
be the learned segmentation for trajectory τ and
respectively the set of all learned segmentations for
the set of trajectories T . The set DT \τ = DT \ Sτ then
denotes the set of all learned segmentations DT except
Sτ . The average log-likelihood for the LOOCV is
now given as ¯̀= 1/|T |

∑
τ∈T

∑
s∈Sτ

log p
(
s
∣∣ΘDT \τ

)
,

whereΘDT \τ denotes the mixture of primitives learned
from DT \τ .

The results of the LOOCV are shown in Figure 7(c).
The BP-AR-HMM outperformed the EM-GMM
significantly, showing its superiority with an average of
4610 over the simple clustering method with an average
of 1021. However, given its intrinsic optimization of
the learned movement primitives, ProbS achieved a
significantly higher average log-likelihood of 9272. At

the same time, ProbS had the advantage of using
additional knowledge given by the initial heuristic. In
future work ProbS could replace the heuristic by a
non-parametric method, similar to BP-AR-HMM, and
hence, improve the so proposed segmentation.

Writing Using the Learned Movement Primitive Library.
Finally, we show the applicability of our method
in real robot scenarios, by executing a trajectory
composed of the learned movement primitives. We
are not restricted to a particular trajectory, but can
randomly sample from our set of movement primitives,
shown in Figure 8. Furthermore, we are not limited
to reproducing the observations but can sequence an
arbitrary number of movement primitives from the
learned library. Additionally, we can take advantage of
the various properties of MPs, e.g., choosing a different
duration for each movement primitive and conditioning
on certain positions. Figure 6 shows the execution
of a sampled sequence. The sequence was randomly
sampled from the mixture model. A transition table
was learned from the segmented demonstrations to
ensure a feasible sequence of selected components.

The initial over-segmentation was produced by a
velocity based heuristic where the cutting points where
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Figure 11. The first demonstrations explained by the three different methods. Different colors within each plot illustrated
different movement primitives. ProbS explains the demonstration with four movement primitives, EM-GMM identified eight
movement primitives in the demonstration and BP-AR-HMM separated the demonstration into a total of 9 segments. Some
of the segments have a very short duration and are not visible in the plot.

positioned at the extrema of the velocity profile for
each observation.

The heuristic resulted in nine cuts per observation
leading to a total of 768 possible segmentations or
equivalently 216 segments. This experiment shows the
feasibility of the learned movement primitives and the
applicability of ProbS in real robot tasks.

Comparison on the Chair Assembly. We also compared
ProbS to EM-GMM and BP-AR-HMM on the chair
assembly task. Figure 11 shows the identified segments
of each method for the first demonstration.
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Figure 12. The first three dimensions, corresponding to the
Cartesian position, of the six observations. Each observation
demonstrates the insertion of a chair leg into a hole in the
seat. The cuts determined by the initial heuristic are
illustrated as dots.

ProbS was able to identify four underlying movement
primitives. Each of the movement primitives occurs
exactly once in every demonstration and corresponds
to one of the four steps of each demonstration. The
first three dimensions are shown in Figure 13. It is
clearly visible that the movement primitives preserve a
characteristic shape while the variance at certain time
steps shows the adaptability of the movement primitive
at those points.

Given the found number of movement primitives and
the initial labeling of the Gaussian-means algorithm,
the EM-GMM baseline identified a total of eight
movement primitives. Analogously to ProbS each
found movement primitive is present exactly once in
each demonstration.

In this task BP-AR-HMM achieved the best results
with an autoregressive order of one and identified
four primitives. The method also explained similar
segments in different demonstrations by the same
primitives. However, it also identified very short
segments within the demonstrations and assigned it to
the same primitive as other much longer and differently
shaped segments.

Setup of the Real Robot Chair Assembly Task

The chair assembly was demonstrated by a human,
as seen in Figure 12. The wrist of the human was
tracked using the OptiTrack motion capture system.
A total of six demonstrations were performed, where
each demonstration consisted of four phases, i.e.,
approaching and picking up a chair leg, showing the
leg tip to the camera, approaching and inserting the
leg into the seat and finally returning to the home
position. Each data point is a seven dimensional vector
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Figure 13. The first three dimensions of the four movement primitives learned by ProbS to exemplify the skills, omitting the
remaining dimensions. The dark line shows the mean and the shaded area corresponds to two times the standard deviation.
The movement primitives are semantically meaningful, i.e., approaching a leg, showing the leg to a camera, approaching the
seat and going back to the home position.

in Cartesian space containing the three dimensional
wrist position and the four dimensional orientation
encoded as a quaternion. The tracked positions are
shown in Figure 12.

