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Abstract. Table tennis is a difficult motor skill which requires all basic compo-
nents of a general motor skill learning system. In order to get a step closer to such
a generic approach to the automatic acquisition and refinement of table tennis, we
study table tennis from a human motor control point of view. We make use of the
basic models of discrete human movement phases, virtual hitting points, and the
operational timing hypothesis. Using these components, wecreate a computa-
tional model which is aimed at reproducing human-like behavior. We verify the
functionality of this model in a physically realistic simulation of a Barrett WAM.

1 INTRODUCTION

Human ability to perform as well as learn motor tasks has longawed researchers in
robotics. On the other hand, insights into robotics have helped biologists and neu-
roscientists to understand how humans perform motor tasks.As a result, biomimetic
approaches have become highly interesting for both communities. In this paper, we fo-
cus on modeling a specific human motor skill, i.e., Table Tennis, which has all basic
components of a complex taks: it requires accurate control,it is based on several el-
emental movements or motor primitives (e.g., different forehands and backhands), the
goal functions based on perceptual context determine the behavior and even higher level
strategies using opponent models can play a role. Thus, it isan ideal task to model hu-
man functionality and testing the resulting model in robotics. For robotics, it offers an
understanding where the basic components need to be improved in order to create a
general, human-like framework for skill representation and control.

In this paper, we will proceed as follows. Firstly we presentour problem statement
in Section 1.1 and briefly review previous work on robot ping-pong in Section 1.2.
Secondly, we present relevant knowledge on modeling human table tennis in Section 2
so that we will be able to obtain a computational model of human table tennis in Section
3. In Section 4, we present the simulation of our real setup and show that the proposed
model works well in simulation. In Section 5, we discuss the lessons for motor skill
learning in robotics which can be concluded from this framework.

1.1 What can we learn from Human Table Tennis?

While current robots rely heavily on high-gain feedback, are not backdrivable and rely
on well-modeled environments in order to perform simple motor skills, humans are
able to perform complex skills relying on little feedback with long latencies, inaccurate



sensory information, and are very compliant. It is clear that many of the properties
which humans exhibit are essential for the safe operation offuture robots in human
inhabited environments. Understanding how humans performa complex game such
as table tennis can yield essential lessons for skill execution and learning in robotics.
For such quick and forceful movements as required in table tennis, the human central
nervous system has little time to process feedback about theenvironment and has to
rely largely on feedforward components [18] such as accurate task models as well as
predictions on the opponent and the environment (i.e., ball, net and table).

It is our goal to build a model of human table tennis which verifies that a concert
of known hypotheses on the human motor control in striking sports will in fact yield a
viable player and, thus, reconfirming these independent studies.

1.2 A Review of Robot Table Tennis

Table tennis has long fascinated roboticists as a particullarly difficult task. Work on
robot Ping Pong started with robot table tennis competitions iniated by Billingsley in
1983 [3]. Several early systems were presented by Hartley [7], Hashimoto [8] and oth-
ers. Early results were often discouraging as fast vision methods were a major bottle-
neck.

A major breakthrough was achieved in 1988 by Andersson [2] atAT&T Bell Lab-
oratories who presented the first robot ping pong player capable to play against hu-
mans and machines. Andersson used the simplified robot tabletennis rules suggested
by Billingsley.1 His achievement was made possible by designing a high-speedvideo
system and by elongating a 6 DoF PUMA 260 arm with a stick. He implemented an
expert system controller which chooses the strategy as a response to the incomming
ping pong ball and employs an exception handling algorithm for special cases. In 1993,
the last robot table tennis competitions took place and was won by Fassler et al. [6]
of the Swiss Federal Insitute of Technology. Nevertheless,interest in robot table ten-
nis did not wane and a series of groups has pursued the shortcomings exhibited by the
competitions. Acosta et al. [1] constructed a low-cost robot showing that a two-paddle
can already suffice for playing if the paddles only reflect theball at the right angle.
Miyazaki et al. [13,12] were able to show that a slow 4 DoF robot system consisting of
two linear axes and a 2 DoF pan-tilt unit suffices for basic table tennis can fully suffice
if the right predictive mappings are learned. They employ locally weighted regression
(LWR) to predict the impact point and time given the speed andposition of the ball as
well as an inverse mapping to determine where the racket should be in order to move
the ball to a pre-specified position.

