
Robot Skill Learning
Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, Oliver Krömer 1

Abstract. Learning robots that can acquire new motor skills and re-
fine existing ones have been a long standing vision of robotics, artifi-
cial intelligence, and the cognitive sciences. Early steps towards this
goal in the 1980s made clear that reasoning and human insights will
not suffice. Instead, new hope has been offered by the rise of modern
machine learning approaches. However, to date, it becomes increas-
ingly clear that off-the-shelf machine learning approaches will not be
adequate for robot skill learning as these methods often do not scale
into the high-dimensional domains of manipulator and humanoid
robotics, nor do they fulfill the real-time requirement of the domain.
As an alternative, we propose to divide the generic skill learning
problem into parts that can be well-understood from a robotics point
of view. After designing appropriate learning approaches for these
basic components, these will serve as the ingredients of a general ap-
proach to robot skill learning. In this paper, we discuss our recent
and current progress in this direction. As such, we present our work
on learning to control, learning elementary movements, as well as
our steps towards the learning of complex tasks. We show several
evaluations using both real robots as well as physically realistic sim-
ulations.

1 Introduction
Despite an increasing number of motor skills exhibited by manipu-
lator and humanoid robots, the general approach to the generation
of such motor behaviors has changed little over the last decades [1].
The roboticist models the task as accurately as possible and uses hu-
man understanding of the required motor skills in order to create the
desired robot behavior, as well as to eliminate all uncertainties of the
environment. In most cases, such a process boils down to recording
a desired trajectory in a pre-structured environment with precisely
placed objects. If inaccuracies remain, the engineer creates excep-
tions using human understanding of the task. Such highly engineered
approaches are feasible in highly structured industrial or research en-
vironments. However, it is obvious that if robots should ever leave
factory floors and research environments, we will need to reduce the
strong reliance on hand-crafted models of the environment and the
robots. Instead, we need a general framework which allows us to use
compliant robots that are designed for interaction with less struc-
tured and uncertain environments in order to reach domains outside
industry. Such an approach cannot rely solely on human knowledge
but instead has to be acquired from data generated both by human
demonstrations of the skill as well as trial & error of the robot.

The tremendous progress in machine learning over the last decades
offers us the promise of less human-driven approaches to motor skill
acquisition. However, despite offering the most general methods for
data-driven acquisition of motor skills, generic machine learning

1Technische Universität Darmstadt, and Max Planck Institute for Intelli-
gent Systems, email: mail@jan-peters.net

techniques (which do not rely on an understanding of motor sys-
tems) often do not scale into the realt-time domain of manipulator
or humanoid robotics due to their high dimensionality. Therefore, in-
stead of attempting to apply a standard machine learning framework
to motor skill aquisition, we need to develop approaches suitable
for this particular domain. To cope with the complexities involved
in robot skill learning, the inherent problems of task representation,
learning and execution should be addressed separately in a coherent
framework employing a combination of imitation, reinforcement and
model learning. The advantage of such a concerted approach is that
it allows the separation of the main problems of motor skill acquisi-
tion, refinement and control. Instead of either having an unstructured,
monolithic machine learning approach or creating hand-crafted ap-
proaches with pre-specified trajectories, we are capable of acquiring
skills from demonstrations and represented as policies which become
refined by trial and error (as discussed in Section 4). Additionally,
we can learn how to activate and adapt the task-related parameters
in order to achieve more complex tasks as discussed in Section 5.
Finally, using learning-based approaches, we can achieve accurate
control without accurate analytical models of the complete system as
discussed in Section 3.

2 Our Skill Learning Framework
In order to create a robot skill learning framework that is sufficiently
general, we need to discuss three basic components for such an ap-
proach. For this, a general representation is required that can encap-
sulate elementary and frequently used motions. We need to be able
to learn these motions efficiently, and a supervisory module must be
able to use these basic elements. Finally, execution is required that
can adapt to changes in the environment. The resulting control archi-
tecture is shown in Figure 1. Let us now briefly discuss each of these
aspects in the remainder of this section.