Chair Assembly using the Learned Movement Primitives.
We show the applicability of our method in real robot
scenarios, by assembling an Ikea chair using the learned
movement primitive library. As shown in Figure 10,
the robot is able to extract the necessary movement
primitives from the given demonstrations. Similarly,
to the writing experiment each segment was drawn
from the mixture model, while a learned transition
table ensured that a sensible sequence of primitives
was queried. The start and end point of each movement
primitive were conditioned to the corresponding point
of interest, e.g, the ”inserting” movement primitive was
conditioned to the hole position. Since each movement
primitive was learned from only six samples, the
variance at some points was too low to successfully
condition the corresponding ProMP. Therefore, we
scaled the covariance matrix of each movement
primitive artificially. This scaling was only necessary

for the execution and did not occur during the learning
of the library. This experiment shows that ProbS
is able to segment entire demonstrations to extract
meaningful movement primitives. These movement
primitives can be used and sequenced in order to solve
observed as well as new tasks. For example, the chair
was assembled with combinations of legs and holes
which were not present in the demonstrations.

Robot Table Tennis

In this task multiple demonstrations of table tennis
forehand and backhand swings were segmented into a
total of four movement primitives. The swings were
demonstrated on a 7 DoF barrett wam robot with
a racket as an end effector. While one person threw
table tennis balls in the direction of the robot another
person applied kinesthetic teaching to return the balls
with the robot, as shown in Figure 14. During
the demonstrations the joint states were continuously
recorded with a sampling rate of 100 Hz. A total of
20 forehand and 26 backhand swings were recorded
randomly across 16 demonstrations in overall 189

Figure 14. Kinesthetic teaching of the barrett wam robot platform for the table tennis task. While one person throws table
tennis balls towards the robot, another person moves the robot manually in order to return the balls. During the teaching all
seven joints are recorded for the subsequent segmentation.

Prepared using sagej.cls



16 Journal Title XX(X)
q 1
(r
ad

)

-1
0
1

q 2
(r
ad

)

-1
0
1

Time (sec)
0 2 4 6 8 10 12 14 16

q 3
(r
ad

)

-1
0
1

Figure 15. The first three joint states of the 16
demonstrations. The forehand and backhand swings occur
randomly and are unequal in duration. Additionally, the
duration between swings is not fixed and can be considered a
waiting period.

seconds. The demonstrations for the first three joints
are shown in Figure 15. The initial over-segmentation
was given by a low velocity heuristic which resulted
in a cut whenever all joints were below a certain
threshold. A total of 127 cuts were initially detected
with an average of 7.9 cuts per demonstration. ProbS
learned a total of four primitives, a forehand swing, a
backhand swing and two waiting primitives. For both
waiting primitives the mean for each joint changes
at most 0.03 radians, which effectively results in an
almost steady racket. However, the two primitives
contain the most movement in different joints, and
hence, were not learned as a single primitive. The
forehand and backhand primitives show characteristic
joint movements, as seen in Figure 16. To illustrate
the learned primitives the cartesian trajectories of the
racket were computed by applying forward kinematics
to the mean joint trajectories of the four primitives.
The resulting movements are shown in Figure 17
alongside the original demonstrations.

Conclusion

We proposed a new algorithm for the segmentation
of unlabeled trajectories. The algorithm builds a
movement primitive library that is used to infer correct
segmentations. The library as well as the inferred
segmentations of the trajectories are iteratively
optimized as there is a high dependency between
both entities. We presented an efficient formulation
of the algorithm, transforming multiple steps from
exponential to quadratic complexity. Our algorithm
takes advantage of heuristics that are used to over-
segment the trajectories. In comparison to other
state-of-the-art methods such as non-parametric auto-
regressive HMMs, our algorithm has less hyper-
parameters to fine tune and clear computational

advantages. Furthermore, the returned movement
primitive library looked much more compact than the
ones retrieved with related approaches. The evaluation
of the algorithm showed that the method can be
applied in real world scenarios in both cartesian and
joint space, such as the presented chair assembly task
and the robot table tennis task.

In this work we did not attempt to learn libraries
across various tasks. Given that both the E-Step and
the M-Step treat the segments independent of the
underlying task, the performance of ProbS should
not change significantly. However, learning primitive
libraries across multiple tasks will be part of future
work. In addition, we will concentrate on reducing the
reliance on the heuristics as well as learning high level
control variables of each movement primitive, such as
possible conditioning points.

forehand backhand

q 1
(r
ad

)

-1
0
1

q 2
(r
ad

)

-1
0
1

q 3
(r
ad

)

-1
0
1

q 4
(r
ad

)

1
2
3

q 5
(r
ad

)

-2
-1
0

q 6
(r
ad

)

-1
0
1

Time (normalized)

0 0.2 0.4 0.6 0.8 1

q 7
(r
ad

)

-1
0
1

Time (normalized)

0 0.2 0.4 0.6 0.8 1

Figure 16. The mean and two times standard deviation of
the forehand and backhand primitives for each joint. The
grey lines indicate the corresponding segments used to learn
the primitives. The segments and the primitives are
normalized in time purely for illustration purposes. This
normalization is not used for the actual ProbS algorithm.
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Figure 17. The four learned primitives for the robot table tennis task. The trajectories are shown in cartesian space and were
computed by applying the forward kinematics to the mean of each corresponding primitive. The brightness represents the
velocity of the trajectory and the arrows indicate the direction of the movement. The grey lines show the original
demonstration.
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