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Grip Stabilization of Novel Objects using
Slip Prediction

Filipe Veiga, Jan Peters and Tucker Hermans

Abstract—Controlling contact with arbitrary, unknown objects defines a fundamental problem for robotic grasping and in-hand
manipulation. In real-world scenarios, where robots interact with a variety of objects, the sheer number of possible contact interactions
prohibits acquisition of the necessary models for all objects of interest. As an alternative to traditional control approaches that require
accurate models, predicting the onset of slip can enable controlling contact interactions without explicit model knowledge. In this article,
we propose a grip stabilization approach for novel objects based on slip prediction. Using tactile information, such as applied pressure
and fingertip deformation, our approach predicts the emergence of slip and modulates the contact forces accordingly. We formulate a
supervised-learning problem to predict the future occurrence of slip from high-dimensional tactile information provided by a BioTac
sensor. This slip mapping generalizes across objects, including objects absent during training. We evaluate how different input
features, slip prediction time horizons, and available tactile information channels, impact prediction accuracy. By mounting the sensor
on a PA-10 robotic arm, we show that employing prediction in a controller’s feedback loop yields an object grip stabilization controller
that can successfully stabilize multiple, previously unknown objects by counteracting slip events.

Index Terms—Slip Prediction, Object Stabilization, Robot Manipulation, Tactile Sensing, Machine Learning.
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1 INTRODUCTION

Grasping and in-hand manipulation remain challenging tasks
in robotics due to a variety of issues. For grasping, it is necessary
to infer finger positions on the object and manage the force
distribution onto multiple fingers while ensuring grip stability
in the presence of uncertainty [1]–[3]. Manipulation additionally
deals with the contact dynamics between objects and fingers
while executing desired motions [4]. For many of these issues,
the key problem is how to adapt robot actions in order to deal
with undesired contact changes. Controlling the contact state
based on meaningful feedback signals may provide a solution to
this problem that can potentially generalize across a variety of
objects. Here, tactile feedback is an attractive option, as it provides
high frequency information directly from the interaction points.
Modern, deformable tactile sensors such as the BioTac [5], offer
many different measured quantities (e.g., pressure, high frequency
vibrations, and temperature fluctuations) while interacting safely
due to their compliance. These rich measurements of the local
interactions allow the robot to predict the effects of its actions
and to adapt them in order to reach the desired contact state.
For example, while object stabilization is classically achieved
by applying grasps that maximize measures such as form or
force closure, we could alternatively accomplish the same goal by
minimizing the predicted slip during grasp execution. The classical
approach relies on rather accurate contact models, while the slip
control method can be based only upon sensory input and prior
experience.

Slip, i.e., the partial loss of contact between finger and held
object [4], is known to be a key element of human manipula-
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Fig. 1. A human-robot grip stabilization experiment where a human and
a robot collaborate in order to preserve a stable grip on a deformable
plastic cup. A detailed description of the experiment can be found in
Section 3.7. Results show that the robot is able to respond to actions
taken by the human in order to keep the object from slipping. The
experimental results are discussed in Section 4.6.

tion [6] and may provide robots with the necessary feedback for
maintaining grip stability during manipulation actions [7]. For
example, such feedback can be used by a robot to reposition
objects in its hand through controlled sliding [2]. In robotics, slip
can be detected not only from tactile information [7]–[20], but also
from vision [21], force-torque sensors [22], and laser-based range
sensors [23]. Despite the extensive work, approaches based on the
sense of touch either rely on large sensors [11], [17], are based on
physical models of contact [8], [20], do not use slip information for
control [7], [24], or do not evaluate the generalization capabilities
of their approach [13], [25]. Further, the mere occurrence of slip
is often associated with grasp or manipulation failure. Hence,
endowing a robot with the ability to not just measure slip, but
to predict slip ahead of time, allows it to react prior to the onset
of slip. This differs substantially from approaches that focus on
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sensing actively occurring slip [8]–[13], [19], [20] or the closely
related problem of detecting the onset of slip, i.e., incipient
slip [7], [14]–[18], [26]. Correlating the occurrence of slip with
object stabilization failure, has the advantage of allowing a grip
stability problem to be formalized as a slip avoidance problem.
Unlike traditional approaches to grip stability analysis where the
entire hand configuration is taken into account [27]–[31], avoiding
slip takes a more local view, where the stability of the contact
surface is assessed.

As a step towards robust in-hand manipulation, we focus
on controlling the contact state using a tactile based prediction
of slip. From the tactile information provided by the BioTac
[5], we learn slip detectors and slip predictors from sampled
data (Section 2.1). In contrast to other work where the Biotac
was used [12], [18], we explore the sensors multiple information
channels and autonomously extract the relevant information from
each channel. This autonomous extraction of data allows for slip
detection/prediction that is generalizable to previously unobserved
objects. A similar approach is used in [13] only for detecting slip
and with no analysis of generalization performance. Compared
to physical modeling and analysis of slip, our approach does not
require explicit knowledge on the friction properties or shape of
the object.

We incorporate our learned slip detectors and predictors into
a feedback controller to perform grip stabilization (Section 2)
in two scenarios where objects are pinned by a single finger,
either jointly with a human as illustrated in Figure 1 or against
a table as illustrated in Figure 2. We compare slip detection
to slip prediction and show that stabilizing controllers based on
prediction achieve better stabilization performance (Section 3).
The training is performed using common household objects, where
the robot collects labeled data by either pinning the objects or
sliding on their surface. We evaluate the generalization capabilities
of our controllers by purposely leaving the test object data out of
the object data set that is used for training the slip predictors.

This article extends our preliminary research results published
in [32]. Here, we collect higher time-resolution data, where we
autonomously label slip based on fingertip position and applied
force. We examine a wider set of feature functions, analyze
how each BioTac channel influences slip prediction accuracy and
extend the robotic experiments to give further insights into the
impact of slip prediction in stabilization control tasks and how
well it generalizes to unknown objects.