Motor Primitives. For the representation of motor skills, we can
rely on the insight that humans, while being capable of performing
a large variety of complicated movements, restrict themselves to a
smaller amount of primitive motions [3]. As suggested by Ijspeert et

Action
Motor

Commands

Desired
State

Task Parameters
and Activation

State Information

Learning
Signal

Execute

Supervisor
Motion

Primitives
Motion

Primitives
Motion

Primitives

State

Primitives

Teacher

Figure 1. This figure illustrates the generic components of a motor skill
learning system, i.e., the supervisor system activates motor primitives and
sets their task parameters. These elementary movements are executed by a

learned motor control law. The learning signals are provided with the help of
a teacher or scoring system.

al. [4], such primitive movements can be represented by nonlinear
dynamic systems. As a result, we may represent elementary tasks by
elementary policies of the type2

ẋd = πi(x
d,x, t,ρi) (1)

where xd is the internal state of the system, t denotes the time,
i ∈ {1, 2, . . . , n} is the index of the motor primitive in a library
of movements, and task parameters ρi = [θi, d,g,A, . . .] deter-
mine the shape of movement primitive i using θi ∈ RL, duration
d, goal g and amplitude A, etc, of the motion. The resulting sys-
tem is linear in the shape parameters θi and can therefore be learned
efficiently. They are robust towards perturbations and, as they are
time-continuous, they are well-suited for control.Both primitives in
task-spaces as well as in joint-space can be learned. A key element
of the Ijspeert formulation is that the shape is solely determined by
θi but that it is invariant under changes of duration, goal or ampli-
tude of the movement. Hence, the resulting primitives can be reused
efficiently by a higher-level supervisory module.

Supervisor. The supervisory level is an increasingly hot topic for
research as it allows the usage of the motor primitive policies πi in
a multitude of novel ways. First, it may reuse a movement primi-
tive with the same shape in various situations by simply modifying
the duration, the goal, the amplitude or other task parameters. As we
will see in Section 5.1, it is straightforward to learn subgoal functions
that set the task context variables based on the external state. The su-
pervisory level allows the genereralization of learned movements by
creating a mixture of motor primitives, i.e., a new movement policyπ
results from a convex combination of existing movements πi. In the
same context, we can treat the selection of motor primitives. Here,
the primitive with the maximal weight is activated while in gener-
alization several primitives using this state-dependent weight. These
topics are discussed in Section 5.2. Other tasks of the supervisor are
sequencing motion primitives as well as blending the transitions be-
tween them and the superposition of different movements.

Execution. The execution of a motor primitive πi on compli-
ant robot systems, which are safe in the interaction with humans,
adds another level of complexity. It requires that we generate motor
commands u = η(ẋd,xd,x) so that the motor primitives get exe-
cuted precisely while not introducing large feedback gains. If accom-
plished using hand-crafted control laws, the quality of the analytical
models is essential and, low gain control can only be achieved with
very accurate models. Hence, in the presence of unmodeled, time-
variant nonlinearities resulting from stiction, cable drives, or the hy-
draulic tubes, it will become essential to learn accurate models and to
adapt them online. We are developing efficient real-time regression
methods for online model learning based on the state-of-the-art in
machine learning, see Section 3.1. If a motor primitive is only acting
in a limited subspace, it can often be better to directly learn a map-
ping from primitives and states to motor command. While learning
such an operational space control is no longer a standard regression
problem, it can still be solved using a reward-weighted regression
when using insights from mechanics.

