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Physical Human–Robot
Interaction
Mutual Learning and Adaptation

•
By Shuhei Ikemoto, Heni Ben Amor, Takashi Minato, Bernhard Jung, and Hiroshi Ishiguro

C
lose physical interaction between robots and
humans is a particularly challenging aspect of
robot development. For successful interaction
and cooperation, the robot must have the abil-
ity to adapt its behavior to the human coun-

terpart. Based on our earlier work, we present and evaluate
a computationally efficient machine learning algorithm
that is well suited for such close-contact interaction scenar-
ios. We show that this algorithm helps to improve the
quality of the interaction between a robot and a human

caregiver. To this end, we present two human-in-the-loop
learning scenarios that are inspired by human parenting
behavior, namely, an assisted standing-up task and an
assisted walking task.

Human–Robot Interaction and Cooperation
Until recently, robotic systems mostly remained in the realm
of industrial applications and academic research. However,
in recent years, robotics technology has significantly matured
and produced highly realistic android robots. As a result of
this ongoing process, the application domains of robots have
slowly expanded into domestic environments, offices, and
other human-inhabited locations. In turn, interaction and
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cooperation between humans and robots has become an
increasingly important and, at the same time, challenging
aspect of robot development. Particularly challenging is the
physical interaction and cooperation between humans and
robots. For such interaction to be successful and meaningful,
the following technical difficulties need to be addressed:
l guaranteeing safety at all times
l ensuring that the robot reacts appropriately to the force

applied by the human interaction partner
l improving the behavior of the robot using a machine-

learning algorithm in a physical human–robot interac-
tion (PHRI).
In our previous research [1], we presented a PHRI scenario

in which we addressed the above topics. Inspired by the parent-
ing behavior observed in humans, a test subject was asked to
physically assist a state-of-the-art robot in a standing-up task.
In such a situation, both the human and the robot are required
to adapt their behaviors to cooperatively complete the task.
However, most machine learning scenarios to date do not
address the question of how learning can be achieved for tightly
coupled, physical interactions between a learning agent and a
human partner. Building on the results in [2], we present an
extended evaluation and discussion of such human-in-the-loop
learning scenarios.

To realize learning and adaptation on the robot’s side,
we employ a computationally efficient learning algorithm
based on a dimensional reduction technique. In particu-
lar, after each trial, the human can judge whether the
interaction was successful, then the judgment is used in a
machine learning algorithm to apply a dimensional
reduction technique and update the behavior of the robot.
As learning progresses, the robot creates a behavioral
model, which implicitly includes the actions of the
human counterpart.

At the same time, refining the motions of the robot dur-
ing a physical interaction requires the motions of the
human to be improved, because the two motions influence
each other. Hence, the human counterpart is part of the
learning system and overall dynamics. To analyze the effi-
ciency of the proposed learning algorithm and the effect of
human habituation to the robot during such close-contact
interactions, we perform a set of PHRI experiments. In
addition to the assisted standing-up interaction scenario
presented in [2], we also present and discuss the first results
based on a novel interaction scenario. More specifically, we
present an assisted walking task in which a human
caregiver must assist a humanoid robot while walking.

We believe that human-in-the-loop learning scenarios,
such as that presented herein, will be particularly interesting
in the future because they can help to strengthen the mutual
relationship between humans and robots. Ideally, this will
lead to a higher acceptance of robotic agents in society.

Related Research
Important aspects of PHRIs have been investigated in a
perspective research project conducted by the European

Network of Excellence (EURON) [3]. The objective of the
project was to present and discuss important requirements
for safe and dependable robots involved in PHRIs. Initial
approaches for achieving these requirements are currently
being addressed in a follow-up research project called
PHRIENDS (a PHRI that is dependable and safe). To re-
duce risks and fatalities in industrial manufacturing work-
places, the primary goal of the PHRIENDS project is to
design robots that are intrinsically safe. This requires the
development of new actuator concepts, safety measures,
and control algorithms, which take the presence of human
subjects into account. The results of this project are also
relevant to applications outside the manufacturing indus-
try. However, learning and adaptation between humans
and robots is not the focus of the PHRIENDS project.