2 GRIP STABILIZATION CONTROL THROUGH
TACTILE-BASED SLIP PREDICTION

This section gives an overview of our approach to stabilize the
grip on objects by predicting slip events. Our approach begins
by extracting slip prediction signals from high dimensional tactile
data, provided by the BioTac [5]. We formalize the slip prediction
problem as a supervised classification problem in Section 2.1.
Section 2.2 then describe the tactile data provided by the sensor
and Section 2.3 details the tactile features we use as input for
prediction. We give an overview of the classification methods used
in Section 2.4, and describe the controller used for collecting the
training data in Section 2.5.

Following our learning approach to predict slip, we describe a
controller that takes advantage of the prediction signals in order to
stabilize grips on multiple objects in Section 2.6. This includes
objects that are not used in training the slip predictors. The

Fig. 2. The experimental setup used for our robot in the grip stabilization
experiments. We use a Mitsubishi PA-10 robot arm with seven degrees
of freedom and a BioTac tactile sensor mounted on the arm as a single
finger end effector.

controller attempts to avoid slip events by increasing the contact
normal force in response to predicted slip. This control concept has
been previously applied in other controllers [11], [13], [17], [18],
however, only slip detection was used without prediction of future
slip events. Additionally these methods either used much larger
tactile sensors or did not analyze the generalization properties of
the controller across objects.

2.1 Learning to Predict Tactile Slip
In previous work [32], we showed that it is possible to detect
and predict slip based on rich tactile signals provided by a highly
deformable fingertip sensor. Here, we thoroughly analyze the
generalization properties of the best performing approach in [32]
while maintaining the problem formalization as a supervised
learning problem. Our formalization involves learning a classifier,
f (·), that labels the state at time t + τ f as slip or not slip,

ct+τ f = f (φ(x1:t)), (1)

where ct+τ f ∈ {slip,¬slip} is the state class at time t + τ f with
t being the current time. The prediction horizon τ f ≥ 0 specifies
the future time step in which the predictor is assessing slip. In
the case where τ f = 0, f (·) becomes a slip detector. The feature
function, φ(·), applies a transformation on the raw sensor data,
x1:t , providing the input for the classifier. We provide a detailed
description of the feature functions explored in this work in
Section 2.3.

Using this learning formulation, our approach is able to predict
slip prior to its onset. As we integrate these signals into the
feedback loop of the grip stabilization controller described in
Section 2.6, we assess how the prediction window size, τ f > 0,
impacts the outcome of the stabilization control, emphasizing the
comparison between prediction and detection (i.e. τ f = 0).

2.2 Tactile Sensor Data
The raw tactile data is extracted from the BioTac [5], a multi-
channel tactile sensor whose design was inspired by the human
fingertip. The sensor is comprised of a rigid core, enveloped by a
deformable skin. The space between the core and the skin houses
fluid, contributing to the skin’s deformability whenever pressure
is applied. Inside, 19 impedance-sensing electrodes, distributed
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across the core’s surface, measure the local skin deformation,
while a pressure transducer measures fluid pressure and a set of
heaters coupled with a thermistor manage and measure the fluid
temperature. The sensor output is composed of the electrode sig-
nals E ∈R19, low frequency, Pdc ∈R, and high frequency, Pac ∈R,
pressure measurements, temperature Tdc ∈R, and temperature flow
Tac ∈ R. All channels are sampled at a rate of 100 Hz. The Pac is
acquired by the sensor at a rate of 2.2 kHz, but is still sampled at
100 Hz, producing batches of 22 values every 10 ms. The resulting
sensor state xt ∈ R44, is given by

xt = [ET ,P(1)
ac , . . . ,P(22)

ac ,Pdc,Tdc,Tac]
T . (2)

An example of the raw signals produced by the sensor in one of
our data collection trials can be seen in Figure 3.

2.3 Tactile-based Feature Functions
We explore several feature functions φ(·), each of them repre-
senting distinct assumptions about the predictability of ct+τ f from
the accumulation of tactile information over time. If we assume
the class label to be directly observable from the current sensor
reading xt ,

φ(x1:t) = xt , (3)

represents the single element feature function. Incorporating the
change in the sensor values from the previous time step ∆xt =
xt −xt−1, yields the delta feature function

φ(x1:t) =

[
xt

∆xt

]
. (4)

While the feature functions above only use values directly
acquired from the sensor, we consider two complimentary func-
tions that perform frequency analysis on the Pac component, using
the extracted properties as features. Based on one of the features
proposed by Chu et al. [33], we start by calculating the energy
spectral density (ESD), of the Pac signal. The statistics computed
on the ESD are the total energy Ωs, spectral centroid Cs, variance
σs, skewness Ss, and kurtosis Ks. We refer to the original work [33]
for a more detailed explanation of the feature extraction method.
These statistics provide an overview of the time series information
given by the Pac channel, no longer viewing the time series
values as independent features. The statistics are concatenated
with the remainder of the BioTac channels, x̂t ∈ R27, to produce
the complex single element feature

φ(x1:t) = x̂t = [E,Pdc,Tdc,Tac,Ωs,Cs,σs,Ss,Ks]. (5)

As for the single element feature, we also assess how previous
time step information can be incorporated in the complex single
element feature by setting

φ(x1:t) =

[
x̂t

∆x̂t

]
. (6)

The resulting feature denotes a complex delta feature.
A second set of features is based on the assumption that ct+τ f

depends on past sensor readings leading to the current time step t.
Multiple feature functions are represented through

φη(x1:t) = xt−η :t (7)

where η controls the size of the window of past data to be
considered in each feature function. All sensor readings over the
last η time steps are accumulated into an input buffer that is then

evaluated by the slip predictor. These features are denoted as the
time window η feature functions.

