Apprenticeship Learning for Autonomous Flight
and Surgical Robotics

Pieter Abbeel
UC Berkeley EECS

Collaborators: Adam Coates, Andrew Ng, Jie Tang, Arjun Singh,
Nimbus Goehausen; Jur van den Berg, Stephen Miller, Ken
Goldberg, Humphrey Hu, Daniel Duckworth



Objective

= Autonomous execution of trajectory-based tasks for
systems with complicated dynamics

= Challenges:

=« How to specify the trajectory?
= How to build a controller?
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Target trajectory

= Difficult to specify by hand:
= Required format: position + orientation over time
= Needs to satisfy dynamics

= Our solution:
= Collect demonstrations of desired maneuvers

= Challenge: extract a clean target trajectory from many
suboptimal/noisy demonstrations



Expert demonstrations: Airshow




Learning Trajectory
Hidden Q_'Q_'Q_'QHQHQ

HMM-like generative model
- Dynamics model used as HMM transition model
- Demos are observations of hidden trajectory

Problem: how do we align observations to hidden
trajectory?



Learning Trajectory
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Results: Time-aligned demonstrations

White helicopter is inferred “intended” trajectory.




Results: Loops
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= Even without prior knowledge, the inferred trajectory
iS much closer to an ideal loop.

= If desired, can incorporate prior knowledge as prior.
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Empirical evaluation of standard
modeling approach
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Key observation
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= Errors observed in the “baseline” model are

clearly consistent after aligning

demonstrations.



Key observation

= If we fly the same trajectory repeatedly, errors are
consistent over time once we align the data.

= There are many unmodeled variables that we can't
expect our model to capture accurately.
= Air (1), actuator delays, etc.

« If we fly the same trajectory repeatedly, the hidden
variables tend to be the same each time.

cf. muscle memory for humans



Trajectory-specific local models

= Learn locally-weighted model from aligned
demonstration data

= Since data is aligned in time, we can wei?ht by time to
exploit repeatability of unmodeled variables.

= For model at time t: W(t") = exp(- (t —t)2 /o?)

= Obtain a model for each time t into the maneuver by
running weighted regression for each time t
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Many success stories in hover and
forward flight regime

= Just a few examples: Bagnell & Schneider, 2001;
LaCivita, Papageorgiou, Messner & Kanade, 2002; Ng,
Kim, Jordan & Sastry 2004a (2001); Roberts, Corke &
Buskey, 2003; Saripalli, Montgomery & Sukhatme, 2003;
Shim, Chung, Kim & Sastry, 2003; Doherty et al., 2004;
Gavrilets, Martinos, Mettler and Feron, 2002; Ng et al.,
2004b.

= Varying control techniques: inner/outer loop PID with
hand or automatic tuning, H1, LQR, ...

= Very few results outside of stationary regimes ---
exception: Gavrilets, Martinos, Mettler, Feron 2002



One of our first attempts at autonomous flips
[using similar methods to what worked for ihover]

Target trajectory: meticulously hand-engineered
Model: from (commonly used) frequency sweeps data




Experimental Setup
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Experimental procedure

1. Collect sweeps to build a baseline dynamics model

2. Our expert pilot demonstrates the airshow several times.
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3. Learn a target trajectory.

4. Learn a dynamics model.

5. Find the optimal control policy for learned target and
dynamics model.

6. Autonomously fly the airshow

/. Learn an improved dynamics model. Go back to step 4.

- Learn to fly new maneuvers in < l1lhour.



Results: Autonomous airshow




Results: Flight accuracy
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Objective

= Autonomous surgical
assistants

= Surgeons still perform
major work

= Robots autonomously
perform menial tasks
= Enhance surgeon performance
= Reduce tedium and medical errors
= Reduce operation time and costs
= Improve patient health




Our Robotic Setup

= Two surgical robots
= 6 degrees of freedom

= Integration with Da Vinci
end-effector

= Cavusoglu et al., 1999

= Two input devices
for human control

= Same degrees of freedom



Results: Knot tie




Surgical sub-skills: discussion

s Current Limitations
= Specific to initial conditions
= Robots are “blind”

= Hardware limitations




Conclusion

For systems with complicated dynamics hard to obtain
» Task trajectory specification
= Dynamics model
Our approach uses multiple expert demonstrations to learn:

= Task trajectory
= Dynamics models along the trajectory for control.

Enabled robotic abilities beyond the prior state of the art
Current directions:

= Parameterize trajectories
= Adapt to environment