Learning is required for acquiring and refining the motor prim-
itives discussed before. However, it is also needed for adapting the
execution to changes in the environement and to learn the supervi-
sory module, as can be observed in Figure 1. Learning motor primi-
tives is achieved by adapting the parameters θi of motor primitive i.
The high dimensionality of our domain prohibits the exploration of

2Note that Equation (1) is in state-space formulation and, in fact, a second
order system.

the complete space of all admissible motor behaviors, rendering the
application of many standard machine learning techniques impossi-
ble as these require exhaustive exploration. Instead, we have to rely
on a combination of imitation and reinforcement learning to acquire
motor skills where supervised learning is used to obtain the initializa-
tion of the motor skill, while reinforcement learning is used in order
to improve it. Therefore, the aquisition of a novel motor task consists
out of two phases, i.e., the ‘learning robot’ attempts to reproduce the
skill acquired through supervised learning and then improve the skill
from experience by trial-and-error through reinforcement learning.
See Section 4 for more details on this part. When learning to exe-
cute, we are interested in two topics: learning better models of the
robots dynamics in order to improve the model-based control laws of
the system (as discussed in Section 3.1), and to directly learn poli-
cies that transform task-space motor primitives policies into motor
command (see Section 3.2). The supervisory layer poses a variety
of learning problems such learning mappings from states to motor
primitive task parameters (see Section 5.1), learning activation func-
tions for selection and generalization of motor primitives (see Section
5.2), sequencing, blending and superposition of primitives, as well as
parsing longer trajectories into motor primitive automata (see [7]) or
determining how many movement primitives might be included in a
data set [8].

These components allow us to create a robot skill learning frame-
work in a bottom-up manner wherein we can understand each com-
ponent well from an analytical robotics point of view.

3 Learning for Control
Bringing anthropomorphic robots into human daily life requires
backdrivable robots with compliant control in order to ensure safe
interactions with human beings. In contrast, traditional industrial
robots employ high control gains which results in an inherent stiff-
ness and, thus, are ill-suited for this aim. To achieve accurate but
compliant tracking, it is essential to predict the torques required for
the current movement accurately. It is well-known that for suffi-
ciently complex robots (e.g., humanoids, service robots), the stan-
dard rigid body dynamics (RBD) models no longer describe the dy-
namics properly, and data-driven approximation methods become a
promising alternative. Using modern machine learning techniques
has a multitude of advantages ranging from higher precision torque
prediction to adaptation with online learning if the dynamics are al-
tered.

In this section, we will discuss two learning-to-control problems,
i.e., learning models for control in Section 3.1 and learning opera-
tional space control in Section 3.2.

3.1 Learning Models for Control
In theory, learning models of the robot dynamics is a straightforward
and well-defined regression problem, wherein we can observe joint
angles q, joint velocities q̇, joint accelerations q̈ and motor com-
mands u. We intend to infer the unique mapping f from state vari-
ables x = [q, q̇] and ẋ to motor commands u of which we have
some prior knowledge3

u = M(q)q̈+C(q̇,q) +G(q) + ε(q̈, q̇,q) = f(x, ẋ)

with mass matrix M(q), coriolis and centrifugal forces C(q̇,q),
gravity G(q) and the unmodeled nonlinearities ε(q̈, q̇,q).

3We can in fact straightforwardly use this knowledge as described in [6].

(a) RBD Model (b) Offline Learned Model

Figure 2. This figure exhibits the effects of offline and online learning in
low-gain control. The green line shows the trajectory of the letter B

(previously exhibited by haptic input) as a reference trajectory and the robot
is supposed to reproduce this trajectory with reproduction shown as a dashed
red line. In (a), a standard control law using an analytical model provided by
the manufacturer Barrett is shown. In (b), local GP (LGP) have been learned
based on letter A and improve online while executing letter B. As a result,

there is an improved tracking performance.

However, despite being a well-posed problem, and contrary to all
progress in machine learning, online learning of robot dynamics still
poses a tremendous technical challenge for any learning method. It
has to deal with an endless stream of high-dimensional data while
learning needs to take place in real-time at sampling rates of approx-
imately 100Hz. While modern machine learning approaches such
as Gaussian process regression (GPR) and support vector regres-
sion (SVR), yield significantly higher accuracy than traditional RBD
models, their computational requirements can become prohibitively
costly as they grow with number of data points. Thus, it is infeasible
to simply use off-the-shelf regression techniques and the develop-
ment of domain-appropriate versions of these methods is essential in
order to make progress in this direction [5].