In this paper we describe the construction of a robot ping pong player with seven
degrees of freedom that is cabable of returning a ball on a human sized table served by
a ping pong launcher. We concentrate on modeling the system after human table tennis
with a strong focus on prediction while we make use of an anthropomorphic arm. The
later requires task appropriate redundancy solution as full table tennis requires only 5
DoFs [2] but using all 7 can lead to significant speed advantages.

1 In contrast to human ping pong rules, the table is only 0.5 m inwidth and 2 m in length. The
net has a high of 0.25 m. Wire frames were attached at each end of the table and the net where
the ball has to pass this frame to be a valid shoot.



2 Modelling Human Table Tennis

In the following part of the paper, we are going to present background on modeling
table tennis from a striking sports perspective. In particular, we will focus on movement
phases, movement selection and parameterization as well asmovement generation.

2.1 Movement Phases

Table Tennis exhibits a very regular, modular structure which was studied by Ramantsoa
and Durey [14]. They analysed a top player and proposed a spatial adjustment with
reference to certain ball events (bouncing, net crossing and stroke). According to Ra-
mantsoa, the following four stages can be distinguished during playing of expert players
and, to make them more understandable, we named them according to their function:

Awaiting Stage. The ball is moving towards the opponent who hits it back towards the
net. In order to prepare during this stage, the racket is moving downwards. At the
end of this phase the racket will be in a plane parallel to the table surface.

Preparation Stage. The ball is coming towards the player, has already passed thenet
and will hit the table during this stage. The racket is movingbackwards in order to
prepare to strike.

Hitting Stage. The ball is moving towards the point where the player intercepts it. The
racket is moving towards the ball until he hits it in a circular movement. For expert
players the duration of this phase is constant and lasts exactly 80 ms.

Finishing Stage. After having been hit, the ball is on the return path to the opponent
while the racket is moving upwards to a stopping position.

Furthermore they suggested that a virtual hitting point that is the point where the racket
intercepts the ball in space and time is chosen in the beginning of phase 4.

2.2 Movement Primitive Selection and Parameterization

As humans appear to rely on motor programs or motor primitives [15], it is likely that
pre-structured movement commands are employed for each of these four stages. For
this a motor primitive needs to be chosen based upon the environmental stimuli at the
beginning of each stage.

Motor primitives determine the order and timing of the muscles contraction and,
by doing so, define the shape of the action produced. Sensory information can modify
motor primitives to generate rapid correctios in the case ofchanging environmental de-
mands as found in table tennis by Bootsma and van Wiering [4].The system is only
altering the parameters of the movement such as movement duration, movement ampli-
tude or the final goal position of the movement [15]. In Table Tennis, the expert players
show very consistent stroke movements with very litle variation over trials [9,17] indi-
cating that motor primitives could be used.The experimentsof Tildesley and Whiting
supported a consistent spatial and temporal movement pattern of expert players in ta-
ble tennis. They concluded that a professional player just have to choose a movement
primitv for which the execution time is known from their repertoire and to decide when
to initiate the drive. This hypothesis is known as operational timing hypothesis [17].



The problem of what information is used to decide when to initiate the movement.
Most likely we use the so calledtime to contactthat is the time until an object reaches
the observer to control the timing. Lee [11] suggested that we determine the time to
contact by an optic variabletau that is specified as the inverse of the relative rate of
dilation of retinal image of an object. Using the operational timing hypothesis we have
just to initiate the choosen movement primitv when tau reaches a critical value.

2.3 Movement Generation

Assuming that movement phases, selection and initiation are known, we need to dis-
cuss how the different strokes are generated. There are infinitely many ways to generate
racket trajectories and, due to redundancies, there also exist many different ways to
execute the same task-space trajectory in joint-space. In order to find generative princi-
ples underlying the movement generation, neuroscientistsoften turn to optimal control
[16]. One approache is the use of cost functions which allow the computation of tra-
jectory formation for arm movements. Most focus primarily on reaching and pointing
movements where one can observe a bell-shape velocity curveand a clear relationship
between movement duration and amplitude. However, this does not hold for striking
sports. The cost function for the control of the human arm movement suggested by
Cruse et al. [5] is based on the comfort of the posture. For each joint, the cost is induced
by proximity to a rest joint position, i.e., a function has a minimum at the angles close
to the rest posture and increases with the extreme angles. For movement generation, the
sum of all comfort values minimized. We employ this cost function in Section 3.3.