Khatib et al. [4] discussed the basic capabilities needed
to enable robots to operate in human-populated environ-
ments. In particular, they discussed how mobile robots
can calculate collision-free paths and manipulate sur-
rounding objects. In their approach, they characterized
free space using an elastic strip approach. However, the
described robots were not expected to come into direct
(physical) contact with the surrounding human subjects.
The importance of direct physical interaction was high-
lighted in the haptic creature project [5], which investi-
gated the role of affective touch in fostering the
companionship between humans and robots. In an
attempt to improve human–robot interaction, Kosuge et
al. presented a robot that can dance with a human by
adaptively changing the dance steps according to the
force/moment applied to the robot [6]. Amor et al. [7]
used kinesthetic interactions to teach new behaviors to a
small humanoid robot. Furthermore, the behavior of the
robot may be optimized with respect to a given criterion
in simulation. In this learning scheme, the robot is a
purely passive interaction partner and acts only after the
learning process is complete. Similar approaches to teach-
ing new skills have also been reported in [8] and [9] using
different learning methods, i.e., continuous time-recur-
rent neural networks and Gaussian mixture models
(GMMs), respectively. Odashima et al. [10] developed a
robot that can come into direct physical contact with
humans. This robot is intended for caregiving tasks such
as carrying injured persons to a nearby physician. The
robot can also learn new behaviors and assistive tasks by
observing human experts as they perform these tasks.
However, this learning does not take place during interac-
tions but rather in offline sessions using immersive
virtual environments. In [11], Evrard et al. present a
humanoid robot with the ability to perform a collabora-
tive manipulation task together with a human operator.
In a teaching phase, the robot is first teleoperated using a
force-feedback device. The recorded forces and positions
are then used to learn a controller for the collaborative
task. The main hypothesis underlying this approach is
that the intentions of the human interaction partner can

2 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCH 2012



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

be guessed from haptic cues. In [12], physical interactions
between a robot’s hand and the hand of a human are
modeled by recording their distances. The distances are
then encoded in a hidden Markov model (HMM), which
in turn is used to synthesize similar hand contacts. A
recent survey on modern approaches to physical and tac-
tile human–robot interaction can be found in [13].

In this article, we present experiments with a flexible-
joint robot that is involved in close physical interaction
with a human caregiver. In contrast to the above research,
both human and robot play an active role in the interaction
to learn and adapt their behaviors to their partner so as to
achieve a common goal. This tight coupling of robot and
human learning and coadaptation is a unique feature and
is the primary contribution of the present study. We
assume that it is important to focus on the active role in
the interaction because the forces generated during the
active behavior of the robot influence the behavior of the
human, which in turn influences the passive behavior of
the robot. In addition, these active and passive roles cannot
be clearly separated because the robot and the human
influence each other when they are in physical contact.

Physical Interaction Learning Approach
The goal of interaction learning is to improve the coopera-
tion of humans and robots while they are working to
achieve a common goal. Figure 1 shows an overview of the
learning scheme used in this article. After an initial physi-
cal interaction between a human and a robot, the human is
given the chance to evaluate the behavior of the robot.
More precisely, the human can judge whether the interac-
tion was a success or failure (binary evaluation). The feed-
back can be provided in various ways, such as through
touch or through a simple graphical user interface. Once
the evaluation information is collected by the robot system,
it is stored in a database in the memory. The memory col-
lects information about recent successful interactions and
manages the data for the subsequent learning step. This
allows us to optimize the set of training examples used for
learning to improve learning quality. Figure 1 shows the
human-in-the-loop learning system considered in this arti-
cle, where the behavior of the human influences the behav-
ior of the robot and, simultaneously, the behavior of the
robot influences the behavior of the human. Furthermore,
the behavior of the robot changes as learning progresses,
which in turn influences the behavior of the human and its
physical support. This system demonstrates one of the
applications of a tightly coupled physical interaction.

After a number of interactions, the learning system que-
ries the memory for a new set of training data. The data are
then projected onto a low-dimensional manifold using di-
mensional reduction techniques. There are three justifica-
tions for this step. First, dimensional reduction allows a
reduction of the space in which learning takes place. Thus,
the learning can be much faster and more efficient. In ad-
dition, dimensional reduction generally helps to detect

meaningful low-dimensional structures in high-dimen-
sional inputs. Second, dimensional reduction allows us to
visualize and understand the adaptation taking place during
interaction. This is particularly helpful for later review and
analysis purposes. Finally, dimensional reduction reduces
the negative influence of outliers on learning. The inputs to
the dimensional reduction step are high-dimensional state
vectors describing the postures of the robot during the
interaction. The output is a low-dimensional posture space.