One possibility for reducing the computational cost is the parti-
tioning of the data such that only the regionally interesting data is
included in a local regression and, subsequently, combining these lo-
cal predictions into a joint prediction. This approach was inspired by
LWPR [2], which employs linear models. Using the more powerful
Gaussian process models, we can achieve a higher prediction accu-
racy with less tuning of the algorithm. As a result of the localization
and the resulting smaller local models, we can reach a significantly
higher learning and prediction speed than for standard kernel regres-
sion techniques while having a comparable accuracy. While our ap-
proach is not as fast as LWPR, it has a significantly improved pre-
diction accuracy in comparison and requires less manual tuning of
the hyperparameters of the algorithm. The resulting method is called
Local GPR or LGP [5] as it employs Gaussian process regression
(GPR) for learning each local model i using

ûii = kiT (Ki + σ2
nI)

−1Ui = ki Tαi,

where uij is the torque for joint j predicted by model i, Ki is the
kernel matrix with Ki

ml = k(xim,x
i
l), the kernel vector ki with

kim = k(x,xil) between the new input x and the stored data points
xl, as kernel k a Gaussian kernel is employed (however, Matern ker-
nels and rigid-body kernels have been used successfully in this con-
text), past actions Ui and the so-called prediction vector ai. This
prediction vector can be updated incrementally which is computa-
tionally feasible as we only have small local models. A weighted
average allows the combination of the local models

û =

∑n
i=1 wiûi∑n
i=1 wi

,

where the weights wi = exp(−0.5σ−2
i ‖x− ci‖2) are used to re-

weight the model i in accordance to the proximity of the input x to
the centers of the model ci.

Due to the reduced computational cost, this approach was success-
fully implemented on a real Barrett WAM arm where it was able to
improve the tracking performance while learning online. When us-
ing the learned model in a computed torque setup where the learned
model is employed to predict the required torque while stabilized by
a linear low-gain control law. It can be shown that the learned model
outperforms RBD models and, due to the online improvement, also
most global regression techniques. Figure 2 exhibits the difference
between these methods. In Figure 2(a), the performance of a low-
gain feedback control law with a RBD model is shown for tracking
the letter B, Figure 2(b) shows an online-learned model. For details
on the approach please refer to [5].

3.2 Learning Operational Space Control

Operational space control (OSC) is one of the most elegant ap-
proaches to task control for complex, redundant robots. Its poten-
tial for dynamically consistent control, compliant control, force con-
trol, and hierarchical control has not been exhausted to date. Applica-
tions of OSC range from basic end-effector control of manipulators
[16] to balancing and gait execution for humanoid robots [19]. If the
robot model is accurately known, operational space control is well-
understood and a variety of different solution alternatives are avail-
able. However, as many new robotic systems are supposed to oper-
ate safely in human environments, compliant, low-gain operational-
space control is desired. As a result, the practical use of operational
space control becomes increasingly difficult in the presence of un-
modeled nonlinearities, leading to reduced accuracy or even unpre-
dictable and unstable null-space behavior in the robot system.

Learning control methods are a promising potential solution to this
problem. However, learning methods do not easily provide the highly
structured knowledge required in traditional operational space con-
trol laws, e.g., Jacobians, inertia matrices, and Coriolis/centripetal
and gravity forces, since all these terms are not always instantly ob-
servable. They are therefore not suitable for formulating supervised
learning as traditionally used in learning control approaches.