Finally, we also show results when using all features intro-
duced by Chu et al. [33]. By comparing to features that were
originally designed with the goal of object property learning,
we showcase the importance of having the relevant information
for predicting slip directly extracted from the raw data by the
classifiers.

2.4 Classification Methods
To implement our slip predictors, we use random forest classi-
fiers [34], support vector machines [35], and a spectral slip clas-
sifier adapted from [36] solely based on high frequency pressure
information. In our previous work [32], we show that random
forests generally outperform SVMs for predicting tactile slip. As
such our analysis mostly focuses on prediction using random
forest classifiers.

Random forest classifiers are ensembles of randomly trained
binary decision tree classifiers [34]. Each decision tree classifies a
given test example independently. The result of the entire forest is
obtained by averaging over the distributions of the leaves reached
in each of the trees. The class with the highest probability is then
selected as the corresponding class for the current sample. Each
decision tree is a binary tree where all non-terminal nodes have
an associated splitting function, which decides if the currently
evaluated example should traverse down the tree following the left
or right branch. Leaf nodes contain a probability distribution over
the class labels of training examples which reach this node. Tree
training consists of selecting the feature and threshold to split at
each node. These values are selected through the optimization of
a specific performance criterion.

Support vector machines (SVM) are discriminate classifiers
that separate the training samples by partitioning the feature
space using a single decision boundary [35]. Each partition of
the feature space defined by the decision boundary represents a
single class. The decision boundary is chosen with respect to the
closest samples of each class referred to as support vectors. During
training the decision function which maximizes the classification
margin, defined as the sum over the distances to each support
vector, is found. The resulting linear classifier evaluating feature
vector z takes the form

f (z) =
k

∑
i=1

αi(zT zi)+b, (8)

where αi is the weight associated with the ith support vector, zi,
and b is a constant offset term. The support vectors and weights
can be found efficiently by using quadratic programming. Both
implementations of the previous classifiers come from the scikit-
learn library for Python [38].

The spectral slip classifier, adapted from [36], computes the
total energy in the Pac channel at each time step, after bandpass
filtering the output from 30 to 200 Hz. This frequency cutoff band
is specifically tailored for the BioTac, as shown in [36]. If the
signal energy in this specific frequency band exceeds a threshold
Ωthresh, the classifier signals a slip event. We choose Ωthresh by
optimizing the classifiers performance over the training data.

2.5 Surface Surveying Control for Slip Data Acquisition
In order to train our slip predictors, we require tactile data that
has been labeled for slip classification. To collect such data, we
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Fig. 3. Data traces for one of the data collection trials performed on the
ball object. The data collection procedure is described in Section 3.2.
From top to bottom, we show the low-frequency pressure variations,
Pdc, high frequency pressure variations, Pac, electrode responses in the
fingertip, E, temperature, Tdc, temperature flow, Tac, fingertip velocity,
and ground truth labels. Sensor values are expressed in raw sensor
units with no direct physical meaning. For a detailed description of each
sensor channel output refer to [37]. The pressure and velocity thresholds
used in the autonomous labeling procedure in Section 3.2 are shown in
the respective plots.

perform exploratory actions along the surface of several objects.
These actions are two-dimensional trajectories specified on the
plane tangential to the contact point with the object and allow the
robot to survey the objects surface in multiple directions, creating
several different slip examples.

As the object surface is often not planar, a controller is used to
ensure that the surveying trajectories are projected onto the object
surface. This controller is a hybrid pressure-velocity controller
that estimates the corrections that need to be applied to the
predefined velocity trajectories, in order to keep the Pdc values of
the sensor constant throughout the trajectory. Since the Pdc value is
one dimensional, these corrections are projected onto the contact
normal direction that is estimated using the electrode sensors
of the BioTac, as proposed by Wettels et al. [39]. The estimate
is obtained from the weighted average of the electrodes spatial
normals, where the weights are the responses of each electrode.

Fig. 4. The objects comprising our data set. We selected objects cover-
ing a range of shapes and stiffness in order to adequately test classifier
generalization. In the back we show a tape, followed by a row with, from
left to right, a watering can, a box, a cup and a ball. In front we have a
standard marker and behind it a measuring stick.

The magnitude of the resulting estimated vector is normalized,
resulting in a unit vector in the direction of the applied contact
force. To control the Pdc values, we calculate the pressure error

Pe = PD
dc −Pdc, (9)

where PD
dc is the desired pressure and Pdc is the observed pressure.

A PD controller is used to regulate the pressure error Pe by
applying the necessary corrections to the predefined velocity
trajectory

v = vdes +N(KpPe +KdṖe), (10)

where vdes is the desired surveying velocity, N is a unit vector
representing the contact normal direction, Kp and Kd are the PD
controller gains and v is the applied task space velocity. The task
space velocity v is integrated in order to acquire the desired task
space position and the respective desired joint positions using
the robot’s inverse kinematics. The surveying controller runs at
100 Hz which is the Pdc sampling frequency of the BioTac.
The procedure in which the controller is used as well as the
survey velocities and desired pressures are discussed in detail in
Section 3.2.

2.6 Grip Stabilization Control using Slip Prediction

Taking advantage of the slip prediction, we design a highly
reactive controller that avoids slip regardless of what object it is
stabilizing. When slip is predicted to occur, the controller increases
the desired task space velocity in the contact normal direction until
the robot no longer predicts slip. By adjusting the desired velocity
in the contact normal direction, the robot implicitly corrects the
applied normal force. If we use the Coulomb friction model for
contact, the implicit force adjustment ensures that the applied force
remains within the friction cone of the contact location.

