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Abstract. Interactive virtual characters are nowadays commonplace in
games, animations, and Virtual Reality (VR) applications. However, rel-
atively few work has so far considered the animation of interactive ob-
ject manipulations performed by virtual humans. In this paper, we first
present a hierarchical control architecture incorporating plans, behaviors,
and motor programs that enables virtual humans to accurately manip-
ulate scene objects using different grasp types. Furthermore, as second
main contribution, we introduce a method by which virtual humans learn
to imitate object manipulations performed by human VR users. To this
end, movements of the VR user are analyzed and processed into abstract
actions. A new data structure called grasp events is used for storing infor-
mation about user interactions with scene objects. High-level plans are
generated from grasp events to drive the virtual humans’ animation. Due
to their high-level representation, recorded manipulations often naturally
adapt to new situations without losing plausibility.

1 Introduction

Achieving accurate body movement in virtual humans for interactive object ma-
nipulations is still a difficult task. Previous work in this field has led to two dif-
ferent approaches to realistic character animation: data-driven methods, using
motion-capture data, and model-driven methods, synthesizing accurate anima-
tions at runtime. Usually, the data-driven approaches suffer from limited adapt-
ability to new situations, such as changing environments and different character
proportions. Model-driven approaches on the other hand allow for high adapt-
ability but suffer from an increasing number of control parameters. This normally
results in a tedious trial-and-error process for finding an accurate set of parame-
ters. For example, when using PID controllers [] for animation, appropriate gain
values have to be choosen. Although one could hard-wire such parameters in a
model-driven animation system, flexibility against modified objects or differently
sized virtual humans would be lost as a consequence.

This paper follows a novel, imitation based approach to animation called
Action Capture [1] which combines the strengths of data-driven and model-
driven techniques. The interactions of a real user with the virtual environment



are recorded, processed and abstracted, such that they can be adapted to new
situations. This allows for fast and easy recording of new animations without
need for parameter optimization and, at the same time, also enables the flexible
reproduction of interactions with scene objects.

While the generic conceptual framework for Action Capture including its
relationships to the fields of imitation learning and robotics has been described
elsewhere [1], this contribution focusses on the details a specific implementation
for imitation of object grasping by virtual humans. For this, a hierarchical control
architecture for animation of virtual humans is realized. On the highest level
of abstraction plans describe animations as sequences of object interactions.
Plans instantiate goal-oriented behaviors to influence body movement. Behaviors
use low-level motor programs to directly move the body’s limbs. Additionally,
for storing information about user interactions with scene objects a new data
structure called grasp events is introduced. In turn, grasp events are converted
into high-level plans in order to drive the virtual human’s movement.

This type of approach yields great flexibility when creating animations for
object grasping. It is not necessary to build animations by hand any more and
animations still work on changing environments. How to model a system follow-
ing this imitation-based approach will be explained in the following sections.

2 Related Work

In order to enable a virtual human to manipulate other objects, it is of impor-
tance to specify different meaningful ways of interaction. An interesting approach
to this was introduced by Kallmann and Thalmann [2]. The basic idea of the
smart object approach is that each object "knows” the way an interaction with
it should look like. Additionally, each object stores a number of parameters and
other meta-data, that can be accessed and used by the virtual human. This
meta-data has to be specified by the system developer when creating the objects
and the world. Still, there is the question of how to synthesize an appropriate
animation from this data. Early work on animation and control for manipulation
and grasping was reported by Sanso and Thalmann [3]. Kuffner and colleagues
[4] proposed the use of a path planner and inverse kinematics in order to plan
a collision-free trajectory connecting an initial arm position with a goal posi-
tion. In an extension of this algorithm [5] they were also able to bias the inverse
kinematics algorithm towards natural-looking poses using a motion database. In
contrast to this, the work of Douville et al. [6] describes a behavioral approach to
motion synthesis. Here, different objects are grasped using specialized grasping
behaviors and an object specific reasoner. The latter helps to break down the
high-level plans into motions.