We have designed novel approaches to learning operational space
control that avoid extracting such structured knowledge as much as
ill-posed problems and rather aim at learning the operational space
control law directly, i.e., we pose OSC as a direct inverse model
learning problem where we acquire an execution policy of the type
u = η(ẋd,xd,x,u0) in which xd = [ṗd,pd] and ẋd denote the
desired behavior prescribed by the motor primitives in task space
while the state x = [ṗ,p, q̇,q] of the robot is still described by both
state-space and task-space components as well as a null-space behav-
ior u0. Similarly, if we wanted to directly learn the operational space
control law as done for model learning in Section 3.1, we would have
an ill-posed regression problem as averaging over a non-convex data
set is not directly possible. However, the first important insight for
this paper is that a physically correct solution to the inverse problem
with redundant degrees-of-freedom does exist when learning of the
inverse map is performed in a suitable piecewise linear way [17, 17].
The second crucial component for our work is based on the insight
that many operational space controllers can be understood in terms
of a constrained optimal control problem [16]. The cost function as-
sociated with this optimal control problem allows us to formulate
a learning algorithm that automatically synthesizes a globally con-
sistent desired resolution of redundancy while learning the opera-
tional space controller. From the machine learning point of view, this

Figure 3. This figure shows how a ball-on-a-string task can be learned by imitation. The human demonstration presents a rhythmic movement with an initial
discrete transient where the generic movement is represented by a rhythmic motor primitive modulated by a discrete motor primitive handling the start-up.

learning problem corresponds to a reinforcement learning problem
that maximizes an immediate reward. We employ an expectation-
maximization policy search algorithm in order to solve this problem.
Evaluations on a simulated three degrees of freedom robot arm show
that the approach always converges to the globally optimal solution
if provided with sufficient data [17].

The application to a physically realistic simulator of the anthro-
pomorphic SARCOS Master arm demonstrates feasibility for com-
plex high degree-of-freedom robots. We also show that the proposed
method works in the setting of learning resolved motion rate control
on a Mitsubishi PA-10 medical robotics arm [17] and a high-speed
Barrett WAM robot arm.

The presented approach also allows us to learn hierachies of oper-
ational space controllers where a higher level operational space con-
trol law i given by ui = η(ẋ

d
i ,x

d
i ,x,ui−1) is simply fed the output

of the next lower-level operational space control law ui−1 as input.
This kind of daisy-chaining of learned control laws may in the fu-
ture allow us to properly solve the problem of superimposing motor
primitives.

4 Learning Motor Primitives
Humans and many mammals appear to rely on motor primitives [3]
in order to generate their highly agile movements. In many cases,
e.g., when learning to play tennis, humans acquire elementary ac-
tions from a teacher. This instructor takes the student by the hand
and shows him how to perform forehand and backhand swings. Sub-
sequently, the student tries to play by himself and improves as he
observes the results of his own successes and failures.

4.1 Imitation with Motor Primitives
When viewed from a probabilistic perspective, imitation learning can
be seen as a relatively straightforward problem. When we have ob-
served trajectories τ = [ẋ,x] as well as their distribution p(τ), we
will try to reproduce these movements by matching this distribution
with a distribution pθ(τ) that is determined by the policy parameters
θ. While such a policy can be either deterministic or stochastic, it is
often easier to model it as a stochastic policy to take the variation in
the data into account.

This policy is represented by a motor primitive modeled by a dy-
namical system as described by Equation (1). Here, imitation learn-
ing reduces to inferring the set of parameters so that the distance

D(p(τ)||pθ(τ)) between the observed distribution p(τ) and the re-
produced behavior distribution pθ(τ) is minimized. The Kullback-
Leibler divergence is known to be the natural distance measure be-
tween probability distributions and is hence employed here.

From this point of view, one can straightforwardly derive regres-
sion algorithms such as the ones in [4, 13] to imitate using both the
standard formulation of motor primitives [4] as well as the perceptu-
ally coupled formulation [13]. As a result, we can learn complicated
tasks such as paddling a ball [13] simply by imitation, see Figure 3.
This formulation can be made to work both with imitations captured
using a VICON setup, see [13], as well as for kinethetic teach-in as
in [13].

However, in most real life situations, imitation learning does not
suffice and self-improvement is required. E.g., for the Ball-in-a-cup
shown in Figure 4, an imitation only suffices for bringing the ball
somewhere in the proximity of the cup.

