
Identifying Motion Capture Tracking Markers with Self-Organizing Maps
Matthias Weber∗

FGAN e.V., FKIE, Germany
Heni Ben Amor†

TU Bergakademie Freiberg, Institute for Informatics, Germany
Thomas Alexander‡

FGAN e.V., FKIE, Germany

ABSTRACT

Motion Capture (MoCap) describes methods and technologies for
the detection and measurement of human motion in all its intrica-
cies. Most systems use markers to track points on a body. Espe-
cially with natural human motion data captured with passive sys-
tems (to not hinder the participant) deficiencies like low accuracy
of tracked points or even occluded markers might occur. Addition-
ally, such MoCap data is often unlabeled. In consequence, the sys-
tem does not provide information about which body landmarks the
points belong to. Self-organizing neural networks, especially self-
organizing maps (SOMs), are capable of dealing with such prob-
lems. This work describes a method to model, initialize and train
such SOMs to track and label potentially noisy motion capture data.

Index Terms: H.1.2 [Models and Principles]: User/Machine
Systems—Human information processing; I.2.6 [Artificial Intelli-
gence]: Learning—Connectionism and neural nets

1 INTRODUCTION

Motion Capture (MoCap) enables a user to capture human motion
in all its intricacies. Usually, MoCap systems use markers attached
to anatomical landmarks to track certain points on the body. Active
markers, i.e. markers that emit or receive signals, are big or need
cables and therefore hinder natural motion. As a consequence, pas-
sive markers are often used. They are little reflector spheres that
do not disturb the participant. Unfortunately, MoCap data provided
by such passive systems often has deficiencies. Occluded markers
might occur leading to not seen points and therefore lost tracking
in subsequent frames. Additionally, MoCap data is usually unla-
beled, i.e. no information about the markers is given. Neural net-
works are able to deal with such problems as they try to generalize
on the learned data. Those with self-organizing features, e.g. self-
organizing maps (SOMs), can already represent a map of linked
structures like a human skeleton. In this work, a method will be
presented how to model, initialize and train such SOMs so that they
adapt to certain poses extracted from potentially noisy motion cap-
ture data and identify tracked points.

2 RELATED WORK

Research on Motion Capture is in particular focused on robust
marker tracking and skeleton fitting. For the former problem, [1]
proposed an extended Kalman filter for preprocessing in conjunc-
tion with a motion model based on exponential maps for later esti-
mation of the human skeleton configuration from the tracked point
cloud. For the problem of skeleton fitting, many approaches revolve
around fitting a reference skeleton model into the data cloud by us-
ing least-squares methods [2]. In [3] global and local techniques
for skeleton fitting are presented. Global techniques consider the
whole skeleton at once, while local techniques perform adaptation
on a limited number of bones.

∗e-mail: m.weber@fgan.de
†e-mail: amor@informatik.tu-freiberg.de
‡e-mail: alexander@fgan.de

3 ALGORITHM DESCRIPTION

In order to identify tracked markers and to fit a corresponding skele-
tal model, the presented algorithm first employs a principle compo-
nents analysis (PCA) on the captured point cloud. The PCA trans-
forms the data by projecting it onto a set of orthogonal axes indicat-
ing the directions of greatest variance in the data. When applied to
a captured standing posture with the arms reaching out, this leads to
a properly aligned and flattened point cloud. It is oriented such that
the arms reach out in the direction of the x axis. The feet and head
are oriented along the y axis. After this, a user-supplied reference
skeleton model is scaled to the extensions of the x and y axis. This
leads to an accurately aligned model with respect to the projected
point cloud in PCA space. The scaled skeleton model is then re-
transformed into the real-world 3-dimensional space and moved to
the median point of the test person’s point cloud. As a result, the
model is now aligned to the test person’s initial posture.

After this initial step, the SOM is adapted to each frame of the
captured animation. For this, the skeleton structure is considered as
a SOM with joints represented as neurons. To ensure constant seg-
ment lengths in this skeleton structure over time, first every joint’s
position is adapted so that the distance to its parent is kept nearly
the same as the distance in the initial scaled skeleton model built via
PCA. This way the skeleton structure stays the same, even though
the SOM might try to converge several joints to one point of attrac-
tion.

After preserving the segment lengths, the position of every
tracked marker is presented to the SOM in every training step, with
~x being the training vector. Distances to all prototype vectors ~m
are then computed, using Euclidean distance measure: ‖~x−~mb‖ =
mini{‖~x−~mi‖}. The neuron with its prototype closest to ~x is the
winning neuron b.

The prototype vectors are updated according to the following up-
date rule, where t is the current iteration, ~m again is the prototype
vector and ε and σ are the learning rate and learning radius respec-
tively. The e expression on the right side is a neighborhood kernel
centered at the winning neuron vector ~mb.

~mi(t +1) = ~mi(t)+ ε (~x−~mi(t))e

(
− ‖~mb(t)−~mi(t)‖2

2σ2

)
(1)

This adaptation step moves the winner neuron towards the current
training point with the learning parameters ε and σ . All other
neurons are also adapted towards this point but with other, much
lower learning parameters. Such lower learning parameters seem to
achieve a good compromise between attraction to the current train-
ing point and not moving too far away from the point the neuron
normally belongs to.

Above steps are computed several times to properly adapt to a
posture. After adaptation has finished, the neurons share nearly the
same positions as the corresponding markers. Therefore, the mark-
ers can be identified and labeled using a simple nearest neighbors
computation. As soon as this step has finished, the process has been
completed for the current data frame. The model is now adapted to
the markers and the markers are labeled according to the neuron
names.