In many applications it is desirable to have a virtual human imitate the
behavior of a real person while at the same time being subject to the physics of
his own virtual environment. While this approach preserves the plausibility of
the animation, it also demands for special algorithms which can abstract actions
from raw motion capture data. Such algorithms have long been studied in the



robotics and Artificial Intelligence literature (AI); a survey on this topic was
published by Jung et al. [1]. Pollard and Zordan [7] present an algorithm, which
extracts a set of parameters from motion capture data. The parameters are in
turn fed into a controller used for performing active and passive grasping.

The system presented in this paper combines several of the above ideas with
a hierarchical architecture for animation synthesis. In contrast to previous work,
the motion capture data is not only used for parametrizing particular controllers
or behaviors. Instead, the motion is analyzed, abstracted and transformed into
an intermediate representation called grasp event. Grasp events hold information
about the interaction with scene objects and thus allow the recorded action to
be performed in different environments and settings.

3 Animation Synthesis

This section presents a hierarchical control architecture for interactive animation
of virtual humans, with a particular focus on animating object manipulation
tasks. The architecture is currently implemented as an extension of the VR
system Awvango [8]. In principle, however, it is independent of any particular VR
software. At its core, the framework consists of hierarchically organized modules
at three distinct levels: plans, behaviors, and motor programs.

Fig. 1. Control Architecture
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Fig. 1 gives an overview of the control architecture. In general, the control
flow for animation synthesis is as follows: High-level plans are abstract descrip-
tions of action sequences. The selection and execution of plans can be triggered
by issuing an appropriate command from Avango’s integrated Scheme inter-
preter. Execution of a plan will instantiate several behaviors which in turn start
one or more motor programs to control the basic movements of the virtual hu-
man, i.e. changing bone rotations of the virtual character’s skeleton. Behaviors



are notified about collisions occurring between body parts and scene objects, e.g.
when grasping an object. They can decide if it is necessary to stop movement
when collisions occur. Behaviors query for stopped motor programs and plans
query for finished behaviors, leading to the instantiation of new behaviors as
described in a plan until the plan ends.

Motor Programs

On the lowest level of the animation synthesis hierarchy, motor programs control
the joint values of a virtual human’s bones. The specification of a motor program
defines different parameters, e.g. begin and end time. Additionally a scope has
to be defined, i.e. the set of bones influenced by its execution in the kinematic
chain of the skeleton. Motor programs do not directly set joint values, but instead
modify motor states. In general, a motor state represents an arbitrary state of
a bone, i.e. position and orientation, during the movement of the virtual human
at a certain time. After a motor program has calculated a new state, the state
is passed to an arbiter component which directly sets the joint values. As many
motor programs may run in parallel, conflicts may occur when calculating motor
states referring to the same bone. Conflicts are resolved by the arbiter through
motor state priorities, which were set by associated motor programs. This way
resolution of conflicting bone movements occurs on a fine-granular motor state
level rather than on the complete scope of the motor program or on the higher
level of behaviors. To support different types of bone movement, several types
of programs are supported, which currently fall into two categories. One type of
motor programs interpolates motor states from current states to specified goal
states, defining the end-posture for a part of the virtual human. The second
type uses inverse kinematics to let a kinematic chain of arbitrary length reach a
certain position.

Behaviors

Mid-level behaviors are used to accomplish certain sub-actions of object ma-
nipulations, like closing a hand or reaching for an object. To realize movements
of the virtual human, they select and instantiate motor programs, that work di-
rectly on the kinematic chain of the virtual human. Behaviors are parametrized,
allowing them to reactively adapt to changing virtual scenes. E.g. moving ob-
jects can be reached by only setting the object’s name as a parameter and letting
the behavior calculate where the object is currently located. There are currently
four types of behaviors to accomplish different tasks: Open a hand, close a hand
to grasp an object, reach a certain point or object, and move joints to a given
end or rest posture. These behaviors can be adjusted with parameters like begin
and end time or the object to interact with.