Once the state vectors are projected onto a low-dimen-
sional manifold, we group the resulting points into sets
according to the action performed in that state. Thus, we
obtain for each possible action a set of states in which the
corresponding action should be triggered. For each action,
a GMM is learned. The model encodes a probability
density function of the learned state vectors. The ideal
number of Gaussian mixtures is estimated using the
Bayesian information criterion (BIC) [14].

By computing the likelihood of a given state vector p
in a GMM of action A, we can estimate how likely it is
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Figure 1. (a) Overview of the physical interaction learning
approach. After physical interaction, the human judges whether
the interaction was successful. This information is stored in the
robot’s memory and used for later learning. (b) Flexible-joint
humanoid robot used in the experiments in this study. (Photos
courtesy of ERATO Asada Project.)
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that the robot should perform action A when in posture
p. The learned models are then used during the next
physical interaction trial to determine the actions of the
robot. Here, each new posture is projected into the low-
dimensional posture space. Then, the likelihood of the
projected point for each GMM is computed. Following a
maximum-likelihood rationale, the action corresponding
to the GMM with the highest likelihood is executed by
the robot.

With each iteration of the above learning loop, the
robot adapts its model more and more toward successful
interactions. The result is a smoother and easier coopera-
tive behavior between the human and the robot.

The CB2 Robot
The robot used in this study is called the child–robot with bio-
mimetic body, or CB2 [15]. The robot has the following features.
l Its height is 130 cm, and its mass is approximately 33 kg.
l The degree of freedom (DOF) is 56.
l The supplied air pressure is 0.6 MPa.
l The efficient torque of the knee is theoretically 28.6 NÆm.
l All joints, apart from the joints used to move the eyes

and eyelids, are driven by pneumatic actuators.
l All joints, apart from the joints used to move the fingers,

are equipped with potentiometers.
The joints have low mechanical impedance because of

the compressibility of air. The joints can also be made to be
completely passive if the system discontinues air

compression during robot motion. This helps the robot to
perform passive motions during physical interaction and
helps to ensure the safety of the human partner. This is in
contrast to most other robots, in which the joints are
driven by electric motors with decelerators. The flexible
actuators enable the joints to produce seemingly smooth
motions, even when the input signal changes drastically.
This feature of the CB2 robot is used to realize complex
motions using the simple control architecture [1] depicted
in Figure 2. More specifically, full body motions of the
robot are realized by switching between a set of successive
desired postures. Furthermore, the flexible actuators ena-
ble motions generated by this simple control architecture
to be adaptively changed in response to an applied force
from the human partner. Each posture is described by a
posture vector x, with each entry of the vector denoting the
angular value of a particular joint. A low-level controller is
implemented by the proportional-integral-differential (PID)
control of angular values. Each time the desired posture is
switched drastically, large drive torques are generated, result-
ing in an active force being applied to the human caregiver. As
the posture of the robot approaches the desired posture, the
passive motion gradually becomes the dominant motion of
the robot because the amount of error in the angular con-
trol gradually becomes smaller.

Figure 3 shows how the examined standing-up task is
realized using the proposed control architecture. The
behavior is realized by switching between three desired

postures. At first glance, the specifi-
cations of the robot motion appear
to be extremely simple. However,
the switching times are highly
dependent on the human interac-
tion. More specifically, the switching
times depend on the anatomy and
skills of the human. This means that
the robot has to adapt the switching
times to the characteristics of its
partner during the period of interac-
tion. In addition, it must be noted
that this motion cannot be per-
formed by the robot if a human does
not assist in its execution.

Learning Method
In the standing-up task, the goal of
learning is to determine the ideal tim-
ing for switching actions
x� 2 X� � X between different
desired postures. Here, x� is a desired
posture, X� is a set of desired postures
prepared for control, and X is a pos-
ture space that is constructed from all
joint angles. This is achieved by learn-
ing three different probabilistic low-
dimensional posture models: 1) for
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Figure 2. Control architecture of the CB2 robot. The desired posture is encoded as a
vector x�of angular values. Using a PID controller, drive torques are generated to attain
the desired posture. The switching mechanism changes between a set of different
desired postures to achieve complex robot motions.
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the case in which no switching occurs, 2) for the first switch-
ing action, and 3) for the second switching action.