The stabilization control is triggered when the sensor touches
the object since we can easily detect contact using thresholds
on the sensor pressure values. The predictors run at 100 Hz
classifying each sensor state as slip or ¬slip. If the state is labeled
as slip, the controller, which also runs at 100 Hz, imposes a desired
task space velocity vN(t) in the contact normal direction. If the
robot predicts no slip, the desired velocity is set to zero. The
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Fig. 5. The random components in the data collection procedure. In (a),
two random rotations are applied on the initial position before the finger
is lowered to establish contact with the object. In (b), the velocities along
the two axes defining the tangential contact plane, are randomly chosen
determining the surveying trajectory on the object surface.

imposed velocity vN(t), corresponds to the contact normal N(t) at
time t weighted by a constant δ , i.e,

v(t +1) =

{
δN(t), if ct+τ f = slip
0, otherwise

, (11)

where δ is empirically defined based on a set of calibration trials
where several objects of different weight were tested. The contact
normal N is estimated using the method proposed by Wettels et
al. [39], described in Section 2.5. The controller runs at 100 Hz,
reacting to each prediction given by the classifiers.

It is important to notice that the controller does not keep track
of the total applied normal force FN , as it simply increases the
velocity in the contact normal direction. As we show, even such
a simple controller can perform well when using rich feedback,
such as that provided by our slip classifiers.

3 EXPERIMENTAL PROCEDURE

In this section, we describe the experimental procedures necessary
to realize and evaluate our slip prediction based grip stabilization
controller on a real robot. After a short description of our hardware
setup in Section 3.1, we describe how the surface surveying
controller from Section 2.5 is used to collect the necessary data
for training the predictors. The procedure, as well as the number
of data collection trials, desired surveying velocities and desired
pressures are all discussed in Section 3.2. Once the data has
been acquired, it needs to be labeled and partitioned into training
and test sets. This process is described in Section 3.3. With the
data labeled, we can finally train the slip predictors. Training
is done using three different strategies described in Section 3.4,
for evaluating the effectiveness of the predictions when a single
object, all objects, or all objects excluding the test object are used.

As our data set is unbalanced in the number slip examples,
versus the number of ¬slip examples, we evaluate the predictors
with the Fscore metric. In Section 3.5, we describe and motivate the
use of this metric in our analysis.

(a) (b)

Fig. 6. Estimated contact locations on the fingertip sensor during (a)
data collection and (b) the stabilization against a fixed plane. The points
at the center of the BioTac are displayed in blue while peripheral contacts
become progressively red as the distance to the center increases.

Finally, to evaluate the performance of the grip stabilization
controller, we perform two sets of experiments. In the first set
of experiments, described in Section 3.6, the robot stabilizes the
gripped object between the finger and a fixed plane, evaluating
the success rate of the stabilizations. The second set showcases
the robustness of the stabilization by having the robot stabilize
an object gripped jointly with a human experimenter. We describe
this more dynamic experiment in Section 3.7.

3.1 Robotic Platform
All robotic experiments described in the following sections were
performed using a Mitsubishi PA-10, a robotic arm with seven
degrees of freedom. A BioTac tactile sensor, described in Sec-
tion 2.2, was rigidly mounted to the arm as a single finger for
manipulation. We directly control the arm’s joint positions at a
frequency of 100 Hz. The complete experimental setup can be
seen in Figure 2.

3.2 Slip Data Collection Procedure
We acquired the data used to train our slip classifiers through two
separate procedures specifically designed for collecting examples
for slip states and static contact states.

In the slip procedure, the object was fixed to a table. The
robot first moved to an initial position above the object. Two
random rotations were applied to the initial position in each trial
as shown in Figure 5a, ensuring different initial contact locations
between the fingertip and the object across trials. Following the
random rotations, the robot moved the fingertip down toward
the object until achieving contact and a desired pressure Pdc was
reached. Thereafter, a random velocity vector was defined in the
plane tangential to the contact point as shown in Figure 5b. This
velocity is denoted by vdes in the surface surveying controller
in Equation (10) and never exceeds 0.05 m/s. After performing
the movement along the object’s surface, the robot returned to its
initial position. Each procedure was repeated ten times for each of
the seven objects for three different target pressure values, making
a total of 30 trials per object.

For the static contact data collection, the procedure was
similar. The difference was that after the robot moved down and
contact was established, there was no longer movement along
the tangential contact plane. The robot effectively stays in static
contact with the object for one second in each of the trials. This
procedure was also repeated ten times for three target pressure
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values resulting in another 30 trials for each of the seven objects.
With both procedures combined, 60 data collection trials were
performed per object for a total of 420 trials. The target values
for Pdc used in the experiments were 20, 50, and 80. All sensor
values were considered with respect to sensor baselines collected
at a resting posture (no contact).

The random components introduced in the rotation of the
initial position and the magnitude of the tangential surveying
velocity, serve to cope with the multiple locations and velocities
in which slip may occur on the fingertip. Figure 6 shows how
finger contact locations collected during training compare to those
produced during grip stabilization experiments performed on the
robot. These stabilization experiments are described in detail in
Sections 3.6 and 3.7.

3.3 Data Labeling and Partitioning for Training
and Testing
Before the collected data can be used, it needs to be properly
labeled. The labeling process was performed autonomously, re-
lying on the robot’s forward kinematics and the overall pressure
on the fingertip. In a first stage, we removed data according to a
contact threshold, Pthresh, on the Pdc values. If the finger pressure
was below Pthresh, the finger was considered not in contact with
the surrounding environment, and the corresponding time step
was removed from the training data. The remaining data was then
labeled as slip or static contact using a threshold, ∆qthresh, on the
instantaneous end-effector velocity, ∆q, estimated by calculating
the difference in end-effector position between two consecutive
time steps. If ∆q was greater than ∆qthresh, the finger position was
changing with respect to the object while contact was established
and the data was labeled as slip. If ∆q did not exceed the threshold
the data was then labeled as static contact. Both thresholds Pthresh
and ∆qthresh were tuned by an expert by observing the sensor data
and the corresponding labels produced by each threshold pair.
Increasing Pthresh resulted in more data points being removed due
to being considered non-contact examples, while larger values of
∆qthresh implied that fewer contact examples were labeled as slip.
We show the pressure values, instantaneous end-effector velocity,
respective thresholds, and resulting labels in Figure 3 for one of
the trials.