297

IEEE Virtual Reality 2008
8-12 March, Reno, Nevada, USA
978-1-4244-1971-5/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: NORTHWESTERN POLYTECHNIC UNIVERSITY. Downloaded on May 6, 2009 at 23:38 from IEEE Xplore. Restrictions apply.

4 EVALUATION AND CONCLUSION

For evaluating the algorithm we performed a set of experiments. A
participant performed several motions: Moving to an initial pose,
performing some arm movement and body movement, doing the
initial pose on several different places with different orientations.
Finally, movement while using a device was captured. This sums
up to 8 datasets with 14736 data entries, overall. First evaluation
revealed that the system captured a minimum of 4 and a maximum
of 21 markers, in average 17.51 markers with a standard deviation
of 2.02. This means that a good average number of markers, 17 to
18, was detected and that there were few outliers because of the low
standard deviation. Nonetheless, there were some bigger outliers,
with a minimum of only 4 markers.

A grid search was performed to investigate the effect of learning
parameters on the neural network. The evaluated parameters were
ε , σ and the parameter l pm which is used to inhibit the learning
capabilities of all non-winner neurons. The grid search performs
the learning algorithm for each set of parameters and records the
performed error. For computing an error the following metric was
used:

E =

√√√√ n
maxn

2
+

1
N

N

∑
i
‖~xi −~si‖ (2)

with E being the error, ~xi the neuron vector, ~si the corresponding
sample tracking vector, n the number of iterations and maxn the
maximum possible number of iterations. As can be seen, the dis-
tances between the neurons and the tracking markers compose one
part of the error metric. The other part of the error is based on
the number of iterations necessary to achieve the adaptation. This
equation ensures that even if one of the error parts gets low but the
other is still high (like low number of iterations but high distance
error for the neural net), there is still a measurable error.

Figure 1 shows the results of the grid-search for an area that
is most interesting in terms of low error. The l pm parameter de-
scribes how much to inhibit non-winner neurons from learning. It
should be in a range from 0.2 to 1.0, from a nearly winner-takes-
all network (WTA) to a normal network with all neurons learning
the stimulus. For this scenario, an optimum of 0.4 was chosen,
i.e. non-winner neurons do not adapt too much to markers they do
not belong to. Therefore, this value promises a good adaptation on
consecutive frames in an animation.

Figure 1: Results of the grid search for l pm = 0.4. A low error is
achieved at ε = 0.049 and σ = 0.03.

The participant was also orientated in arbitrary directions to
check the method’s capabilities to cope with such situations. Es-

pecially the PCA algorithm, as it is used here to calculate position
and orientation of the participant, was evaluated. In all cases the al-
gorithm performed very well to find position and orientation. Even
the SOM was trained correctly for every situation.

After that, a part of the data set, that contained only few marker
occlusions (one or two markers occluded for only a few frames)
was used to train and adapt the algorithm. This data was addition-
ally degraded with one marker being occluded for a longer time.
For this scenario, all markers were identified correctly. The ad-
dition for preserving the segment lengths proved very well in this
situation. Figure 2 shows a sequence of images for the initialization
and training steps and for some animation steps.

Figure 2: a) The initially set up model and initially trained SOM, b) the
initial model set to the trained SOM, c) and d) the model after some
animation steps.

Finally, the remaining data with a lot of markers being occluded
(every once a while up to only four markers were seen) was used
for adapting the SOM. This data even contained situations where
the whole left arm data was missing for approximately 2 seconds.
This was a very tough condition for the algorithm. Markers just
disappeared and popped up on completely different positions. Un-
fortunately, the SOM is not very well fitted to track a lot of miss-
ing markers over a longer period of time, and, for human motion,
even 2 seconds are a long period of time. During this time, the
SOM tried to adapt to the other markers and completely lost track
on its corresponding, but missing marker. It can even happen that
other neurons adapt strongly to a reappearing marker, because in
the mean-while it moved to their position and they also lost track to
their corresponding markers.

Concluding, our approach is very well suited for situations where
only a few markers (one or two markers on consecutive joints in a
chain) are occluded or if occlusion happens for only a few frames.
It can easily adopt to the posture and identify the markers 100%
correctly. However, for capture data with a lot of occluded markers
(e.g. a complete arm) our approach seems to be overstrained. The
SOM seems to be inappropriate for such situations. Still, we believe
that this approach can help to identify markers for slightly noisy
human motion data.

REFERENCES

[1] K. Dorfmüller-Ulhaas. Robust Optical User Motion Tracking Using a
Kalman Filter. Technical Report 2003-6, University of Augsburg, In-
stitut für Informatik, Universitätsstr. 2, D-86159 Augsburg, May 2003.

[2] J. F. O’Brien, R. Bodenheimer, G. Brostow, and J. K. Hodgins. Auto-
matic Joint Parameter Estimation from Magnetic Motion Capture Data.
In Graphics Interface, pages 53 – 60, 2000.

[3] M.-C. Silaghi, R. Plänkers, R. Boulic, P. Fua, and D. Thalmann. Local
and Global Skeleton Fitting Techniques for Optical Motion Capture. In
CAPTECH ’98: Proc. International Workshop on Modelling and Mo-
tion Capture Techniques for Virtual Environments, pages 26–40, 1998.

298

Authorized licensed use limited to: NORTHWESTERN POLYTECHNIC UNIVERSITY. Downloaded on May 6, 2009 at 23:38 from IEEE Xplore. Restrictions apply.