Plans
On the highest level, plans describe complete manipulation tasks, e.g. grasping
an object, in a declarative fashion. They consist of plan steps, which can be



executed either sequentially or in parallel. Plans are described in an XML-based
language. Fig. 2 shows a simple example of such a plan description. Instantiat-
ing the plan grasp-object with the object Ball-1, the grasp port ball-port,
the hand RightHand and the grasp type spherical as parameters results in
selecting the plan out of a plan database and refining the plan by substituting
variables in the plan with the parameters (variables in this example are $0BJECT,
$PORT, $HAND and $GRASPTYPE respectively). It is not necessary for the trigger-
ing command to specify all parameters of a plan: For example, if just the target
object of the grasp is specified, then a suitable $PORT, $HAND and $GRASPTYPE
will be automatically added, e.g. using default values or object annotations (see
below for a description). In the example, first a parallel set of plan steps is in-
stantiated for reaching the grasp port ball-port on the object Ball-1 and for
opening the hand. The types (type), the name of the virtual character affected
(vh_name), and several parameters (param) can be specified for such behaviors.
After reaching the object with an open and correctly oriented hand, the hand
is closed (behavior type GraspClose) using a possibly given or calculated grasp
type, which is selected out of a grasp taxonomy. When the object is grasped, the
plan finishes.

Fig. 2. Example for a plan: grasping an object

<plan>
<name>grasp-object</name>
<parallel>
<behavior>
<type>Reach</type>
<vh_name>Body</vh_name>
<param name="object">$0BJECT</param>
<param name="grasp-port">$PORT</param>
</behavior>
<behavior>
<type>GraspOpen</type>
</behavior>
</parallel>
<behavior>
<type>GraspClose</type>
<param name="grasp-type">$GRASPTYPE</param>
</behavior>
</plan>

Annotated Objects
To support movement generation, semantically annotated objects are used in
behaviors to, e.g. find a proper place on a chosen object to grasp. Grasp ports



define, where on an object grasping is possible. Additionally, they describe the
shape of the object at that place so it is possible to choose an appropriate hand
shape for grasping. Annotated objects are akin to the concept of smart objects in
literature (e.g. Kallman and Thalmann [2]), differing in the way that we do not
explicitly describe behaviors in the objects. Annotated objects are represented
in XML structures; see Fig. 3 as an example. In this example the object type
Ball is defined. Besides a specified scale factor (scale), one grasp port with
a spherical form (type="SPHERICAL") is defined. The grasp port has the name
ball-port, a certain position (position) and a radius (radius). Finally, the
graphical model to load for the annotated object is specified.

Fig. 3. Example for an annotated object: A Ball

<annotated-object>
<name>Ball</name>
<scale>0.00595 0.00595 0.00595</scale>
<grasp-port type="SPHERICAL">
<name>ball-port</name>
<position>0.0 0.0 0.0</position>
<radius>5.775</radius>
</grasp-port>
<model>models/iv/ball2.iv</model>
</annotated-object>

Virtual Human Body and Hand Model

In skeletal animation, a virtual character’s body is represented by a mesh
and a skeleton composed of bones. In our system, the virtual humans’ skele-
ton structures are based on the joint hierarchy of the H-Anim standard
(http://www.hanim.org). Every bone is represented with a name and its ori-
entation and translation relative to it’s parent bone. Several virtual characters
can populate a scene, acting independently of each other. Additionally, virtual
characters can be composed of several independent articulated models. We use
this method to integrate different models for body, right and left hand. In this
way, the modelling of the virtual human’s body is separated from the modelling
of its hands. Thus, the hands, which are more complex to model, can be easily
re-used with different bodies. Fig. 4 shows the skeletons of a virtual human and
of the right hand.

Since the focus of our animations is on object manipulation, particular effort
has been put into a detailed virtual hand model. Just as the virtual character’s
body, the hand model is a skinned mesh, deformed by an underlying skeleton
structure. Each finger consists of three segments/bones, with the proximal joints
having two degrees of freedom (flexion and pivot) and the others only having



Fig. 4. Skeletons of virtual human and right hand

one (flexion). Additionally, joint angle constraints are enforced, to permit natural
looking movements only.