4.2 Self-Improvement by Reinforcement Learning
Reinforcememt learning is in general a much harder problem. Unlike
in imitation learning, its focus no longer lies on simply reproducing a
presented behavior, but rather on improving a behavior with respect
to rewards r. Hence, the system has to try out new actions and, from
these actions, infer the policy parameters θ∗ that maximizes the ex-
pected return

J(θ) = E

{
1

T
R1:T

}
= E

{
δt

d

∑d/δt

i=1
rt

}
,

where 1/δt is the sampling rate of the system, d the duration, T =
d/δt the number of steps and R1:d/δt is the return of an episode. In
the general setting, reinforcement learning might be an unsolvable
problem. Finding a generically optimal policy requires exhaustive
try-outs of possible state-action pairs, wherein the number of possi-
bilities grows exponentially with the number of degrees of freedom
involved in the task. As anthropomorphic robot exhibit a high di-
mensionality, they remain beyond the reach of generic reinforcement
learning methods.

However, the full reinforcement learning problem appears to be
solved rarely in human motor control. For example, olympic high
jumper used to refine a variety of different techniques (e.g., strad-
dles, scissor jumps and eastern cut-offs) that all involved running
towards the bar and jumping forward. It took until 1968 when the

Figure 4. This figure exhibits the general approach, first, a robot is taught the basic movement which is turned into a motor primitive using imitation learning.
Subsequently, reinforcement learning is applied to the problem until the robot obtains a motor primitive policy where it slings the ball perfectly into the cup

every single time. The imitation is shown in the upper time series while the optimal learned policy is shown in the lower row.

athlete Dick Fosbury accidentally found out that approaching the bar
from the side and jumping backwards might be a significantly supe-
rior policy. While no reinforcement learning method is in sight that
will provide us automatically with such insights, we can design lo-
cal reinforcement methods that allow us to improve existing policies
incrementally. To do so, we rely on obtaining initial parameters θ0
from an imitation and, subsequently, optimize this policy by self-
improvement with respect to the expected return.

Pursuing this type of approach for several years, we have been
developing a series of different methods. We originally started out
by following the policy gradient approach [10] where the policy im-
provement is achieved by following the gradient of expected return
with respect to its parameters. The resulting update rule can be de-
noted by

θk = θk−1 + αk ∇θJ(θ)|θ=θk
,

where αk denotes a learning rate at update k and∇θJ(θ) is a policy
gradient. However, the standard or ‘vanilla’ policy gradient proved to
be suprisingly slow and, thus, not applicable on real robots. It turned
out that a covariant or ‘natural’ policy gradient was able to provide
us with the learning speed required for basic motor primitive learn-
ing in robotics and we were able to optimize basic movements as
well as a T-Ball swing [10]. Nevertheless, the resulting algorithms
had open parameter such as the learning rate and the learning pro-
cess would be too slow for some tasks. As a result, we studied the
similarity between expectation-maximization (EM) algorithms and
policy gradients. It turned out [9, 17, 17, 11] that as a new cost func-
tion we can maximize the distance D(R(τ)p(τ)||pθ(τ)) between
return- or reward-weighted observed path distributionR(τ)p(τ) and
the new path distribution pθ(τ). This cost function can become part
of a lower bound on the expected return J(θ) and, hence, maximiz-
ing it iteratively as in

θk = argmaxθ D(R(τ)pθk (τ)||pθ(τ))

will at least converge to a locally optimal policy. Such algorithms al-
low us to show that the problem of policy search can been framed
in the parameter estimation setting and, as the similarity to the equa-
tions in Section 4.1 makes clear, we have obtained a reward-weighed
imitation. At this point, one needs to think about exploration and the
type of exploration determines the type of parameter estimation that
can be used. For instance, Gaussian exploration with constant vari-
ance will result in the reward-weighted regression algorithm [17, 17]

and heteroscedastic Gaussian exploration will result in the PoWER
algorithm [11].

The PoWER algorithm has been used successfully in a variety of
settings, most prominently, it has been able to learn ball-in-a-cup.
Here, it started to learn with a policy obtained by imitation that could
barely bring the ball into the proximity of the cup. Subsequently, it
has learned how to catch the ball in the cup and after less than a
hundred trials, it manages to succeed at every trial.

