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1. Introduction

Inverse reinforcement learning (IRL) is the problem
of recovering a cost function that is consistent with
observations of optimal or “expert” trajectories and
with a given dynamic model (Ng & Russell, 2000). In
some cases, for example in the study of human motor
control, it is precisely this cost function that we want
to know. In other cases, imitating the behavior of
an expert might be the goal. IRL problems are of
interest in a wide range of applications, from basic
science (Todorov, 2004; Kording & Wolpert, 2004) to
optimal control of aircraft (Krstic & Tsiotras, 1999)
and more recently aerobatic helicopter flight (Abbeel
et al., 2010) within the robotics community.

In this paper, we consider the problem of inverse re-
inforcement learning (IRL) for a class of stochastic
continuous state-space systems, under the assumption
that the cost function is parametric with known basis
functions. Our goal is to produce a cost function for
which a set of trajectories, observed in experiment, is
most likely. We proceed by enforcing a constraint on
the relationship between input noise and input cost
that produces a maximum entropy distribution over
the space of all sample paths. We apply maximum
likelihood (ML) estimation to approximate the param-
eters of this distribution (hence, of the cost function)
given a finite set of sample paths. We iteratively im-
prove our approximation by adding to this set the sam-
ple path that would be optimal given our current esti-
mate of the cost function. Preliminary results in sim-
ulation provide empirical evidence that our algorithm
converges.

2. System Model

We consider the following system:

ẋt = f(xt) +G(xt)

(
ut + εt

)
, (1)

with state xt ∈ Rn×1, passive dynamics f(xt) ∈ Rn×1,
controls ut ∈ Rp×1 and control matrix G(xt) ∈ Rn×p.
Also, εt is a mean zero Gaussian with variance Σε.

We define finite horizon trajectories starting at ti and
ending at tf by τti = (xt, ti ≤ t ≤ tf ) and the cost by:

J(x, ti, ut) = φtf +

∫ tf

ti

(
qt +

1

2
uTt Rut

)
dt. (2)

where φtf and qt represent the terminal cost and the
state dependent cost, and 1

2u
T
t Rut for a positive semi-

definite matrix R represent quadratic input cost.

3. Inverse Reinforcement Learning

The IRL problem addressed is recovering weights of
a parameterized cost function, given dynamics of the
system and a set of expert-demonstrated trajectories.

We consider a parameterized version of the cost func-
tion (2), parameterized with weights β∗ and known

basis functions Φ̃, i.e. J(x, ti, ut) = J(τti) = β∗T Φ̃.
Furthermore, we consider having a set of M expert-
demonstrated trajectories, Ω∗ = {τ1, ..., τM}, which
are optimal with respect to the expert’s cost function.

The inverse reinforcement learning problem is now
written as a maximum likelihood problem in the fol-
lowing way:

β̂ = arg max
β

M∏
i=1

P (τi|β), (3)
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4. Method of Approach

Our approach to this problem is based on the use
of Path Integrals, as described in (Theodorou et al.,
2010). Using this approach, we obtain a closed form
probability distribution over the set of all trajecto-
ries which could result from an optimal policy, and
we will use this distribution to address the IRL prob-
lem (3). The obtained distribution will be of the max-
imum entropy form, therefore, our proposed approach
will share similarities with the maximum entropy ap-
proach introduced by (Ziebart et al., 2008), and used
in (Boularias et al., 2011).

In this formulation, a critical assumption imposed on
the structure of the input cost matrix is that λR−1 =
Σε, for a constant λ. This assumption imposes high
costs on controls that are less noisy, and low costs on
controls with high noise. This is reasonable because
we need a significant control authority over more noisy
controls, and vice versa. A similar framework has been
considered in (Dvijotham & Todorov, 2010).

The following probability distribution is obtained:

P (τm|Ω) =
e−

1
λS(τm)∑K

k=1 e
− 1
λS(τk)

, (4)

where,

S(τ) =Φ(xN ) +

N−1∑
j=1

q(xj)∆t

+
1

2

N−1∑
j=i

∣∣∣∣∣
∣∣∣∣∣x

(c)
j+1 − x

(c)
j

∆t
− f (c)

j

∣∣∣∣∣
∣∣∣∣∣
2

H−1
j

∆t,

Hj = G
(c)
j

T
R−1G

(c)
j ,

where we define the notation ||v||2M = vTMv, and
fi = f(xi), Gi = G(xi). Here S(τ) represents the cost
of a path obtained from the path integral formulation.
Also the superscripts (c) denotes the actuated com-
ponent of the state (for more details see (Theodorou
et al., 2010)).