For interaction and collision detection with scene objects, the hand model
has been fitted with spherical collision sensors (see Fig. 4). Currently, there is
one sensor in the palm, one sensor in each finger segment and an additional
one at each finger tip. These sensors fire collision events, as soon as they touch
a scene object. This information is used by motor programs and behaviors to
adjust the animation in turn to avoid intersection of the hand with the objects.

Collision detection is currently implemented using VCollide [9]. For
the visual part, to realize skeletal animation and mesh deformation ac-
cording to the bone movements, the character animation library Cal3d
(http://cal3d.sourceforge.net) is used.

4 Imitating Grasp Actions

In the previous section, the process of an autonomous movement generation for
virtual character animation was described. Movement is triggered by instructing
the virtual character to execute specific plans. In this section, we introduce
an alternative method in which the virtual character learns to imitate object
manipulations performed by a human VR user.

To this end, the interactions of the VR, user with scene objects are analyzed
and transformed to plans, that can be executed by virtual characters using the
animation synthesis architecture described above. Animations are thus generated
by recording and analyzing movement data from virtual reality input devices.

L A further use of the hand model is to support the interactions of human VR users
with the virtual world, particularly for grasp analysis (see Sec. 4). Here, the user
hand is projected into the virtual world to provide visual feedback to the user as
well as to find contact points with scene objects during grasps. In this case, joint
angles are deducted from data glove sensor input and then mapped directly to the
joints of the virtual hand.



Such devices could be, but are not limited to, optical position trackers and data
gloves. The recorded data is processed to calculate certain features to describe
a grasp. These features are hierarchically organized from low level features —
describing low level data like the joint values of a human skeleton — to high level
features, where the grasp is only described by a category belonging to a grasp
taxonomy?. Low level features need no calculation when movement of a real
human is analyzed. High level features achieve high abstraction of human move-
ment by just providing grasp types and objects to grasp. Such a high abstraction
makes it possible to adapt virtual human movement to changing scenes.

Figure 5 gives an overview of the whole process of imitating grasp actions.
The two parts, movement analysis with the focus on grasp event detection and
movement synthesis for the reproduction of actions, will now be described.

Fig. 5. Imitation process
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4.1 Analyzing User Actions for Grasp Events

Analyzing movement data involves the following steps: segmentation of the hand
movement, mapping of glove sensor values to joint rotation values and calculating
grasp features out of the posture of the hand and the grasped object. This process
is subject of other work and is not the focus of this paper. But the results are
used to imitate human movement, especially in the domain of grasping objects.

A novel representation form is used to store the results: Grasp events. They
contain grasp features and a time stamp when the grasp happened with respect

2 Grasp taxonomies classify grasps into several categories, describing the features of a
grasp, e.g. Cutkosky [10] or Schlesinger [11]



to the time when the manipulation sequence began. Low level features are: joint
values, hand position, contact points with the object and the object as well as
information about where the object was grasped using grasp ports. High level
features denote the resulting category of a grasp w.r.t. a certain taxonomy. Grasp
events can be stored in XML files for the purpose of later playback. An example
for the structure of such an XML file is shown in Fig. 6.

Fig. 6. An XML example for grasp events

<event-sequence>
<event timestamp="3.895" type="grasp">
<low-level>
<joint-angle joint-id="r_index1">19.8306 -0.0865252 0.678805 0.729203
</joint-angle>
<contact-point joint-id="sensor_r_index1">
<object>Ball-1</object>
<p0s>0.00730081 -0.0734563 0.0135953</pos>
</contact-point>
<object-ids> Ball-1 </object-ids>
<hand-transform>0.0205884 0.211408 -0.97718 0O
0.0805939 0.973855 0.212386 0
0.996533 -0.0831275 0.00301189 0
-0.1502 -0.626599 0.917001 1
</hand-transform>
<hand-side> right </hand-side>
</low-level>
<high-level>
<taxonomy>schlesinger</taxonomy>
<category>spherical</category>
</high-level>
</event>