At each time step of an interaction between the human and
the robot, the realized posture and the current desired posture
of the robot are recorded. The robot posture r is a 52-dimen-
sional vector that codes the current angular value of each joint.
After the interaction is complete, the postures are stored in a
database in the memory. The database holds the information
for the last ten interactions. Although there are several possi-
ble ways to integrate this new data into the database, the
general policy used here is this new data overwrite old data,
and successful interactions overwrite failed interactions.

After ten interactions, the training data from the mem-
ory are used for learning. The goal of the learning is to con-
struct a model that indicates when the robot should switch
actions by changing the current desired posture. This rule
is described by a mapping from the current posture of the
robot to the desired posture that the robot should use. To
realize this map, we use a GMM that can construct a prob-
abilistic model. Therefore, the objective model of the learn-
ing is a probabilistic model that indicates the likelihood of
desired postures in the current state.

First, dimensional reduction is applied to the data
because a 52-dimensional vector has too many dimensions
to learn the model. Although a number of methods can be
applied for this task, in this article, we used a principal
component analysis (PCA). To perform the PCA, the
mean rm is subtracted from all recorded posture vectors,
and the covariance matrix M of the resulting points is
computed. A singular value decomposition (SVD) on M
yields matrices U , V , and W, such that

M ¼ UWVT : (1)

The columns of matrix V contain orthonormal vectors,
also known as the eigenvectors or principal components

(PCs), of matrix M. The matrix W is a diagonal matrix
containing singular values. Each PC has a corresponding
singular value that indicates how much information of the
data set is covered by a specific PC. The first few PCs are
then used as the axes of the lower-dimensional PCA space.
Given a new data point, we can compute its coordinates in
PCA space by subtracting the mean and calculating the dot
product for each of the PCs.

Next, we compute a GMM for each of the three switch-
ing classes. Here, we divide the projected data points
into distinct sets. If no switching occurred, then the
corresponding point is assigned to the first data set. Other-
wise, the corresponding point is assigned to one of the
other two sets. For each set of projected points, we learn a
probability density function by a weighted sum of K Gaus-
sian distributions:

p(x) ¼
XK

k¼1

pkp(xjk), (2)

with pk being the weight of the kth Gaussian and p(xjk)
being the conditional density function. The conditional
density function is a d-dimensional Gaussian distribution:

p(xjk) ¼ 1
ffiffiffiffiffi
2p
p d ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det(Ck)
p e�

1
2 (x�lk)T C�1

k (x�lk)ð Þ, (3)

with mean lk and covariance matrix Ck. The above
p(xjk) can also be written as N (xjlk, Ck). The expecta-
tion-maximization (EM) [16] algorithm is used to esti-
mate the parameters {lk, Ck, pk} for each of the Gaussian
kernels. Fortunately, performing the EM algorithm in
low-dimensional spaces improves the convergence of
the algorithm.

After the learning process, we end up with three
GMMs coding three probability density functions,

Switching 1

When the Hands Are
Pulled up by the Human

When the Legs Are
Bent More Than in
Posture 2

Posture 3Posture 2Posture 1

Switching 2

Figure 3. The three desired postures used in the standing-up task of the experiment. The learning task is to determine the ideal
switching conditions between the desired postures. (Photo courtesy of ERATO Asada Project.)
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namely, p1(x), p2(x), and p3(x). In our experiments, each
GMM had between five and ten Gaussians. Each proba-
bility density function can be used to determine the
probability of a point in a low-dimensional posture
space with respect to a particular switching action. For
example, computing p2(r) for a given projected robot
posture, r, returns the likelihood of the robot having to
switch from the second to the third desired posture
when the robot is in state r.

