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Abstract—In order for humans and robots to engage in
direct physical interaction several requirements have to be met.
Among others, robots need to be able to adapt their behavior
in order to facilitate the interaction with a human partner. This
can be achieved using machine learning techniques. However,
most machine learning scenarios to-date do not address the
question of how learning can be achieved for tightly coupled,
physical touch interactions between the learning agent and a
human partner. This paper presents an example for such human
in-the-loop learning scenarios and proposes a computationally
cheap learning algorithm for this purpose. The efficiency of
this method is evaluated in an experiment, where human care
givers help an android robot to stand up.

I. INTRODUCTION

Robot technology has come a far way from large, unsafe
manufacturing machines, to highly sophisticated androids
with human-like appearance. As this technology continues
to improve, the application domains of robots also keep
coming closer to our everyday life. So far, the most common
type of robots, namely industrial robots have primarily
inhabited dedicated working environments in factories. For
a human, entering such a workspace can result in severe
injuries. Recent robotic developments, however, are more
and more targeted at domestic environments and assistive
tasks, where human-robot interaction is indispensable. For
humans and robots to share a common living environment,
several requirements need to be met. First, all physical
contact between the interaction partners needs to be safe,
in particular meaning that the human being is never harmed.
Next, the robot needs to be able to adapt its behavior to the
environment and the actions of the human partner. Ideally, the
robot should also learn from previous interaction experiences
and modify the behavior according to received critiques.

Learning and adaptation has been intensively studied in
the robotics community. In particular, imitation learning has
proved to be a promising way of teaching new skills without
the need for tedious manual programming. However, research
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in this area mostly considers scenarios where teacher and
learner rely on communication interfaces such as motion
capture or use simple symbolic communication. In contrast,
recent research such as [5] has considered the direct physical
interaction between the communication partners, based on
kinesthetic and haptic feedback. While these works consti-
tute an important step towards the meaningful coexistence
and interaction of humans and robots, the robot is mostly
assumed to take a passive role during the learning task.

In this paper we introduce a physical human robot in-
teraction scenario with a tight coupling between the human
instructor and the learning robot. Inspired by the parenting
behavior observed in humans, a test subject is asked to
physically assist a state-of-the-art robot in a standing up
motion. Both human and robot need to adapt their behavior,
such that they can cooperatively solve the task. In particular,
this also means that the robot needs to react appropriately to
the force applied by the human instructor. After each trial,
the human can judge whether the interaction was successful
or not and the resulting critique is used by a machine learning
algorithm to update the behavior of the robot. As learning
progresses, the robot creates a behavioral model, which
implicitly includes the actions of the human counterpart. To
ensure that safety is always guaranteed, the robot is equipped
with pneumatically actuated flexible-joints. The robot joints
have a high flexibility in response to externally applied force
and allow for both passive and active reactions.

We argue, that human-in-the-loop learning scenarios, such
as the one presented here, will be particularly interesting
in the future, as they can help to strengthen the mutual
relationship between humans and robots. Ideally, this will
lead to a higher acceptance of robotic agents in our society.

II. RELATED WORK

Important aspects of Physical Human Robot Interaction
(PHRI) have been investigated in a perspective research
project conducted by European Network of Excellence (EU-
RON) [3]. The project’s objective was to lay out and dis-
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Left: Overview of the physical interaction learning approach used in this paper: after physical interaction the human judges whether the interaction

was successful or not. This information is stored in the memory and later used for learning. Right: the flexible-joint humanoid robot used in the experiments

of this paper.

cuss important requirements for safe and dependable robots
involved in PHRI. Initial approaches to achieving these
requirements are currently being addressed in a follow-up
research project called PHRIENDS! . The primary goal of
the project is to design robots that are intrinsically safe, in
order to reduce risks and fatalities in industrial manufacturing
workplaces. For this, new actuator concepts, safety measures
and control algorithms are being developed, which take the
presence of human subjects into account. The results of
this project are also relevant to applications outside the
manufacturing industry. However, learning and adaptation
between humans and robots is not in the focus of the project.

