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Abstract. Table tennis is a difficult motor skill which requires all masompo-
nents of a general motor skill learning system. In order tagdep closer to such
a generic approach to the automatic acquisition and refineafi¢able tennis, we
study table tennis from a human motor control point of vieve Make use of the
basic models of discrete human movement phases, virtuglghfioints, and the
operational timing hypothesis. Using these componentscneate a computa-
tional model which is aimed at reproducing human-like bétraWe verify the
functionality of this model in a physically realistic sination of a Barrett WAM.

1 INTRODUCTION

Human ability to perform as well as learn motor tasks has lawgd researchers in
robotics. On the other hand, insights into robotics havedetlbiologists and neu-
roscientists to understand how humans perform motor tasks result, biomimetic
approaches have become highly interesting for both contieanin this paper, we fo-
cus on modeling a specific human motor skill, i.e., Table T®nwhich has all basic
components of a complex taks: it requires accurate coritrisl,based on several el-
emental movements or motor primitives (e.g., differenef@nds and backhands), the
goal functions based on perceptual context determine thavier and even higher level
strategies using opponent models can play a role. Thusait ideal task to model hu-
man functionality and testing the resulting model in robstiFor robotics, it offers an
understanding where the basic components need to be intbiowarder to create a
general, human-like framework for skill representatiod aontrol.

In this paper, we will proceed as follows. Firstly we presamt problem statement
in Section 1.1 and briefly review previous work on robot ppang in Section 1.2.
Secondly, we present relevant knowledge on modeling huataa tennis in Section 2
so that we will be able to obtain a computational model of haitahle tennis in Section
3. In Section 4, we present the simulation of our real setupstwow that the proposed
model works well in simulation. In Section 5, we discuss thgsbns for motor skill
learning in robotics which can be concluded from this framew

1.1 What can welearn from Human Table Tennis?

While current robots rely heavily on high-gain feedbacle, mot backdrivable and rely
on well-modeled environments in order to perform simple eanakills, humans are
able to perform complex skills relying on little feedbackimiong latencies, inaccurate



sensory information, and are very compliant. It is cleat tinany of the properties
which humans exhibit are essential for the safe operatidiutafe robots in human
inhabited environments. Understanding how humans perormomplex game such
as table tennis can yield essential lessons for skill ei@taind learning in robotics.
For such quick and forceful movements as required in talmirise the human central
nervous system has little time to process feedback abowrthieonment and has to
rely largely on feedforward components [18] such as aceursk models as well as
predictions on the opponent and the environment (i.e., batland table).

It is our goal to build a model of human table tennis which fiesithat a concert
of known hypotheses on the human motor control in strikingrtspwill in fact yield a
viable player and, thus, reconfirming these independediestu

1.2 A Review of Robot Table Tennis

Table tennis has long fascinated roboticists as a paidultifficult task. Work on
robot Ping Pong started with robot table tennis compettiomted by Billingsley in
1983 [3]. Several early systems were presented by Hartleygshimoto [8] and oth-
ers. Early results were often discouraging as fast visiothaus were a major bottle-
neck.

A major breakthrough was achieved in 1988 by Andersson [2]T&T Bell Lab-
oratories who presented the first robot ping pong player ldap@a play against hu-
mans and machines. Andersson used the simplified robot texinés rules suggested
by Billingsley! His achievement was made possible by designing a high-speed
system and by elongating a 6 DoF PUMA 260 arm with a stick. Helé@mented an
expert system controller which chooses the strategy aspmmse to the incomming
ping pong ball and employs an exception handling algoritonspecial cases. In 1993,
the last robot table tennis competitions took place and was by Fassler et al. [6]
of the Swiss Federal Insitute of Technology. Nevertheledsrest in robot table ten-
nis did not wane and a series of groups has pursued the shminig® exhibited by the
competitions. Acosta et al. [1] constructed a low-cost tadmwing that a two-paddle
can already suffice for playing if the paddles only reflect tiadl at the right angle.
Miyazaki et al. [13,12] were able to show that a slow 4 DoF tatystem consisting of
two linear axes and a 2 DoF pan-tilt unit suffices for basitetédnnis can fully suffice
if the right predictive mappings are learned. They emplaally weighted regression
(LWR) to predict the impact point and time given the speed @osltion of the ball as
well as an inverse mapping to determine where the racketidto@uin order to move
the ball to a pre-specified position.