After the data was labeled, trials were partitioned into training
and test sets. The training set was used for training the slip
classifiers and was composed of seven of the trials for each object
and Pdc value pairs. The remaining three trials per set were used
to validate the classifiers after training. The same training and test
sets were used for all experiments.

3.4 Training Strategies
We analyze slip detection and prediction according to the accuracy
and generalization capabilities of our classifiers by introducing
different training strategies. The first strategy (S1) involves train-
ing the classifiers on a single object and evaluating how they
can classify slip on that same object. This strategy is denoted
per object training and serves to evaluate how well slip can be
classified on an object when only that object is known. Another
training strategy, denoted all object training strategy (S2), involves
using data from all objects during training and assessing the clas-
sification performance on each object individually. When making
a comparison between these first two strategies, we can effectively
assess how slip classification rates for a single object change when

multiple objects are known. If an increase in classification rate is
observed for any single object when transitioning from S1 to S2,
we can assume that relevant transfer of slip information is occur-
ring between objects. Finally, in order to assess the generalization
capabilities of the classifiers, a leave one out training strategy
(S3) is used. In S3, classifiers are trained on data from all objects
except one, that is used for testing the generalization to novel
objects. If similar classification rates are achieve with S2 and S3,
slip information transfer to between-object cases can be said to
compensate for the absence of information regarding previously
unobserved objects.

3.5 F-Score Metric
After performing the data collection and labeling procedures of
Sections 3.2 and 3.3, we verified that the resulting data set was
unbalanced in the number of class examples. Since the surveying
motions only represent a small part of each data collection trial,
the resulting data set is biased in the number of class samples, i.e.,
the slip examples are greatly outnumbered by the ¬slip examples.

Evaluating our classifiers based on classification accuracy, we
observe very high accuracies (above 90%) from classifiers that
simply label everything as ¬slip. Considering it is more important
to detect when slip occurs then when it does not, a more helpful
analysis of the classification results is performed by reporting the
Fscore instead of classification accuracy. The Fscore is a harmonic
mean of the precision and recall measures

Fscore = 2
pr

p+ r
. (12)

The precision, p, depicts the ratio between accurate positive
classifications and total positive classifications

p =
true positives

true positives+ false positives
. (13)

In our case, precision evaluates the quality of the classifiers
predictions by calculating the ratio of correct slip predictions
with respect to the total number of slip predictions made by
the classifier. The recall, r, is the ratio between accurate positive
classifications and positive examples

r =
true positives

true positives+ false negatives
. (14)

Here, recall represents how likely the classifiers are to miss slip
instances by calculating the ratio between all instances where slip
was predicted with respect to all instances where slip should have
been predicted.

When the predictions are correct (high precision) and few
slip instances are missed by the classifier (high recall), the Fscore
approaches its maximum value of one. If the classifier either
predicts several instances of slip incorrectly (low precision) or
misses several slip instances (low recall), the Fscore approaches its
minimum value of zero.

3.6 Stabilizing Objects against a Fixed Plane
Following the evaluation of our slip predictors, we describe the
first experiment that showcases the relevance of the acquired slip
prediction signals in the context of grip stabilization. The exper-
iment involves stabilizing the grip on an object pinned between
the fingertip sensor and a fixed table, as show in Figure 2. The
grips are performed on unknown objects to test the generalization
capabilities of our prediction based stabilizers.
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deviation across all objects for each of the classifiers. Plots for the individual features show results for each object, comparing across training
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To perform grip stabilization, the previously trained random
forest slip predictors are embedded in the feedback loop of the
grip stabilization controller presented in Section 2.6. The random
forests are trained with a leave one out strategy (S3), and a
number of grip stabilization trials are performed on the object
that was left out of the training set. Each trial consists of the
robot initially pinning the object against a vertical plane. Once
the object has been successfully stabilized against the plane, a
random velocity is applied to move the robot away from the
object. The three components of the exit velocity are sampled
from different Gaussian distributions. The two lateral velocity
components are sampled from Gaussian distributions with 0.0 m/s
mean and 0.05 m/s standard deviation and the exit component is
sampled from a Gaussian distribution with 0.05 m/s mean and
0.05 m/s standard deviation. As the robot moves away from the
object, and as soon as slip is predicted, the stabilization controller
becomes active, counteracting the exit motion and attempting to
re-stabilize the object. The stabilization controller remains active
until no slip is predicted during a period of 2 seconds or for a
total of 10 seconds, after which the trial finishes. If the robot
does not drop the object before the trial concludes, the trial is
considered a success. We conduct ten trials per object for each
feature function and prediction windows τ f ∈ {0,5,10,15,20} and
report the percentage of successful trials for each combination
across all objects.

3.7 Human-Robot Joint Grip Stabilization

In order to assess the robustness of our slip prediction based grip
stabilizers, we attempt to stabilize a grip on an object jointly with
a human experimenter, by replacing the vertical plane with one of
the experimenter’s fingers.