In [7], Khatib et al. discuss basic capabilities needed to
enable robots to operate in human-populated environments.
In particular, they discuss how mobile robots can calculate
collision free paths and manipulate surrounding objects.
For this, they characterize free space using an elastic strip
approach. The described robots, however, were not expected
to get into direct (physical) contact with surrounding human
subjects. The importance of direct physical interaction was
highlighted in the Haptic Creature project [10]. The project
investigates the role of affective touch in fostering the
companionship between humans and robots. Another attempt
to close human-robot interaction is the work presented in
[6]. Here, Kosuge et al. present a robot that can dance with
a human by adaptively changing the dance steps according
to the force/moment applied on it. In [1], Berger et al. use
kinesthetic interactions to teach new behaviors to a small
humanoid robot. Additionally, the behavior can be further
optimized with respect to a given criterion in simulation. In
this learning scheme the robot is a purely passive interaction
partner and only acts after learning is finished. Similar
approaches to teaching new skills have also been employed in
[2] and [9] using different learning methods, i.e. Continuous
Time Recurrent Neural Networks and Gaussian Mixture
Models respectively. Odashima and colleagues developed a
robot that can have direct physical contact with humans. The

Physical Human-Robot Interaction which is Dependable and Safe

robot is intended for care tasks, such as carrying injured
persons to nearby physicians. The robot can also learn new
behaviors and assistive tasks by observing human experts
performing them. However, this learning does not take place
during interaction, but in offline sessions using immersive
virtual environments. In this paper we present experiments
with a soft skin robot that is involved in close physical
interaction with a human caregiver. In contrast to the above
research, both human and robot play an active role in the
interaction. Further, they both learn to adapt their behavior
to the interaction partner so as to achieve a common goal.
This tight coupling of robot and human learning and co-
adaptation is a distinctive feature and is the main focus of
the work to be presented.

III. PHYSICAL INTERACTION LEARNING APPROACH

The goal of interaction learning is to improve the coop-
eration of humans and robots while they are working to
achieve a common goal. In Figure 1 we see an overview
of the learning scheme employed in this paper. After an
initial physical interaction between a human and a robot,
the human is given the chance to evaluate the behavior of
the robot. More precisely, the human can judge whether
the interaction was successful or not. The feedback can be
done in various ways, such as through touching or through a
simple graphical user interface. Once the critique information
is collected by the robot system, it is stored in a memory
database. The memory’s task is to collect information about
recent successful interactions and manage the data for the
later learning step. The idea is based on the human short-term
memory. It allows us to optimize the set of training examples
used for learning, in order to improve learning quality.

After a number of interactions, the learning system queries
the memory for a set of new training data. The data is
then projected onto a low-dimensional manifold using di-
mensional reduction techniques. There are three justifications
for this step. First, dimensional reduction allows it for
a reduction of the space in which learning takes place.
From this follows that learning can be much faster and
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Fig. 2. The three desired postures used in the stand-up behavior of the experiment. The task of learning is to determine ideal switching conditions between

the desired postures.

more efficient. Although the system described here does
not aim at biological plausibility, it can still be argued
that dimensional reduction also takes place in the human
brain. Biologically inspired neural networks such as Self-
Organizing Maps perform dimensional reduction and create
topographic maps such as those found in the human and
animal brain. Dimensional reduction generally helps to detect
meaningful low-dimensional structures in high-dimensional
inputs. Second, dimensional reduction allows us to visualize
and understand the adaptation taking place during interac-
tion. This is particularly helpful for later review and analysis
purposes. Finally, it also reduces the negative influence of
outliers on learning. The inputs to the dimensional reduction
step are high-dimensional state vectors describing the robot’s
postures during the interaction. Output is a low-dimensional
posture space.