In this paper we describe the construction of a robot pingggalayer with seven
degrees of freedom that is cabable of returning a ball on aalwsized table served by
a ping pong launcher. We concentrate on modeling the sydtemhaiman table tennis
with a strong focus on prediction while we make use of an aptbmorphic arm. The
later requires task appropriate redundancy solution &sdflle tennis requires only 5
DoFs [2] but using all 7 can lead to significant speed adva#ag

1In contrast to human ping pong rules, the table is only 0.5 midth and 2 m in length. The
net has a high of 0.25 m. Wire frames were attached at eachf¢he table and the net where
the ball has to pass this frame to be a valid shoot.



2 Moddling Human Table Tennis

In the following part of the paper, we are going to presenkbemund on modeling
table tennis from a striking sports perspective. In paldicuve will focus on movement
phases, movement selection and parameterization as wathasment generation.

2.1 Movement Phases

Table Tennis exhibits a very regular, modular structurecWwias studied by Ramantsoa
and Durey [14]. They analysed a top player and proposed @bpafustment with
reference to certain ball events (bouncing, net crossimgséioke). According to Ra-
mantsoa, the following four stages can be distinguisheithdynaying of expert players
and, to make them more understandable, we named them aagtodheir function:

Awaiting Stage. The ball is moving towards the opponent who hits it back talsahe
net. In order to prepare during this stage, the racket is ngpgownwards. At the
end of this phase the racket will be in a plane parallel to diwetsurface.

Preparation Stage. The ball is coming towards the player, has already passexdahe
and will hit the table during this stage. The racket is mowagkwards in order to
prepare to strike.

Hitting Stage. The ball is moving towards the point where the player intpteéd. The
racket is moving towards the ball until he hits it in a cirauteovement. For expert
players the duration of this phase is constant and lastglg@rms.

Finishing Stage. After having been hit, the ball is on the return path to thecopmt
while the racket is moving upwards to a stopping position.

Furthermore they suggested that a virtual hitting pointighthe point where the racket
intercepts the ball in space and time is chosen in the bagirofiphase 4.

2.2 Movement Primitive Selection and Par ameterization

As humans appear to rely on motor programs or motor prinstf¢é], it is likely that
pre-structured movement commands are employed for eadiesé tfour stages. For
this a motor primitive needs to be chosen based upon thecamagntal stimuli at the
beginning of each stage.

Motor primitives determine the order and timing of the masctontraction and,
by doing so, define the shape of the action produced. Sensfmnyriation can modify
motor primitives to generate rapid correctios in the casehahging environmental de-
mands as found in table tennis by Bootsma and van WieringT[4. system is only
altering the parameters of the movement such as movematia@yrmovement ampli-
tude or the final goal position of the movement [15]. In Takdaflis, the expert players
show very consistent stroke movements with very litle v@otaover trials [9,17] indi-
cating that motor primitives could be used.The experimehfBldesley and Whiting
supported a consistent spatial and temporal movementpattexpert players in ta-
ble tennis. They concluded that a professional player jageho choose a movement
primitv for which the execution time is known from their refmére and to decide when
to initiate the drive. This hypothesis is known as operatidiming hypothesis [17].



The problem of what information is used to decide when tadtétthe movement.
Most likely we use the so calleime to contacthat is the time until an object reaches
the observer to control the timing. Lee [11] suggested thatdetermine the time to
contact by an optic variablau that is specified as the inverse of the relative rate of
dilation of retinal image of an object. Using the operatidiming hypothesis we have
just to initiate the choosen movement primitv when tau reachcritical value.

2.3 Movement Generation

Assuming that movement phases, selection and initiatierkaown, we need to dis-
cuss how the different strokes are generated. There aréahfimany ways to generate
racket trajectories and, due to redundancies, there aisb raany different ways to
execute the same task-space trajectory in joint-spacedbr to find generative princi-
ples underlying the movement generation, neurosciemftts turn to optimal control
[16]. One approache is the use of cost functions which allesvdomputation of tra-
jectory formation for arm movements. Most focus primarity reaching and pointing
movements where one can observe a bell-shape velocity and/a clear relationship
between movement duration and amplitude. However, this doé hold for striking
sports. The cost function for the control of the human arm enoent suggested by
Cruse et al. [5] is based on the comfort of the posture. Fdr det, the cost is induced
by proximity to a rest joint position, i.e., a function has ammum at the angles close
to the rest posture and increases with the extreme anglesidx@ment generation, the
sum of all comfort values minimized. We employ this cost fimtin Section 3.3.