</event-sequence>

4.2 Reproducing Actions from Grasp Events

To animate the virtual character and reproduce the recorded sequence of grasp
events, the events have to be converted into executable plans. This is done in
two steps (see the synthesis part of Fig. 5): First, a plan is selected, based on the
received grasp events. As a simple example, this could be the plan grasp-object
whenever events of type grasp are received. After that, the selected plan is
refined by means of the features contained in the grasp events. Refinement is
done by filling unspecified parameters of the plan with reasonable values. This
can be done in a very simple way by providing the last value that was received



for a parameter. Another conceivable possibility would be to use the information
provided by grasp events and the actions that already took place for computing
new parameters.

When only high level features, i.e. grasp taxonomy categories, are used to
specify a grasp, a grasp database is used to look up the grasp type and retrieve
features useful to generate a similar grasp by the virtual human. For now such
useful features include the start and end postures of the grasp. In addition to
this, finger groups are used for describing similar behaving fingers. Fingers in
a finger group stop whenever one of the fingers stops, caused e.g. by collision
detection. As an example the extreme end postures of two grasp categories,
cylindrical and tip are shown in Fig. 7. Unfilled parameters in a selected plan
are then refined by using these features.

Fig. 7. Two end postures from the grasp database: cylindrical and tip

By execution of the refined plan, the virtual human performs the appropriate
movement, using the framework described in Section 4. Behaviors, parametrized
with the values computed by the refinement step, are instantiated, which use
adequate motor programs to control virtual human movement.

5 Example

The whole process of movement generation by instruction will now be explained
by considering the example of grasping a ball, as shown in Fig. 8. Grasps per-
formed by a user are recorded and processed to generate a grasp event containing
a spherical grasp for the ball Ball-1 with timestamp 3.895.

To grasp the ball Ball-1, an appropriate plan is selected and parametrized to
convert the features into parameters of the plan. In this plan, parallel behaviors
for reaching the grasp port of the object and for opening the hand are executed.
After finishing these behaviors, a behavior for closing the hand, i.e. grabbing the
object, is executed.

For reaching, the behavior will start a motor program that moves the virtual
human’s hand to the object’s grasp port position using inverse kinematics. The
scene information database is queried for information about the grasped object.



In this example, this would be an annotated object of type ball with a spherical
grasp port for Ball-1.

Opening and closing of the hand will start motor programs that interpolate
joint values to given goal motor states. These are goal joint values for opening
and closing the hand with certain joint values that describe an opened or closed
hand respectively. When closing the hand, collision sensors are used to stop the
movement of bones when fingers get contact with the annotated object.

Fig. 8. Example: Imitation of grasping a ball
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6 Conclusion

We have presented a system for instructing virtual humans for the synthesis of
virtual human-object interactions. A hierarchical three-level approach is used to
generate accurate object manipulations from high-level commands. The system
automatically instantiates behaviors and appropriate motor programs to control
the virtual human.

Using this framework, grasps performed by a real human in a virtual environ-
ment can be imitated. For this, grasps are recorded, analyzed for grasp features,



and stored as grasp events. The recorded grasp events are used to select and
refine appropriate plans, which in turn trigger lower level behaviors. In this
way, interactions between the human and the environment can be recorded and
imitated. Due to their high-level representation, recorded manipulations often
naturally adapt to new situations without losing plausibility.

In on-going work we are developing a more elaborate plan generator to cre-
ate high level plans out of sequences of grasp events. With such plans it will
further be possible to create a plan database containing several highly abstract
representations of object manipulations in virtual environments. Additionally,
we want to improve the refinement step for selecting plans. Missing parameters
could, for instance, be computed based on predictors acquired through machine
learning techniques. Learning could further be used for improved reproduction
of different movement styles exhibited by different VR users.
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