When the next interaction with the human starts, the
robot can use the newly learned model to decide its current
state and the desired posture. Here, the current joint values
are projected onto the learned low-dimensional posture
space. The result is a d-dimensional point. The optimal
desired subsequent switching action can be computed in a
maximum-likelihood fashion as follows:

x�next ¼ argmax
x�2X�

ps(x): (4)

In each step of the control loop, the robot calculates snext

and sends the angular values of the corresponding desired
posture to a low-level controller. The controller then com-
putes the needed joint torques to take on this posture.
After the interaction is complete, the human evaluation
information is collected and used to update the memory.
The learning loop is then repeated. The above algorithm is
closely related to HMMs [17]. At the same time, however,
our algorithm deviates in various ways from HMM. More
specifically, we do not learn the sequencing of states in our
system. As a result, no explicit transition probabilities
between the states are modeled.

Figure 4 shows an example of a set of interactions
projected onto a low-dimensional space. Each point in
the plot represents one posture of the CB2 robot during
an interaction. The points were colored according to
the desired posture that was active during that particu-
lar time step.

Experiment and Results
To investigate tightly coupled adaptation and the learning
scheme proposed in this article, we conducted a PHRI
experiment using the interaction for the standing-up task
introduced earlier. In particular, we considered the follow-
ing question: “Does the learning algorithm lead to a sym-
metric learning process, in which both human and robot
adapt their behaviors?” Furthermore, we wanted to mea-
sure the contribution of the learning algorithm to any
improvement in the interaction. This required a careful
experiment design that would allow us to distinguish bet-
ween learning-based adaptation and adaptation due to
human habituation to the robot.

The experiment was split into three independent parts.
Throughout the experiment, five subjects were asked to
repeatedly assist the robot in standing up. In the first part,
after every ten trials, the accumulated data in the memory
were used for learning a new model, according to the
learning scheme described in the “Physical Interaction
Learning Approach: Learning Method” section. In total, 30
interactions with two intermediate learning steps were per-
formed. In the second part of the experiment, learning by
the robot was disabled and fixed time steps were used for
switching between the postures. In this baseline scenario,
the only type of adaptation that was possible was the adap-
tation of the human to the robot. In the third and final
part, learning was once again enabled (the results of the
first part were not included; hence, learning started from
the beginning again). The experimental design ensures that
we have baseline data, allowing us to compare the results
of the interactions with and without learning. In addition,
by performing the baseline experiment between the learn-
ing experiments, we ensure that the user is already familiar
with the robot. Thus, we rule out any distortion of the
baseline result because of unfamiliarity.

To determine the ideal number of PCs on which to
project the 52-dimensional posture vector of the robot,
intrinsic dimensionality estimation techniques can be used
[18] as a criterion. A simple estimation technique is based
on the analysis of eigenvalues, which store the amount of
information that is captured by each of the PCs. Hence, the
eigenvalues determine how many PCs are needed to retain
a specific percentage of information found in the data set.
In our implementation, we automatically determine the
number of PCs that capture more than 85% of the infor-
mation in the data set. For our standing-up data set, this
resulted in a projection onto two PCs.

Figure 5 shows sequential photographs of the interac-
tions of two test subjects. Figure 5(a) shows the initial
interaction, whereas Figure 5(b) shows the interaction after
learning. The white dashed line indicates the height of the
hips in each snapshot. In the figures, we can observe a
smoother transition of the hip height after the learning
interaction, when compared with that before the learning
interaction. In particular, the center photographs reveal
strong contact between the feet and the ground and an
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Figure 4. Interaction data for the standing-up task projected
into a low-dimensional posture space. Each point corresponds
to one posture of the robot.
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increased hip height after learning, in contrast to the poor
contact with the ungainly leg posture beforehand. Since
the degree to which the human helped the robot in the task
and the evaluation of the robot performance are somewhat
subjective, in our evaluation, we focus only on whether the
robot motion is refined to the degree that inefficient and
jerky motions are avoided.