Initially, the experimenter holds the object. As soon as the
robot touches the object, the experimenter repositions his hand,
and leaves only a single finger in contact with the object, as
depicted in Figure 1. Simultaneously, the stabilization controller
is activated. The experimenter makes a qualitative assessment
of the robot’s performance as it tries to compensate for his
movements. This qualitative assessment is a relative preference
between controllers, where each controller uses a different feature
for predicting slip. The assessment is based on the responsiveness
and stability (oscillations when attempting to keep the object still)

of each controller. Note that the grip stabilizers have to cope with
the random noise introduced into the system by the experimenter.
In addition, a thin plastic cup is used in this experiment. This
object is not present in the previous object set, and is completely
unknown to the slip predictors. The evaluation was repeated three
times for each of the predictors and was performed by a single
experimenter.

4 RESULTS

In this section we report the results of our evaluation for both
the slip predictors and the grip stabilizers based on the predictors
outputs. We begin with a brief comparison of results achieved
with the different classification methods, Section 4.1, in order to
confirm our previous findings [32], with the newly acquired data
set. The classifier comparison is followed by an analysis of the
individual performance of each BioTac channel for slip detection
in Section 4.2, showcasing the importance of having the classifiers
extract the relevant information from each of the BioTac channels.
The performance of our slip detection and prediction classifiers
as well as the relevance of the proposed features in both cases is
reported in Sections 4.3 and 4.4 respectively. Finally, the success
rates achieved for our grip stabilizers in the stabilization against a
fixed plane experiment are reported in Section 4.5 and the results
from the human-robot joint stabilization experiment are reported
in Section 4.6.

4.1 Classifier Comparison
The average over S1 and S2 is used to compare the three classifiers
described in Section 2.4. We examine the SVM and the random
forests with two of the proposed features and use the Pac signals
as input to the spectral slip classifier. From the results shown in
the bottom plot of Figure 7, we observe that SVM performance
is on par with the performance achieved with random forests.
The spectral slip classifier performance is much worse than the
performance of the other two classifiers.

A more detailed comparison between the best and worst
performing classifiers, respectively the random forest and the
spectral slip classifiers, is shown on the radial plots of Figure 7,
and in a comparison between the ground truth labels and the labels
produced by both classifiers in Figure 8. The radial plots show
similar Fscore patterns for all training strategies and, in the case of
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Fig. 8. Traces of the ground truth labels and the labels generated by the
random forest and spectral slip detectors for one of the test trials. While
the random forests very accurately reproduce the ground truth results,
the spectral slip classifier is only able to detect the ground truth slip
transitions, failing to detect continuous slip.

the random forests, across four of the proposed features. From the
traces in Figure 8, it is clear that the spectral classifiers accurately
detect the onset of slip, but fail to continuously label slip as
the finger surveys the object’s surface. These findings suggest
that spectral signals are prone to noise caused by motor induced
vibrations during trajectory execution. Using all the BioTac chan-
nels, the impact of the noise is reduced, explaining the higher
accuracy observed for the SVM and random forest classifiers
throughout continuous slip phases. Following these observations,
and considering that the random forests slightly outperform SVMs
in terms of the mean value, the remaining results to be presented
in this article are associated with classifiers trained using random
forests.

4.2 BioTac Channel Relevance Analysis

In order to better understand the contribution of each BioTac
channel for the detection of slip, we compare slip detectors that
are separately trained with each channel as input using S2. The
results are shown in Table 1. As a reference, results obtained by a
slip detector trained with the single element feature are included
in the right most column of Table 1.

The electrode information dominates the classification per-
formance, achieving the best score on all objects except the
marker. The pressure information from Pac and Pdc are fairly

TABLE 1
Fscore for different detectors where each of the BioTac channels is used
as the only feature of the classifier. All results are for the random forest
classifier trained on all objects (S2). Bold values indicate the best Fscore

value obtained per object, excluding results obtained when using
detectors trained using the single element feature function.

E Pac Pdc Tac Tdc xt
Ball 0.793 0.642 0.696 0.161 0.196 0.847
Box 0.876 0.683 0.702 0.099 0.184 0.925
Cup 0.809 0.614 0.596 0.171 0.072 0.913

Marker 0.718 0.559 0.802 0.249 0.003 0.768
Measuring Stick 0.905 0.701 0.665 0.099 0.087 0.936

Tape 0.886 0.617 0.706 0.088 0.053 0.942
Watering Can 0.667 0.637 0.634 0.172 0.402 0.780

Chu η = 20
Chu η = 15
Chu η = 10
Chu η = 5
Time Window η = 20
Time Window η = 15
Time Window η = 10
Time Window η = 5

Complex Delta
Complex Single
Delta

Single
S1 and S2

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Chu η = 20
Chu η = 15
Chu η = 10
Chu η = 5
Time Window η = 20
Time Window η = 15
Time Window η = 10
Time Window η = 5

Complex Delta
Complex Single
Delta

Single

Fscore

S3

Fig. 9. The mean Fscore and standard deviation obtained per feature for
slip detection. These results show the average performance jointly over
S1 and S2 (a) and when only considering S3 (b). The memoryless and
short term memory features outperform the long term memory features
with respect to the mean Fscore. When testing generalization with S3, a
significant drop of performance is observed for the features of Chu et
al. [33].

successful, with the Pdc alone achieving the best performance for
the marker. Further, the temperature channels, Tdc and Tac, provide
no meaningful ability to detect slip. These results show that the
deformation information present on the BioTac can be used to
detect slip extremely well. This observation is especially relevant
as deformation information is not traditionally associated with the
detection of slip. Vibration information stored in the Pac and Pdc
offers good detection rates, while not having an average perfor-
mance comparable to the electrodes. Finally, results achieved with
the single element feature function show that the detectors are able
to consolidate information from multiple channels, improving the
slip detection rates.