3 Computational Realization of the Model

In this section, we will discuss how the steps presented in Section 2 can be implemented
using a physical models as replacements for the learned components of a human coun-
terpart. For doing so, we proceed as follows: first, we discuss all required components
in an overview. Subsequently, we discuss how the the detailsof the goal determination
can be realized in Section 3.2 and how the movements need to begenerated in order to
be executable on a robot in Sections 3.3.

3.1 Overview

We assume the movement phases of the model by Ramantsoa et al.[14] and use a finite
state automaton to represent this model. In order to realizeeach of these four stages, the
system has to detect the presence of the ball and sense its position pb. Due to noise in
the vision processing, the system needs to filter this position.

Movement goal determination is the most complex part to realize. While desired
final joint configurations suffice for the awaiting, preparation and finishing stages, the
hitting stage requires a well-chosen movement goal. For doing so, the system has to first
choose a point on the court of the opponent where the ball should be returned. Similarly,
making use of Ramanantsoas [14] virtual hitting point hypothesis, the hitting pointpe

can be determined by the location where the ball hits the robots task space. Based on
the choice of this point, the necessary batting position, orientation and velocity of the



racket are chosen as goal parameters for the hitting movement. More details of the
computations involved are given in Section 3.2.

Movement initiation is triggered in accordance to the movement phases and using
the movement goals, i.e., the time of the predicted ball intersecting the virtual hitting
point pe is less than a thresholdte before hitting, the hitting movement is initiated.
This step requires the system to predict when the ball is going to reach the virtual
hitting plane in the workspace of the robot and the current time to hit can be determined
by predicting the trajectory of the ball using a Kalman predictor [10]. Following [4]
suggestion that some online adaptation of the movement can take place, we update the
virtual hitting point if its estimate changes drastically,e.g., if the difference between the
estimates exceeds a thresholdd.

For the movement program determination we use a spline-based trajectory repre-
sentation. More details of these computations are given in Section 3.3.

3.2 Determining the Goal Parameters

After determining the virtual hitting point, the system canfreely choose the heightznet

at which the returning ball passes the net as well as the positions xb, yb where the
ball will bounce on the opponents courts. The choice of thesethree variables belongs
to the higher level functions and is not covered in this model, we instead draw from
a distribution of plausible values. As goal parameters, we have to first calculate the
desired outgoing vector O of the ball which should result from the movement, and,
directly from it, we can determine the rackets velocity and orientation.

Desired outgoing vector.Assuming little air resistance, one obtains the straightforward
relationship ˙xo = xnet/tnet = xb/tb between the speeds at the net at locationxnet and at
the bouncing point on the opponent court at timetb. From this, the linear relationship
tnet = αtb with α = xnet/xb can be obtained. As the height of the ball after hitting is
governed by the equationz= zo + żot −0.5g · t2, inserting and solving fortb will yield
the time of impact

tb =

√

hn−2(α −1)2gzo

α(α −1)
. (1)

Given the timetb, we can now calculate the components of the desired outgoingvelocity
vector of the ball by ˙zo = 0.5gt2b −zo/tb, ẋo = xb/tb andẏo = yb/tb.

Racket goal orientation.Now it is possible to calculate the orientation of the racket
and the end-effector. The attitude of the racket is determined through the normal of the
racket. If we assume only a speed change O− I in normal direction nr, we obtain

O− I = nr(O||− I||) (2)

whereO|| and I|| denote the component of O and I, respectively, which is parallel
to the normal. Note, that||O− I|| = O|| − I||. In order to compute the orientation of
the end-effector, we need to proceed in three steps. First, we calculate a quaternion
qrd = (cos(θ/2) ,usin(θ/2)) with θ = nT

e nrd/(|ne||nrd |) and u= ne×nr/‖ne×nr‖ to
transform the normal of the endeffector ne to the racket nr . Second, we multiply the
conjungate of the quaternion of the rotationqrot = (cos(−π/4),u2sin(−π/4)) (where



u2 denotes the unit vector) from endeffector to racket to get the quaternionqhd′ . The
resulting quaternion of the handqhd is then determined throughqhd = qrot rd×qhd′. As
there exist infinitely many racket orientations which have the same racket normal, we
need to determine the final orientation depending on a preferential end-effector posi-
tion. For this purpose the orientation of the endeffector isrotated around the normal of
te racket. The orientation whose corresponding joint values yield the minimum distance
to the comfort position is used as a desired racket orientation.