Figure 6 shows the interaction trajectories for two users
before and after learning. Each trajectory was computed by
projecting the robot postures into the low-dimensional
posture space. Before learning, the trajectories contain
loops and are partially linear. These linear pieces of the tra-
jectories are due to jerky movements and large changes in
the robot postures. In particular, for the first user, the var-
iance in the trajectory decreases after learning. The trajec-
tories become more similar and take on a V-shaped form.
This can be explained by the fact that the interaction con-
sists of three desired postures. Therefore, in successful tri-
als, the interaction leads the robot from a starting posture
to an intermediate posture and then to a final posture, as
shown in Figure 3. In a low-dimensional space, the result is
a V-shaped or triangular-shaped trajectory. This allows us to
qualitatively evaluate the efficiency and naturalness of the
interaction by analyzing the smoothness and shape of the
low-dimensional trajectories. For example, in the case of the
second subject, the trajectories before learning contain
large loops at the point (1:7, � 1:5)T , which is the low-
dimensional coordinate of the second desired posture. This
phenomenon can easily be explained if we take into
account our previous analysis. In the initial trials, the robot
has poor contact with the floor and the legs are often not
symmetrically arranged when reaching the second desired
posture. As a result, lifting the robot becomes more diffi-
cult for the human and involves slight modifications of the

robot posture to make the feet more stable. This interrupts
the flow of the standing-up task and increases the interac-
tion burden for the human caregiver.

To confirm the above discussion, we quantified the robot
motion using the posture change norm. The posture change
norm a of the robot motion was calculated using the
Euclidean distance between the data of t and t � 1 in the
posture space X defined using each joint angle as a base:

a(t) ¼ jjx(t) � x(t�1)jj2, x 2 X: (5)

Computing the posture change norm at each time step of
the interaction results in the time series depicted in
Figure 7. The solid line shows the posture change norm
during the initial interaction phase. We can see a sudden
peak indicating a large change in the robot posture and,
consequently, a nonsmooth motion. This is undesirable
because large changes in the robot posture result from
strong forces acting on the robot. The other lines show the
evolution of the norm after each learning step. With each
learning step, the number of peaks in the time series is
reduced. In other words, the fluctuations in the posture
change norm decrease, leading to a smoother and more
efficient motion.

A statistical analysis of the data further underlines the
above hypothesis. Here, we computed the mean and
standard deviation of the summation of the posture change
norm during the interactions. Figure 8 shows the evolution
of these values with each learning step. For all subjects, we
see that the mean and standard deviation of the posture
change norm decreased as the experiment progressed. In
the baseline experiment, only one subject was able to signifi-
cantly improve the interactions, where statistical signifi-
cance is computed using a t test. None of the other subjects

(a)

(b)

Figure 5. Sequential photographs of the (a) first and (b) last interactions of the test subjects with the robot. The white curve depicts
the change in position of the robot’s hips. The center photograph of each sequence shows how the robot learns to maintain firm
contact between its feet and the ground for both subjects. (Photos courtesy of ERATO Asada Project.)
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were able to improve their interactions. In the first experi-
ment, in which the proposed learning system is used, three
subjects show significant improvement. Finally, in the sec-
ond learning experiment, all of the subjects showed signifi-
cant improvement in their interactions. This indicates that
while a human can adapt to a robot and thus improve their
interactions (as in the baseline experiment), this adapta-
tion can be significantly improved by empowering the
robot with learning capabilities (first and second learning
experiments). We also analyzed the maximum values of
the posture change norm during the interaction. Figure 9
shows the change in the maximum posture change norm
during each learning phase of the baseline experiment and
the first learning experiment. No significant difference in
the maximum posture change norm is observed in the
baseline experiment. On the other hand, in the learning
experiment, there are large changes in the maximum pos-
ture change norm. For all subjects, the values drastically
decrease after learning.

Still, one possible implication from above results cannot
be ruled out by the experiments performed so far.