4.3 Slip Detection and Feature Influence

From the results shown in the radial plots of Figure 7, we see
that for four of the proposed features, the random forests can
successfully classify slip, although different success rates are
observed depending on the object. For objects such as the box, cup,
tape and measuring stick, slip is classified quite accurately. On
the remaining objects, despite lower classification rates than for
previous objects, Fscore values are still above 0.7. When comparing
training strategies, we observe that classification performance
remains mostly the same across all strategies, hinting that (1) not
much knowledge is gained from additional objects once the target
object is already known and (2) the classifiers can generalize quite
well for previously unknown objects.
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In Figure 9, we show results across all features when averaging
over S1 and S2. While the time window η features perform quite
well, there is no significant difference in performance with respect
to the single element or the delta features. In fact the top perform-
ing feature is the complex delta feature. The complex versions of
the single element and delta features seem to outperform their
simpler counter parts. This suggests that condensing the time
series information provided by the Pac, as described in Section 2.3,
benefits the detection rate. Finally, the features of Chu et al. [33],
albeit being the worst performing features, still achieve good
detection rates. This is surprising since they were designed with
other tasks in mind. In fact these features cluster information over
temporal windows which are large in comparison to the duration
of slip events.

Figure 9 also shows average results over S3 for each feature.
The same performance patterns are observed as in the previous ex-
periment, with the complex delta feature still as the top performing
feature. The features of Chu et al. [33] perform significantly worse
than in earlier experiments. This suggests that the information
retained by these features is specific to the objects observed and
does not generalize well to novel objects. These findings support
our choice of having the features built only under data aggregation
assumptions, relying on the classification approach to balance the
multi-channel information.

Considering the results shown so far and taking into account
that we aim for real time performance on the real robot, we base
the rest of our analysis on the single element and delta features
and their complex counterparts. It is hard to justify the additional
computation power required to process the time window η features
in real time, as we do not observe any advantages in terms of
classification performance when using these features.

4.4 Slip Prediction Offline Results

In this section, we analyze how the classifiers perform when
τ f > 0, by training slip predictors with prediction horizons τ f
of 5, 10, 15, and 20 steps, equating to times of 0.005, 0.01,
0.015, and 0.02 seconds respectively. Following the same type
of analysis as performed for slip detection, we observe that there
is no significant difference between the results obtained for the
average of S1 and S2 and the results obtained for S3, shown in
Figure 10. We observe similar Fscore values as with slip detection,
clearly showing the feasibility of predicting slip. Nonetheless, a
consistent drop in classification rates can be observed for τ f = 15.
A more in-depth analysis reveals that, while prediction rates for
most objects remain stable from τ f = 10 to τ f = 15, a decrease
in rate can be observed for the ball and the watering can when
using the single and complex single features. For the delta and
complex delta features, a significant performance drop is observed
only for the watering can. In terms of best performance, the delta
feature overtakes the complex delta feature for τ f ≥ 10. Further,
complex features display a more accentuated drop in performance
with increasing values of τ f . This performance drop suggests that,
despite having good discriminative and generalization properties,
the complex features are not as suited for prediction due to their
more compact representation of the Pac signals that results in a
loss of relevant information for prediction.

The results show that it is not only possible to predict slip
but that it also possible to generalize the prediction of slip
to previously unknown objects, producing the desired feedback
signals for the controller described in Section 2.6.

4.5 Grip Stabilizing Control on the Real Robot
In order to assess the performance of our slip based grip stabi-
lizers, Figure 11 reports the success rates for the stabilization of
objects against a fixed plane experiment, described in Section 3.6.
Results are show for each object separately, while comparing
feature functions and τ f values. By comparing different values
of τ f , we are assessing how earlier controller responses (larger
prediction windows) affect the grip stabilization success rates. We
observe an increase in the stabilization rates with τ f for all objects,
specifically for the cases where τ f ≥ 10. Note that the increase in
stabilization rate is particularly interesting considering the results
shown in the previous section, where prediction accuracy dropped
for τ f ≥ 10. Although prediction accuracy is lower for this range
of τ f , the ability to predict farther into the future facilitates the
stabilization task.

Spectral slip classifiers perform quite well independently of
the value of τ f and changes to τ f do not seem to influence the
performance of the spectral slip controller. Their performance is
unexpectedly high, considering the results obtained in the offline
evaluation. Careful observation of the stabilization trials confirms
the results obtained in the offline experiments, where spectral slip
predictors capture very accurately the transition from static contact
to slip (transition from ¬slip to slip) but only as it is occurring. On
the other hand, accurately detecting slip only as it occurs proves
insufficient to stabilize all objects. For light objects, the brief
response of the controller to the initial slip transition is enough
to stabilize the object. This is the case for the ball, box, cup and
marker. For objects such as the measuring stick or the watering
can, the brief response generated by the controller during this first
slip transition is insufficient to fully stabilize the object, as they
are heavier and, in the case of the watering can, suffer from larger
torsional slips. When comparing the predictors with the spectral
slip classifiers, the latter outperform our approach for τ f ≤ 10 but,

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
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Fig. 10. The mean Fscore and standard deviation obtained per feature
for slip prediction with several prediction windows, τ f . These results
show the performance when only considering S3, hence testing how slip
prediction generalizes to novel objects. While the complex features show
better average results for low values of τ f , the delta features show the
top performance for τ f > 10, suggesting that the complex features are
not as suited for prediction.
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Fig. 12. Traces of the Pdc, the fingertip position along the contact normal
and the predictor responses during a trial of the grip stabilization against
a fixed plane experiment. The slip predictor used in this trial was trained
with the delta features and a prediction window τ f = 20. After an initial
perturbation, the grip stabilizers adjust the position of the fingertip, mov-
ing it towards the table (in the negative direction of the axis) whenever
slip is predicted to occur.

as τ f increases, controllers using the predictors eventually achieve
the best stabilization rates for objects where previous performance
was inferior to that of the spectral slip classifier.