Required racket velocity.In the next step, we calculate the velocity vector for the end-
effector at the time of the ball interception. As−I||, O|| > 0, and−I||−O|| 6= 0 we can
solve forO|| and obtain

O|| = −εRI|| +(1+ εR)v (3)

whereεR denotes the coefficient of restitution of the racket andv the speed of the racket.
Note, we assume thatO||, −I|| andv all have the same direction. Equation (3) can be
solved forv yielding the desired output velocity O= I +nr[(1+ εR)v− (1+ εR)I||].

3.3 Trajectory generation
For the execution of the movements, we need a representationwhich yields position
q(t), velocity q̇(t) and accelerations q̈(t) of the joints of the manipulator at each point
in time t so that it can be executed based on feedforward inverse dynamics models.
Based on the four stage model of Durey et al. [14], we can determine for different
spline phases consisting splines interpolating between fixed initial and final positions.

We are planning our trajectory in joint space as high velocity movements can be
executed better than in the workspace.

To compute the arm trajectory, we have to specify an initial joint configuration
qi = q(0), the initial joint velocity q̇i = q̇(0), the initial acceleration q̈i = q̈(0), the
final position qf = q(t f ), the final velocity q̇f = q̇(t f ), the final acceleration q̈f = q̈(t f )

and the duration of the movementt f . We used fifth order polynomial q= ∑5
j=0aj t j to

represent the trajectory for all phases as it is the minimal sufficient representation, gen-
erates very smooth trajectories and can evaluated fast and easily. The trajectories of the
hitting and finishing stages are calculated at the beginningof the hitting phase and are
recalculated every time the the virtual hitting point has tobe updated.

The joint space position of the virtual hitting point is determined using inverse kine-
matics. The inverse kinematics calculations for the redundant are performed numeri-
cally by minimizing the distance to the comfort posture in joint space while finding the
racket position & orientation which coincides with the desired posture.

4 Evaluations
In this section, we demonstrate that this model of human table tennis can be used effec-
tively for robot table tennis in a ball gun setup. For this propose, we will first psresent
the simulated setup of the robot table tennis task and discuss its physically realistic
simulation using the SL framework (developed by Stefan Schaal at Univ. of Southern
California) including a realistic simulation of a Barrett WAM. We show the resulting
end-effector trajectories and discuss the accuracy of the system in striking a ball such
that it hits a desired point.



(a) Simulated setup (b) Real Table Tennis setup

Fig. 1. This figure shows the Barrett WAM arm used for evaluation.

4.1 Simulated Setup

In Figure 1 (a), the simulated environment of the table tennis task is illustrated together
with the physical setup in Figure 1 (b). We employ a simulatedBarrett WAMTM arm
with seven degrees of freedom that is capable of high speed motion. A racket with 16 cm
in diameter is attached to the endeffector. The robot arm interacts with a human sized
table and a table tennis ball according to the internationalrules of table tennis. The ball
is served randomly with a ping pong ball launcher to the forehand of the robot. That
effects an area of 1.24 by 0.7 meters. For this purpose, we have defined a virtual plane
which the ball has to pass. The virtual hitting point is determined as the intersection
point of the ball and the virtual hitting plane. The ball is visually tracked by using
vision system with a sampling rate of 60 frames per second.

4.2 Performance of the model

The table tennis system is capable of returning an incoming volley to the opponents
court which was served by a robot ping pong launcher at randomtimes and to randomly
chosen positions . It was successful in 73% of the balls emitted by the ball gun. This
result could be futher increased by optimizing the trajectory generation in joint space.
Figure 2 shows the trajectory of the endeffector of one stroke beginning and ending
in the Awaiting Stage. For better comprehension, the individual stages of the robot are
marked in color.

5 Conclusion

Using the body of knowledge on human table tennis, we have formed a phenomenolog-
ical model of human table tennis. This model is realized in a computational form using
analytical counterparts. We show that the resulting computational model can be used
as an explicit policy for returning incoming table tennis balls to a desired point of the
opponents court in a physically realistic simulation with aredundant seven degree of
freedom Barrett WAM arm. The biological model with its four stages of the table tennis
stroke and the the goal parameterizing using virtual hitting points and pre-shaping of
the orientation has proven successful in operation. In tests, the robot could return 73 %
of the balls served by the ping pong ball launcher.
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Fig. 2. This figure shows the endeffector trajectory of the robot armin (a) x , (b) y and (c) z
direction. The distinct phases are colored as follows, the Awaiting Stage in green, the Preparation
Stage in magenta, the Hitting Stage in black and the Finishing Stage in red.
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