5 Learning to Supervise

In order to get a step closer to creating complex tasks that require a
supervisor, various other topics need to be addressed as already out-
line in Section 2. We will first discuss two topics where we have made
recent progress, i.e., goal learning in Section 5.1, and the mixture of
motor primitives in Section 5.2. Further topics for learning the super-
visory layer are sequencing, blending and superposition of primitives
as well as the parsing of longer trajectories into motor primitive au-
tomata (see [7]) or determining how many distinct movement primi-
tives are included in a data set ([8]).

5.1 Adjust Motor Primitives to Goals

Previous work in learning for motor primitives has largely focussed
on learning the shape parameters θi (see Section 4) while duration d,
goal g, amplitude A, etc., were simply considered constant parame-
ters optimized along with the shape [10] or set based on an external
stimuli. Here, we attempt to learn mappings from the state to these
parameters which allow us to take movements of the same shape and
use them for various different contexts. Nevertheless, in goal learn-
ing, we assume that we have to respond to constantly changing exter-
nal stimuli, and always adapt the external parameters appropriately.
For example, assume that you are playing a dart game where you
are told to hit predetermined fields on the dart board in a certain se-
quence as well as in robot table tennis (as in Figure 5). In this case,
all movements will simply be slight variations of that same throwing
movement and can be represented by the same movement primitive.
Hence, the proper way to adapt motor primitive to the square that
you intend to hit is by altering its duration d and goal g. However,
in order to learn this dart game faster than can be achieved using
the shape parameters, we also need another method. We discovered

Figure 5. The mixture of motor primitives is used for the selection and generalization of motor primitives in a table tennis setup.

that this can be achieved using a cost regularized Gaussian process
regression. The details are described in [12].

5.2 Select & Generalize Motor Primitives
Selection of motor primitives as well as generalization between mo-
tor primitives can be achieved using a mixture of motor primitives
approach. In such an approach, we have a gating or localization net-
work λ, similar to that in a mixture of experts [14] as part of the
supervisor system and activates the right motor primitives. As a re-
sult, we obtain a task policy u = π(x, t) that is composed of the n
primitives such that

u = π(x, t) =

∑n
i=1 λi(x0)πi(x, t)∑n

j=1 λj(x0)
, (2)

where λi(x0) denotes the activation of the motor primitive i repre-
sented by πi and x0 denotes the initial state based upon which of
the primitives are activated. A project currently in progress is the
learning of table tennis [15] using a mixture of motor primitives (see
Figure 5). Here, we currently have achieved already a success rate of
78% of the learned table tennis control law in a ball gun setup and
we hope to have a significantly improved setup in the near future.

Using the example of table tennis, we can straightforwardly ex-
plain how the mixture of motor primitives is able to generalize be-
tween motor primitives. Assume that the system has successfully
learned n primitives by imitation observed with different external
states xi0 (such as a ball position and velocity) and a gating net-
work λ has been obtained. In this case, if a ball is observed at a
new initial state x0, the motor primitives, that resulted in a success-
ful responses to the most similar input, will also be activated and the
resulting movement will be a convex combination of the previously
successful ones. Selection can be understood in a similar fashion,
i.e., if there are both forehands and backhands in the data set, these
will be responses to drastically different ball trajectories if viewed
in the robot coordinates. Hence, the gating network will discriminate
between such motor primitives. For a detailed description see [15].

6 Conclusion
In this paper, we have presented recent progress towards a robot skill
learning framework based on [17, 5, 6, 7, 8, 11, 12, 13, 15]. An ear-
lier version of the progress up to 2009 appeared as [18]. While an
overview paper in its nature, we have given a detailed outline of a
general framework for motor skill. In learning to control, we have re-
viewed our work on learning models using local GPs and on learning
operational space control. When learning motor primitives, we have
discussed both imitation learning approaches as well as our progress
in reinforcement learning for robotics starting from policy gradi-
ents and moving towards reward-weighted self-imitation. Progress
towards learning the supervisory layer for complex tasks is briefly
discussed with a focus on adjusting primitives to goals as well as

generalizing and selecting primitives. Successful implementations on
real robots underline the applicability of the presented approaches.
This paper summarizes our successes between 2008 to 2012.