Once the state vectors are projected onto a low-
dimensional manifold, we group the resulting points into
sets according to the action performed in that state. Thus,
we get for each possible action a set of states in which the
corresponding action should be triggered. For each action,
a Gaussian Mixture Model is learned. The model encodes a
probability density function of the learned state vectors. By
computing the likelihood of a given state vector p in a GMM
of action A, we can estimate how likely it is that the robot
should perform action A when in posture p. The learned
models are then used during the next physical interaction
trial to determine the robot’s actions. For this, each new
posture is projected into the low-dimensional posture space.
Then, the likelihood of the projected point for each GMM
is computed. Following a maximum-likelihood rationale the
action corresponding to the GMM with the highest likelihood
is then executed by the robot.

With each iteration of the above learning loop, the robot’s
adapts it’s model more and more towards successful in-
teractions. The result is a smoother and easier cooperative
behavior between the human and the robot.

A. The CB? Robot

The robot used in this study is called Child-robot with
Biomimetic Body or CB2[8]. The robot has the following

features:

o It is 130 cm high and weighs about 33 kg.

o It has 56 degrees of freedom (DOFs).

« All joints, apart from the joints used to move the eyes
and eyelids, are driven by pneumatic actuators.

« All joints, apart from the joints used to move the fingers,
have potentiometers.

The joints have low mechanical impedance due to the com-
pressibility of air. The joints can also be made completely
passive if the system discontinues the air compression during
robot motion. This helps the robot to perform passive motion
during physical interaction and helps to ensure the human
helper’s safety. This is in contrast to most other robots, where
the joints are driven by electric motors with decelerators. Due
to the flexible actuators, the joints produce smooth-looking
motion, even when the input signal changes drastically. This
feature of the CB? robot is used to realize complex motions
using a simple control architecture. More specifically, full
body motions of the robot are realized by switching between
a set of successive desired postures. Each posture is described
by a posture vector x, with each entry of the vector denoting
the angular value of a particular joint. A low-level controller
is implemented by PD-control of angular values. Each time
the desired posture is drastically switched, large drive torques
are generated, resulting in active force applied to the human
caregiver. As the robot’s posture approaches the desired
posture, the passive motion gradually becomes the dominant
motion of the robot.

In Figure 2 we see how the rising-up behavior used
throughout this paper is realized in our control architecture.
The behavior is realized by switching between three desired
postures. At first glance this approach renders the specifi-
cation of the robot motion extremely simple. However, the
switching times are highly dependent on the human inter-
action counterpart. More specifically, the switching times
depend on the anatomy and skills of the human. This means
that the robot has to adapt the switching times to his partner’s
characteristics while the interaction is going on.



B. Learning Method

In the uprising task explained in this paper, the goal of
learning is to determine an ideal timing for switching actions
between different desired postures. This is achieved by
learning three different probabilistic low-dimensional posture
models, one for each desired posture s € S.

At each time step of an interaction between a human and
the robot, the posture of the latter and the current desired
posture is recorded. The robot posture r is a 52 dimensional
vector coding the current angular value of each joint. After
the interaction is finished, the postures are stored in the
memory. The memory database holds information of the
last 10 interactions. Although there are many possible ways
how new data is integrated in to the database, the general
policy used here is:“new data overwrites old data, successful
interactions overwrite failed interactions”.

After 10 interactions, the training data from the memory
is used for learning. First, dimensional reduction is applied
on the data. While many methods can be applied for this
task, we used PCA in this paper. To perform PCA, the mean
ry is subtracted from all recorded posture vectors and the
covariance matrix M of the resulting points is computed. A
singular value decomposition (SVD) on M yields matrices
U,V and W, such that:

M=UwvT (1)

The columns of matrix V contain orthonormal vectors called
the eigenvectors or principal components of matrix M. The
matrix W is a diagonal matrix containing the singular values.
Each principal component (PC) has a corresponding singular
value which indicates how much information of the data set
it covers. The first few PC’s are then used as the axes of
our lower dimensional PCA space. Given a new data point
we can compute its coordinates in PCA space by subtracting
the mean and calculating the dot product for each of the
principal components.