Specifically, it remains unclear how much the learning sys-
tem contributes to the improvement of interaction. A possi-
ble argument would be that the observed improvements are
due to the long-term habituation and experience with the
robot. If this argument is true, then we should see a similar
improvement of interactions as above, even if we simply
repeat the baseline experiment (where learning is disabled)
three times in a row. To investigate this question, we per-
formed the aforementioned experiment (three times base-
line) with all subjects. For the subjects, the experiment
looked exactly the same as the other experiments: the dif-
ference was not transparent. Figure 10 compares the sum-
mation of posture change norm between the first and the
third baseline experiment. In each of the experiments, only
one subject made significant improvement during the
intermediate learning steps. On the whole, although for
some subjects slight improvement was visible (notably Sub-
ject 5), the results are not as comprehensive as when learn-
ing is enabled. This means that, while long-term
habituation and experience aids the learning process, it is
not sufficient for a general improvement in PHRI.
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Figure 6. Projected interactions in the low-dimensional posture space: (a) and (b) the interaction trajectories for the first subject
before and after learning and (c) and (d) the interaction trajectories for the second subject. In both the cases, the trajectories become
smoother after learning and sudden jumps and knots are reduced. Furthermore, the trajectories become V-shaped, clearly indicating
a smooth transition between the three desired postures.
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Discussion
The following observations are based on the results of the
above experiments. First, when learning and adaptation
were only possible on the side of the human caregiver, gen-
erally, little or no improvement could be measured. How-
ever, even in this asymmetric learning situation, at least
one subject was able to adapt to the robot so as to signifi-
cantly improve the interaction quality. This shows the
human ability to quickly adapt to new situations and
motor tasks. The second observation is that the interaction
quality significantly improved in the first learning experi-
ment, and the improvement was even more remarkable
during the second learning experiment. These results sup-
port our working hypothesis that the proposed learning
system facilitates PHRI. Another interesting observation is
that the human adaptation to the robot occurred in stages
throughout the experiment. At the beginning of the experi-
ment, the users were intimidated by the robot and the
experimental setup. However, during the course of the
experiment, the test subjects became more and more
comfortable with the situation and the robot dynamics. As
a result, the test subjects found it easier to interact with the
robot. This suggests that algorithms for improving PHRI
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Figure 7. Evolution of the posture change norm during one
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show the evolution of the value when the robot has not yet
learned, after the first intermediate learning step, and after the
second intermediate learning step, respectively. (a) Subject 1
and (b) Subject 2.
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Figure 8. Mean and standard deviation of the summation of
the posture change norm of test subjects in the (a) baseline,
(b) first learning, and (c) final training experiments. The dark
gray, white, and light gray bars indicate the mean and standard
deviation values during each of the intermediate learning steps
(after every ten trials). In (a), the baseline experiment, only
Subject 2 shows a significant improvement after all trials. In (b)
the first learning experiment, Subjects 2, 4, and 5 show
significant improvements. In (c) the final experiment, the
interaction with the robot improved for all subjects. With each
learning trial, the indicated values decrease, and the movement
of the robot becomes smoother and more synchronized with
that of the subject.
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can be made more efficient if the familiarization of the
human with the robot is taken into account. A special
familiarization phase, in which the human caregiver be-
comes accustomed to the robot before any cooperative
tasks, might be one approach. Another method by which
to familiarize the human with the robot might be a well-
designed interaction protocol that involves tasks that are
intended only to familiarize the human with the robot. An
interesting feature of the proposed algorithm is the ability
to monitor the progress of learning as trajectories in a low-
dimensional space. The results of this study indicate that
the trajectories converge toward a V-shaped pattern for
the standing-up task. Furthermore, the trajectories, after
learning, appear to have particular points or bottlenecks
through which they pass. This is reminiscent of the study
by Kuniyoshi et al. [19] in which it was shown that the
dynamic motions for a particular task often have a

bottleneck in the state space. This bottleneck is the result
of the interaction of the human body and the environment.
Kuniyoshi et al. referred to this property as knack and
showed that the knack can be exploited to efficiently con-
trol a humanoid robot. In the proposed PHRI scenario, the
dynamics of the robot strongly depends on the dynamics
of the human caregiver. A knack may be said to appear in
PHRI because of the strong coupling between the human
and the robot and the resulting joint dynamics. In other
words, the human can be regarded as a changing environ-
ment that constraints the robot dynamics. Note that,
although only the posture of the robot was used to create
the trajectories, we can still discern a knack that is based
on joint dynamics. However, it can be argued that posture
information is not sufficient enough to draw final conclu-
sions about the joint dynamics. To address this question,
we are currently investigating a different cooperative
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PHRI task, namely that of assisted
walking as can be seen in Figure 11.

In this scenario, the human
caregiver must assist the robot while
the latter is trying to walk. Similar to
the standing-up task, the assisted
walking is realized using three
desired postures: left leg up, stand-
ing, and right leg up. These postures
are repeated in a predetermined
order (standing ! left leg up !
standing! right leg up) to create a
cyclic walking motion. During an
interaction session, the human
assists the robot in performing four
cycles of the latter sequence. For a fast assessment of the
applicability of our approach to different scenarios, we
performed an experiment using the same setup and para-
meters as for the standing-up task. However, in this case,
we had only one test subject performing 30 interactions
with learning enabled and 30 interactions as baseline. Fig-
ure 12 shows the comparison of posture change norms
between each phase (a phase consists of ten trials) in each
experiment (one baseline and one learning experiment).
As opposed to the baseline experiment, we can see
that the posture change norms decrease when learning is
enabled. Note that the baseline experiment was per-
formed after the learning experiment to account for the
human’s habituation.