3 Computational Realization of the M odel

In this section, we will discuss how the steps presentedéti@e2 can be implemented
using a physical models as replacements for the learnedaoenps of a human coun-
terpart. For doing so, we proceed as follows: first, we dis@lisrequired components
in an overview. Subsequently, we discuss how the the dethile goal determination
can be realized in Section 3.2 and how the movements needgertazated in order to
be executable on a robot in Sections 3.3.

3.1 Overview

We assume the movement phases of the model by Ramantsofld} ahd use a finite
state automaton to represent this model. In order to readizh of these four stages, the
system has to detect the presence of the ball and senseitisp@g. Due to noise in
the vision processing, the system needs to filter this positi

Movement goal determination is the most complex part toizealWhile desired
final joint configurations suffice for the awaiting, prep#@atand finishing stages, the
hitting stage requires a well-chosen movement goal. Forgled, the system has to first
choose a point on the court of the opponent where the balldheureturned. Similarly,
making use of Ramanantsoas [14] virtual hitting point hiyests, the hitting poinpe
can be determined by the location where the ball hits theteotask space. Based on
the choice of this point, the necessary batting positiondation and velocity of the



racket are chosen as goal parameters for the hitting moveriieme details of the
computations involved are given in Section 3.2.

Movement initiation is triggered in accordance to the mogatphases and using
the movement goals, i.e., the time of the predicted balrssteting the virtual hitting
point pe is less than a threshold before hitting, the hitting movement is initiated.
This step requires the system to predict when the ball isggtonreach the virtual
hitting plane in the workspace of the robot and the currem¢ tio hit can be determined
by predicting the trajectory of the ball using a Kalman pesali [10]. Following [4]
suggestion that some online adaptation of the movementtéa@yiace, we update the
virtual hitting point if its estimate changes drasticadlyy., if the difference between the
estimates exceeds a threshdld

For the movement program determination we use a splineditasjectory repre-
sentation. More details of these computations are giveratié 3.3.

3.2 Determining the Goal Parameters

After determining the virtual hitting point, the system dagely choose the heiglafet
at which the returning ball passes the net as well as theiposit,, vy, where the
ball will bounce on the opponents courts. The choice of thiesee variables belongs
to the higher level functions and is not covered in this mpde instead draw from
a distribution of plausible values. As goal parameters, aecho first calculate the
desired outgoing vector O of the ball which should resultrfrthe movement, and,
directly from it, we can determine the rackets velocity anidmtation.

Desired outgoing vectorAssuming little air resistance, one obtains the straightfod
relationshipx, = Xnet/thet = Xp/tp between the speeds at the net at locakignand at
the bouncing point on the opponent court at tigpeFrom this, the linear relationship
thet = atp With a = Xnet/Xp €an be obtained. As the height of the ball after hitting is
governed by the equatian= z, + Zt — 0.5g - t?, inserting and solving foi, will yield

the time of impact

v/hn—2(a —1)2g9z 1)
a(a—1) '

Given the timdy,, we can now calculate the components of the desired outgeiogity

vector of the ball byz, = O.59t§ — Z5/t, X0 = Xp/tp andyp = Yp/tp.

Racket goal orientationNow it is possible to calculate the orientation of the racket

and the end-effector. The attitude of the racket is detezththrough the normal of the
racket. If we assume only a speed changeldn normal direction p, we obtain

tp =

O—I:nr(OH—IH) (2)

where O and |, denote the component of O and I, respectively, which is fral
to the normal. Note, tha{O —1|| = O —I;. In order to compute the orientation of
the end-effector, we need to proceed in three steps. Fiestcalculate a quaternion
Ora = (c0s(8/2),usin(8/2)) with 8 = ninyg/(|ne||Nra|) and u= ne x Ny /||ne x nr || to
transform the normal of the endeffectas to the racket p Second, we multiply the
conjungate of the quaternion of the rotatiqi: = (cog—11/4), upsin(—11/4)) (Where



u, denotes the unit vector) from endeffector to racket to getdghaterniorg,y. The
resulting quaternion of the hamgy is then determined througihg = Grotrd X Ghg - AS
there exist infinitely many racket orientations which hdwve same racket normal, we
need to determine the final orientation depending on a pefil end-effector posi-
tion. For this purpose the orientation of the endeffectootated around the normal of
te racket. The orientation whose corresponding joint \&jield the minimum distance
to the comfort position is used as a desired racket oriemtati

Required racket velocityln the next step, we calculate the velocity vector for the-end
effector at the time of the ball interception. Ad);, O > 0, and—I | — O # 0 we can
solve forO;; and obtain

OH = 7£RIH+(1+ ER)V 3)
wheregg denotes the coefficient of restitution of the racket atite speed of the racket.
Note, we assume th&, —I; andv all have the same direction. Equation (3) can be

solved forv yielding the desired output velocity © 1 +n[(1+ &r)v— (1 + &r)l)|].