Next, we compute a GMM for each of the three desired
postures. For this we divide the projected data points into
distinct sets, according to which desired posture s each
point belongs to. For each set of projected points, we learn
a probability density function by a weighted sum of K
Gaussian distributions:

K
x) =Y m plxlk) ©)
k=1
with 7, being the weight of the k-th Gaussian and p(x|k) be-
ing the conditional density function. The conditional density
function is a d-dimensional Gaussian distribution:

p(x|k) = %e_%((x_#kﬂ G =) 3)
V2T o/ det(Ck)

with mean L and covariance matrix C;. The above p(x|k)
can also be written as A4 (x|, Cy). To estimate the pa-
rameters {uy,Cy,m } for each of the Gaussian kernels the
Expectation-Maximization (EM) [4] algorithm is used. How-
ever, performing the EM algorithm in high dimensional
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Fig. 3. Interaction data of several stand-up interactions projected into a
low-dimensional posture space. Each point corresponds to one posture of
the robot.

spaces can be very time consuming. It is therefore convenient
that our data is already projected to the low-dimensional PCA
space as this ensures a fast convergence of EM.

After learning, we end up with three GMMs coding
three probability density functions p(x), p2(x), p3(x). Each
probability density function can be used to determine the
probability of a point in low-dimensional posture space
with respect to a particular desired posture. For example,
computing p,(r) for a given projected robot posture r, returns
the likelihood of the robot having desired posture =2 when
being in state r.

When the next interaction with the human is started, the
robot can use the new learned model to decide in which
state it is and which desired posture to take on. For this,
the current joint values are projected onto the learned low-
dimensional posture space. The result is a d-dimensional
point. The optimal desired next posture can be computed
in a maximum-likelihood fashion using:

Spext = argmax py(x) 4)
seS

In each step of the control loop, the robot calculates sy
and sends the angular values of the desired posture to a low-
level controller. The controller then computes the needed
joint torques to take on this posture. After the interaction
is finished, the human critique information is collected and
used to update the memory. After that, the learning loop is
repeated.

In Figure 3 we see an example of a set of interactions
projected onto a low-dimensional space. Each point in the
plot represents one posture of the CB? robot during an
interaction. The points were colored according to the desired
posture which was active in that particular time step.

IV. EXPERIMENT AND RESULTS

In order to investigate tightly coupled adaptation and the
learning scheme proposed in this paper, we conducted an
PHRI experiment using the rising-up interaction introduced
earlier. In the experiment two subjects were asked to assist
the robot in standing up. The first test-subject was part of



Fig. 4.

Sequential snapshots of the first (top) and last (bottom) interaction of the test subjects with the robot. Left we see the expert user, right the

beginner. The white curve depicts the change in the robot’s hips position. The center figures of each sequential snapshot shows how the robot learns in

both cases to have a strong contact between the feet and the ground.

the research team working on the CB? robot and, thus,
often exposed to interactions with the robot. This test-subject
will be referred to as expert subject in the following. The
second user, has not been exposed to similar interactions in
the past and will be referred to as beginner. The subjects
had to repeatedly help the robot. After every 10 trials, the
accumulated data in the memory was used for learning a
new model, according to the learning scheme described in
Section III-B. In total 30 interactions with 2 learning steps
in between were conducted.

Figure 4 shows sequential snapshots of first and last
interactions for each subject. The upper row of pictures
shows the first interactions, while the lower row of pictures
shows interactions after learning. The white dashed line
indicates the height of the hips in each snapshot. In the
figures we can observe a smoother transition of the hip
height after the learning interaction, than before the learning
interaction. Especially, in the center figures, we can see a
strong contact between feet and the ground and an increased
hip height after learning, in contrast to the poor contact with
ungainly leg posture shown before learning. How much the
human helped the robot in the task, and how the human
evaluates the robot performance can be a subjective matter.
Therefore, in our evaluation we focus only on whether the
robot motion is refined such that inefficient and jerky motions
are avoided.