These early results show that the proposed human-in-
the-loop learning system is not limited to the uprising
interaction and that other types of interactions can be real-
ized. At the same time, in our experiments, we found that
the robot often failed to keep up when the human demon-
strator drastically increased or reduced the speed of his or
her walking gaits. This is due to the reactive nature of esti-
mating the joint dynamics from the postures only. To keep
up with a human interaction partner in this scenario, the
robot must be more predictive in its estimation of the joint
dynamics. One possible approach to overcome this prob-
lem is to include sensor information into the probabilistic
low-dimensional posture models. That is, the state of the
robot would be based on the current joint angles as well as
the information gathered from the sensors under the skin.
In this case, switching between one posture and another
would also be influenced by the amount of pressure
exerted by the human caregiver on the robot’s body, e.g.,
the arms during assisted walking. Further studies are
underway to obtain a conclusive answer to these questions.

Conclusions
In this article, we presented a PHRI scenario in which suc-
cessful task completion can only be achieved through coor-
dinated actions involving physical contact. We introduced
a simple machine learning algorithm for adapting the
behavior of the robot according to an evaluation by a

human interaction partner. This method has a low compu-
tational load and can be run online during the interaction
with the robot and requires relatively few training data. In
contrast to previous research in this field, the robot consid-
ered in this study is in close physical contact with the
human partner and plays an active role during the
performance of the cooperative task. The CB2 robot,
through its flexible-joint design and soft silicone skin, is
particularly well suited to such tasks because physical
interactions become more natural and lifelike. In an
experiment inspired by parenting behavior in humans, we
were able to show that the proposed learning method
results in measurable improvements of interaction. Quan-
titative evaluations based on the posture change norm con-
firm the significance of these improvements.

Thus far, the control system used herein has three
parameters: the set of desired postures, the feedback gains,
and the switching rule. In this article, we focused on learn-
ing the switching rule only. However, for more complex
interaction scenarios it might be important to adapt all of
these parameters. Another limitation of the proposed
learning algorithm is the use of binary evaluation informa-
tion. As a result, optimization of the parameters in a
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Figure 11. The assisted walking task where a human caregiver assists the robot in his or
her attempt to perform several walking steps. (Photo courtesy of ERATO Asada Project.)
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gradient descent manner is not possible. Another draw-
back of binary evaluation information is that only positive
feedback examples are retained for use in the learning set
while negative feedback examples are removed from the
learning set. With respect to the first limitation, the desired
postures and feedback gains can be regarded as attractors
and velocities in a low-dimensional space. Amor et al. [7]
have shown that such attractors can be efficiently learned
in a low-dimensional space while incorporating kinesthetic
assistance provided by the user. In the future, we therefore
hope to integrate such a method into the proposed PHRI
algorithm. As for the second limitation, we are considering
the use of pressure sensors on the body of the robot. The
amount of pressure issued by the caregiver can then be
used as an approximate evaluation information. This
allows for a finer grained reward value and, consequently,
the use of modern optimization algorithms. Pressure sen-
sors are also helpful to distinguish whether the human is
currently in contact with the robot.

In summary, this study provided interesting insights
into the dynamics of PHRIs. The combination of a soft-
body robot and an efficient learning scheme is an impor-
tant step toward responsive robots that share a common
living space with humans.
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•
Until recently, robotic

systems mostly remained in

the realm of industrial

applications and academic

research.
•

•
In recent years, robotics

technology significantly

matured and produced

highly realistic android

robots.
•

•
The joints have low

mechanical impedance

because of the

compressibility of air.
•

•
The human counterpart is

part of the learning system

and overall dynamics.
•

•
Close physical interaction

between robots and

humans is a particularly

challenging aspect of robot

development.
•

•
The joints have low

mechanical impedance

because of the

compressibility of air.
•
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