3.3 Trajectory generation

For the execution of the movements, we need a representakimh yields position
q(t), velocity gt) and accelerations(tj of the joints of the manipulator at each point
in time t so that it can be executed based on feedforward inverse dgsanodels.
Based on the four stage model of Durey et al. [14], we can oeter for different
spline phases consisting splines interpolating betweex fixitial and final positions.

We are planning our trajectory in joint space as high vejogibvements can be
executed better than in the workspace.

To compute the arm trajectory, we have to specify an inititj configuration
g, = q(0), the initial joint velocity g = q(0), the initial acceleration¢= §(0), the
final position g = q(t¢), the final velocity ¢4 = q(t¢ ), the final accelerationt= §(tr)
and the duration of the movement We used fifth order polynomial ¢ 215:0 ajt) to
represent the trajectory for all phases as it is the minimificéent representation, gen-
erates very smooth trajectories and can evaluated fastaailgl. € he trajectories of the
hitting and finishing stages are calculated at the beginofrige hitting phase and are
recalculated every time the the virtual hitting point habéoupdated.

The joint space position of the virtual hitting point is daténed using inverse kine-
matics. The inverse kinematics calculations for the rednbdre performed numeri-
cally by minimizing the distance to the comfort posture imjspace while finding the
racket position & orientation which coincides with the dediposture.

4 Evaluations

In this section, we demonstrate that this model of humaretegsinis can be used effec-
tively for robot table tennis in a ball gun setup. For thisgmee, we will first psresent
the simulated setup of the robot table tennis task and disitsiphysically realistic
simulation using the SL framework (developed by Stefan 8chaUniv. of Southern
California) including a realistic simulation of a BarrettAM. We show the resulting
end-effector trajectories and discuss the accuracy ofytsiem in striking a ball such
that it hits a desired point.



(a) Simulated setup (b) Real Table Tennis setup

Fig. 1. This figure shows the Barrett WAM arm used for evaluation.

4.1 Simulated Setup

In Figure 1 (a), the simulated environment of the table tetesk is illustrated together
with the physical setup in Figure 1 (b). We employ a simul&adrett WAMTM arm
with seven degrees of freedom that is capable of high spe&édm# racket with 16 cm
in diameter is attached to the endeffector. The robot areracts with a human sized
table and a table tennis ball according to the internatiariak of table tennis. The ball
is served randomly with a ping pong ball launcher to the farehof the robot. That
effects an area of 1.24 by 0.7 meters. For this purpose, we defined a virtual plane
which the ball has to pass. The virtual hitting point is detiered as the intersection
point of the ball and the virtual hitting plane. The ball iswally tracked by using
vision system with a sampling rate of 60 frames per second.

4.2 Performance of the model

The table tennis system is capable of returning an incomaligy to the opponents

court which was served by a robot ping pong launcher at rartdoas and to randomly

chosen positions . It was successful in 73% of the balls ethitly the ball gun. This

result could be futher increased by optimizing the trajacteneration in joint space.

Figure 2 shows the trajectory of the endeffector of one stogginning and ending
in the Awaiting Stage. For better comprehension, the inldial stages of the robot are
marked in color.

5 Conclusion

Using the body of knowledge on human table tennis, we haveddra phenomenolog-
ical model of human table tennis. This model is realized inpraputational form using
analytical counterparts. We show that the resulting coatprial model can be used
as an explicit policy for returning incoming table tennidld#o a desired point of the
opponents court in a physically realistic simulation withedundant seven degree of
freedom Barrett WAM arm. The biological model with its fotiages of the table tennis
stroke and the the goal parameterizing using virtual lgtpoints and pre-shaping of
the orientation has proven successful in operation. Ii$ t&s¢ robot could return 73 %
of the balls served by the ping pong ball launcher.
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Fig. 2. This figure shows the endeffector trajectory of the robot arra) x , (b) y and (c) z
direction. The distinct phases are colored as follows, thai#ing Stage in green, the Preparation
Stage in magenta, the Hitting Stage in black and the FinisBiage in red.
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