Figure 5 shows three interactions for each user which were
projected into the low-dimensional posture space. Each in-
teraction is represented by a curve which reflects the robot’s
postures during the interaction. The black curve indicates the
robot’s postures during the initial phase, while the red and
green curve indicate the robot’s postures after the first and
second learning step respectively. In the case of the expert
user (left), we can clearly see that with each learning step, the
interaction becomes smoother and shorter. In the initial phase
the robot motion oscillates around the point (0.5,—2.0)7. It
might be caused by inefficient robot motion as discussed
above. After each learning step, the robot motion becomes
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Fig. 5. Projected interactions in the low-dimensional posture space. Left:
expert. Right: beginner.

smoother and more efficient, and the corresponding trajectory
becomes smoother and shorter. In the diagram describing the
beginner subject (right), this feature is not similarly obvious.

In order to confirm the above discussion we quantified
the robot motion using the posture change norm. The pos-
ture change norm a of the robot was calculated using the
Euclidean distance between the data of ¢ and 7 — 1 in the
posture space X defined by using each joint angle as a base.

ag) = %) = %-1) [l2, x €X. 5)

Computing the posture change norm at each time step of
the interaction results in the time series depicted in Figure 6.
The black time series’ show the posture change norm during
the initial interaction phase. We can see various sudden peaks
indicating large changes in the robot posture and, thus, non-
smooth motion. In particular in the case of the expert user, we
can find high peaks (around 1000 msec). This is undesirable,
as large changes in the robot posture result from strong
forces acting on it. The green and red time series’ show
the evolution of the norm after each learning step. With
each learning step, the amount and number of peaks in the
time series is reduced. In other words, the fluctuations in the
posture change norm decrease leading to a smoother and a
more efficient motion. This supports the hypothesis, that the
introduced learning method improves PHRI.

A statistical analysis of the data further underlines the
above hypothesis. For this, we computed the sum and vari-
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Fig. 7. The sum and stddev of the posture change norm of the expert
and beginner subject. With each learning step, the amount of these two
values decreases and the movement of the robot becomes smoother and
more synchronized with that of the subject.

ance of the posture change norm during the interactions.
Figure 7 shows the evolution of these values with each
learning step. In both cases, we see that the sum and variance
of the posture change norm decreased as the experiment
progressed. These results are backed by a t-test confirming
that the difference between the situation before and after
learning is statistically significant.

In the light of the above results, an interesting question
was raised: “Are the measured differences really due to
a symmetric learning process, in which both human and
robot adapt their behavior?”. In other words: does the robot
learning system have any effect on the evolution of interac-
tion? To investigate this question, we conducted a baseline
experiment, in which we repeated the introduced experiment
in slightly different setting. This time, learning in the robot
was turned off, and fixed time steps were used for switching
between the postures. Thus, the only kind of adaptation that
is possible in this scenario, is the adaptation of the human
towards the robot. Comparing these baseline results with the
previously achieved results showed a significant difference,
answering the above question, and affirming that the results
achieved with the introduced probabilistic low-dimensional
posture maps system are due to a bilateral learning process
taking placing in both the human and the robot.

V. CONCLUSION

In this paper we presented a physical human-robot inter-
action scenario where successful task completion can only

be achieved through coordinated actions involving physical
contact. For this, we introduced a simple machine learning
algorithm for adapting the behavior of the robot according
to received critique from the human interaction partner. The
method has a low computational load, can be run online
while the interaction with the robot is going on and needs
relatively few training data. In contrast to previous work in
this field, the robot in this study is in close physical contact
with the human partner and plays an active role during the
execution of the cooperative task. The CB2 robot, through
its flexible-joint design and soft silicone skin, is particularly
suited for such tasks, as physical interactions become more
“natural” and lifelike. In an experiment inspired by the
parenting behavior in humans, we were able to show that
the proposed learning method results in measurable improve-
ments of the interaction. Quantitative evaluations based on
the posture change norm confirm the significance of these
improvements.

In the future, we aim at investigating more complex
interactive behaviors. Additionally, we hope to include an
exploration phase into the learning algorithm, in which the
robot can try out different variants of a behavior in order to
find out, which one is best suited for the interaction partner.
Further, we hope to include non-binary feedback from the
human by using touch sensors or other input devices.
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