REFERENCES
[1] Sciavicco, L. and B. Siciliano. Modeling and control of robot

manipulators. MacGraw-Hill, Heidelberg, Germany, 2007.
[2] S. Schaal, C. G. Atkeson, and S. Vijayakumar. Scalable techniques from

nonparameteric statistics for real-time robot learning, Applied Intelli-
gence, pp. 49–60, 2002.

[3] Schaal, S., A. J. Ijspeert, and A.Billard. Computational approaches to
motor learning by imitation. In The Neuroscience of Social Interaction,
C. D. Frith and D. Wolpert, Eds., Oxford, UK: Oxford University Press,
2004, pp. 199–218.

[4] Ijspeert, A. J., J. Nakanishi, and S. Schaal. Learning attractor land-
scapes for learning motor primitives. In Advances in Neural Infor-
mation Processing Systems, volume 15, pages 1547–1554, Cambridge,
MA, 2003. MIT Press.

[5] Nguyen-Tuong, D., M. Seeger and J. Peters. Model Learning with Lo-
cal Gaussian Process Regression. Advanced Robotics, 23(15), pp.2015-
2034, 2009.

[6] Nguyen-Tuong, D. and J. Peters. Semi-parametric regression in learn-
ing inverse dynamics. In International Conference on Robotics & Au-
tomation (ICRA), 2010.

[7] Chiappa, S and J. Peters.Motion segmentation by detecting in continu-
ous time-series. In Advances in Neural Information Processing Systems
23 (NIPS’10), Cambridge, MA: MIT Press, 2010

[8] Chiappa, S., J. Kober and J. Peters. Using Bayesian Dynamical Sys-
tems for Motion Template Libraries Advances in Neural Information
Processing Systems 21 (NIPS’08), Cambridge, MA: MIT Press, 2009.

[9] Dayan, P. and G. E. Hinton. Using expectation-maximization for rein-
forcement learning. Neural Computation, 9(2):271–278, 1997.

[10] Peters, J. and S. Schaal. Reinforcement learning of motor skills with
policy gradients. Neural Networks, 21(4), pages 682-697 (2008) .

[11] Kober, J. and J. Peters. Policy Search for Motor Primitives in Robotics.
Machine Learning, 84(1), pp.171203, 2011.

[12] Kober, J., A. Wilhelm, E. Oztop and J. Peters. Reinforcement Learn-
ing to Adjust Parametrized Motor Primitives to New Situations. Au-
tonomous Robots, 2012.

[13] Kober, J. and J. Peters. Imitation and Reinforcement Learning Practical
Algorithms for Motor Primitive Learning in Robotics. IEEE Robotics
and Automation Magazine, 17(2), pp. 55-62, 2010.

[14] Jordan, M. and R. Jacobs. Hierarchical mixture of experts and the EM
algorithm. Neural Computation, 6: 181–214, 1994.

[15] Muelling, K., J.Kober, O.Kroemer, and J.Peters. Learning Table Tennis
with a Mixture of Motor Primitives. submitted to International Journal
of Robotics Research

[16] Peters, J., M.Mistry, F.E.Udwadia, J.Nakanishi and S.Schaal. A unify-
ing methodology for robot control with redundant DOFs. Autonomous
Robots, 24(1), 1-12, 2008.

[17] Peters, J. and S.Schaal. Learning to Control in Operational Space. The
International Journal of Robotics Research, 27(2), 197-212, 2008.

[18] Peters, J., J.Kober, K.Muelling, D.Nguyen-Tuong, and O.Kroemer To-
wards robot skill learning for Robotics. Proceedings of the Interna-
tional Symposium on Robotics Research (ISRR), 2009.

[19] Sentis, L. and O. Khatib. Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives. International Journal of
Humanoid Robotics, 2(4):505-518, 2005