Similar results can be observed in Figure 13, where the mean
and standard deviation of the grip stabilization success rates across
all objects are shown per feature and per value of τ f . These
results clearly show the consistent behavior of the controllers using
spectral slip classification, unaffected by changes to the value of
τ f . For controllers relying on our proposed slip predictors, a clear
pattern is observed, where stabilization performance increases
with τ f , eventually matching the performance of the spectral slip
classifiers or even outperforming it for τ f ≥ 10. In addition, it is
also clear that despite the decrease in prediction rates observed
for τ f = 15, there is an increase in stabilization success rate.
The exception is the controller using the predictors trained with
the complex single feature, which was the feature with the most
significant drop in performance for τ f = 15. This confirms that,
on average, the ability to predict slip further into the future has a
bigger impact in controller performance than the resulting drop in
prediction accuracy due to a larger value of τ f .

We evaluate if there is a statistically significant difference
between the success rates as a function of prediction time horizon.
We conduct a separate test for each feature type. We perform

a Kruskal-Wallis H-test [40], a non-parametric version of the
popular ANOVA test. The Kruskal-Wallis H-test is chosen since
the variances of the distributions are not equal, a necessary
assumption for the ANOVA test. The results show that there is
no statistically significant differences between prediction horizons
for the spectral and the single element features, with p-values of
0.9563 and 0.1386 respectively. On the other hand, for the delta,
complex single, and complex delta features, there is a statistically
significant differences between the distributions, with respective
p-values of 0.04688, 0.0029 and 0.0091. For these three features,
the results are not surprising, as they display the most accentuated
increases in success rate.

Traces for the Pdc, fingertip position along the contact normal
axis and predictor response are shown for a trial on the watering
can using the delta feature with τ f = 20. After the initial per-
turbation occurring at 5.4s, whenever slip is predicted to occur,
shifts in the negative contact normal direction and increases in the
fingertip pressure can be observed. Following the 7.6s mark, the
object remains stable for 2s and the trial concludes successfully.

4.6 Cooperative Grip Stabilization
By using controllers based on our slip predictors, the robot is
able to successfully complete the human-robot joint grip stabi-
lization task. While all controllers were able to jointly stabilize
the objects, the experimenter found that as τ f increased, the
controller’s response time was shorter, compensating for more
sudden movements. The spectral slip method completely failed
to stabilize the object with the human. The spectral slip’s inability
to classify continuous slip causes the controller to react only in
short bursts as described in Sec. 4.5. For the movements produced
by the human, where the duration and velocity of the movement is
unknown, these extremely short responses are insufficient to keep
the object stable.

To compensate for the accelerations introduced by the human,
we replace a constant valued δ with a function δ (t) that increases
linearly with time since slip was detected. The value of δ (t)
returns to zero whenever ¬slip is detected. For small movements,
the robot does not apply the maximum response instantly, avoiding
crushing the object or injuring the experimenter. As its response
varies over time, the robot can cope with longer movements of
variable velocity, by constantly readjusting its response.

5 CONCLUSION AND DISCUSSION

The proposed slip prediction based grip stabilization controllers
were inspired by studies on human manipulation, specifically,
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Fig. 13. Mean and standard deviation of the success rates for the grip stabilization experiments against a fixed plane experiments on the real robot.
The success rate represents the percentage of trials where the robot successfully stabilizes the object, out of a total of 70 trials (10 per object).
By varying the prediction window τ f , we evaluate how the ability to predict slip farther into the future impacts the stabilization success rates of
the controllers. While changes to τ f have no effect on the controller using the spectral classifier, for all other controllers the success rates clearly
increase for larger prediction windows.

neuroscientific studies suggesting that the human tactile system
has a strong discrete feedback component, and relies on sensory
prediction for control [6].

5.1 Summary of the Contribution

In this article, we have presented a learning based approach
for predicting slip from high dimensional tactile information.
Our slip predictors are integrated into the feedback loop of a
grip stabilization controller allowing it to compensate for slip
before its onset. Controllers based on predicted slip signals are
shown to increase stabilization rates when compared to controllers
solely relying on the detection of slip. In addition, we show
the controllers to be highly generalizable to novel objects and
sufficiently robust for the robot to stabilize objects jointly with a
human. This robustness to severe perturbations, observed during
the human-robot joint grip stabilization experiment, shows that
such an approach can potentially be used for multi-fingered cases
during in-hand manipulation.

5.2 Recognized Shortcomings

The proposed grip stabilization approach aims for the general-
ization of the slip sensation based control across a wide range
of objects. To fulfill such a goal, a diverse training data set is
required, in order to cover a broad set of interactions. Such data
sets are not readily available, and have to be collected by experts in
the field. Additionally, the data has to be labeled for the slip events,
requiring highly accurate systems or several man hours to label
the data manually. Our approach fails to compensate for rotational
slip as the data collection procedures introduced in Section 3.2
were not designed to collect data for rotational events. Finally,
training such methods with the required amounts of data is time
consuming and sometimes renders them slow at execution time
when compared to simple approaches such as the spectral slip
classifier.

The controller proposed in Section 2.6 is highly affected by the
heuristic used for the estimation of the normal contact direction.
This estimation is very noisy and should be improved to solve
more complex tasks.

5.3 Future Work

Our work has focused on merging multiple tactile sensing modal-
ities for predicting slip and on the usefulness of these predictions

for grip stabilization with a single finger. A natural next step is the
extension of this approach to multi-fingered manipulation tasks,
where we wish to analyze how multiple fingers, each with its own
tactile sensor, can be integrated in order to perform in-hand grip
stabilization and possibly facilitate in-hand manipulation.

While we chose slip prediction as a first step, we see the possi-
bility of using the proposed learning approach for the prediction of
contact breaking (e.g., during a controlled release of an object) as
in re-grasping or finger gaiting or for predicting the onset of a lift
phase (i.e., when the held object leaves the supporting surface).
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