Apprenticeship Learning for Autonomous Flight and Surgical Robotics

Pieter Abbeel UC Berkeley EECS

Collaborators: Adam Coates, Andrew Ng, Jie Tang, Arjun Singh, Nimbus Goehausen; Jur van den Berg, Stephen Miller, Ken Goldberg, Humphrey Hu, Daniel Duckworth

Objective

- Autonomous execution of trajectory-based tasks for systems with complicated dynamics
- E.g.,

- Challenges:
 - How to specify the trajectory?
 - How to build a controller?

Outline

Learning a target trajectory

- Learning a dynamics model
- Autonomous flight results
- Surgical robotics
- Conclusion

Target trajectory

- Difficult to specify by hand:
 - Required format: position + orientation over time
 - Needs to satisfy dynamics
- Our solution:
 - Collect demonstrations of desired maneuvers
 - Challenge: extract a clean target trajectory from many suboptimal/noisy demonstrations

Expert demonstrations: Airshow

- HMM-like generative model
 - Dynamics model used as HMM transition model
 - Demos are observations of hidden trajectory
- Problem: how do we align observations to hidden trajectory?

 Dynamic Time Warping (Needleman&Wunsch 1970, Sakoe&Chiba, 1978)

Extended Kalman filter / smoother

Results: Time-aligned demonstrations

White helicopter is inferred "intended" trajectory.

Results: Loops 15 10 Altitude (m) 5 0 -5 10 20 30 40 50 North (m)

- Even without prior knowledge, the inferred trajectory is much closer to an ideal loop.
- If desired, can incorporate prior knowledge as prior.

Outline

Learning a target trajectory

Learning a dynamics model

- Autonomous flight results
- Surgical robotics
- Conclusion

Empirical evaluation of standard modeling approach

Key observation

 Errors observed in the "baseline" model are clearly consistent after aligning demonstrations.

Key observation

- If we fly the same trajectory repeatedly, errors are consistent over time once we align the data.
 - There are many unmodeled variables that we can't expect our model to capture accurately.
 - Air (!), actuator delays, etc.
 - If we fly the same trajectory repeatedly, the hidden variables tend to be the same each time.

cf. muscle memory for humans

Trajectory-specific local models

- Learn locally-weighted model from aligned demonstration data
 - Since data is aligned in time, we can weight by *time* to exploit repeatability of unmodeled variables.
 - For model at time t: $W(t') = \exp(-(t t')^2 / \sigma^2)$
 - Obtain a model for each time t into the maneuver by running weighted regression for each time t

Outline

- Learning a target trajectory
- Learning a dynamics model

Autonomous flight results

- Surgical robotics
- Conclusion

Many success stories in hover and forward flight regime

- Just a few examples: Bagnell & Schneider, 2001; LaCivita, Papageorgiou, Messner & Kanade, 2002; Ng, Kim, Jordan & Sastry 2004a (2001); Roberts, Corke & Buskey, 2003; Saripalli, Montgomery & Sukhatme, 2003; Shim, Chung, Kim & Sastry, 2003; Doherty et al., 2004; Gavrilets, Martinos, Mettler and Feron, 2002; Ng et al., 2004b.
- Varying control techniques: inner/outer loop PID with hand or automatic tuning, H1, LQR, ...
- Very few results outside of stationary regimes --exception: Gavrilets, Martinos, Mettler, Feron 2002

One of our first attempts at autonomous flips [using similar methods to what worked for ihover]

Target trajectory: meticulously hand-engineered Model: from (commonly used) frequency sweeps data

Experimental Setup

Experimental procedure

- 1. Collect sweeps to build a baseline dynamics model
- 2. Our expert pilot demonstrates the airshow several times.

- 3. Learn a target trajectory.
- 4. Learn a dynamics model.
- 5. Find the optimal control policy for learned target and dynamics model.
- 6. Autonomously fly the airshow

- 7. Learn an improved dynamics model. Go back to step 4.
- \rightarrow Learn to fly new maneuvers in < 1hour.

Results: Autonomous airshow

Results: Flight accuracy

Outline

- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results
- Surgical robotics
- Conclusion

Objective

- Autonomous surgical assistants
 - Surgeons still perform major work
 - Robots autonomously perform menial tasks
 - Enhance surgeon performance
 - Reduce tedium and medical errors
 - Reduce operation time and costs
 - Improve patient health

Our Robotic Setup

- Two surgical robots
 - 6 degrees of freedom
 - Integration with Da Vinci end-effector
 - Cavusoglu et al., 1999

- Two input devices for human control
 - Same degrees of freedom

Results: Knot tie

Surgical sub-skills: discussion

- Current Limitations
 - Specific to initial conditions
 - Robots are "blind"
 - Hardware limitations

Conclusion

For systems with complicated dynamics hard to obtain

- Task trajectory specification
- Dynamics model
- Our approach uses multiple expert demonstrations to learn:
 - Task trajectory
 - Dynamics models along the trajectory for control.
- Enabled robotic abilities beyond the prior state of the art
- Current directions:
 - Parameterize trajectories
 - Adapt to environment