In the above equations, we are considering a dis-
cretized version of the costs and trajectories, as dis-
cussed in further detail in (Theodorou et al., 2010).
Furthermore, assume all trajectories start at time zero,
and use τm to denote the m-th trajectory from the set
of all trajectories Ω = {τ1, ..., τK}, which includes the
expert-demonstrated trajectories as well, i.e. Ω∗ ⊂ Ω.
The parameterization of the cost function J(τ) leads

to a parameterization of S(τ) = βTΦ where:

Φ =


∑N−1
i=0 ψi

1
2

∑N−1
j=i

∣∣∣∣∣∣∣∣x(c)
j+1−x

(c)
j

∆t − f (c)
j

∣∣∣∣∣∣∣∣2
Ĥ−1
j

∆t

ψN

 ,

for known features ψi and ψN and known matrix R̂
parameterizing the state cost, terminal cost and the

input cost matrix, and for Ĥj = G
(c)
j

T

j
R̂−1G

(c)
j .

The IRL problem now reduces to solving for β in:

arg max
β

M∏
i=1

P (τi|β,Ω) =

arg max
β

M∏
i=1

e−
1
λ (βTΦ(τi))∑K

k=1 e
− 1
λ (βTΦ(τk))

. (5)

The solution to (5) involves two steps. First step is to
solve the ML given Ω using the following iterative pro-
cess, known as the Iterative Scaling Algorithm (Dar-
roch & Ratcliff, 1972; Chen & Rosenfeld, 2002), for
every coordinate n of the β vector:

βt+1,n = βt,n − ln
φ̄n

Eβtφn
,

where,

φ̄n =
1

M

M∑
i=1

φn(τi),

φn(τ) =

N∑
i=1

φn(xi),

Eβtφn =

K∑
k=1

P (τk|βt)φn(τk).

This step can be compared to IRL approach
in (Kalakrishnan et al., 2010), as it produces an es-
timate of the cost function with a fixed set of sam-
pled trajectories. The second step involves updating
the set of sampled trajectories. Since the summation
over a set of sampled trajectories is merely an approx-
imation for the distribution, we iteratively update the
set of sampled trajectories, by adding the trajectory
which is optimal with respect to the current cost esti-
mate to the set of all sampled trajectories. We obtain
the following algorithm which resembles the algorithm
in (Abbeel & Ng, 2004):

1. Solve the ML β̂t = arg maxβ
∏M
i=1 P (T = τi|β,Ωt).

2. Solve optimal control τ̂t+1 = arg minτ β̂tφ(τ) (Us-
ing (Theodorou et al., 2010)).
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3. Add trajectory to the set of all trajectories: Ωt+1 =
Ωt ∪ {τ̂t+1}.

4. Let ∆t = |β̂
T

t φ(τ∗) − minτ∈Ωt\Ω∗ β̂
T

t φ(τ)|. If the
change in improvement is smaller than a threshold,

i.e. if
∣∣∆t+1−∆t

∆t+1

∣∣ < δthr, then terminate, otherwise

t← t+ 1 and go back to step 1.

5. Evaluation

In order to evaluate our method, we performed a
simulation of a 2-D point mass system. Further-
more, we considered a class of parameterized policies
called Dynamic Movement Primitives (DMP), where
the time-varying policy was parameterized by the pa-
rameter vector θ which scaled 10 time-varying basis
functions (as discussed further in (Ijspeert et al., 2003;
Theodorou et al., 2010)). Therefore, the optimal con-
trol solver found the optimal parameters θ with respect
to the defined cost function, instead of solving for the
optimal control at every time step. The dynamics of
this system are shown below.

ẍ =
1

m
(−bẋ+ u),

u = mẍd + bẋ+ kP (xd − x) + kD(ẋd − ẋ),

where the parameters xd, ẋd, and ẍd represent the de-
sired output trajectory of the DMP. The DMP is a
parameterized policy, which performs as a point at-
tractor, and moves the system from some initial point,
in this case the origin at [0, 0], to some goal state, in
our simulations the point [1, 1]. , The parameters θ of
the DMP which determine the shape of the trajectory
are optimized with respect to the following cost func-
tion, using the PI2 approach described in (Theodorou
et al., 2010).

The cost function defined was a mixture of Gaussian
state costs, terminal state costs, and input costs. We
generated 6 different features, each feature being a sum
of many Gaussians with random means and covariance
matrices. We denote the features by Φi, i = 1, ..., 6.
We then used a weighted sum of these features, with
weights βi, i = 1, ..., 6, as part of the cost function
in our simulation. The boldface symbols Φ and β de-
note the vector of these parameters. The resulting cost
function can be seen in Fig. 1. Subsequently, added
the terminal state cost and input costs to obtain the
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Figure 1. The true cost function, and the observed nominal
trajectory.

following cost function:

S(τ) =βTΦ(τ )

+ C1(xtN − [1, 1]T )T (xtN − [1, 1]T )

+ C2(ẋTtN ẋtN )

+
C3

2

N−1∑
j=i

∣∣∣∣∣
∣∣∣∣∣x

(c)
j+1 − x

(c)
j

∆t
− f (c)

j

∣∣∣∣∣
∣∣∣∣∣
2

Ĥ−1
j

where the first term βTΦ(τ ) reflects the cost of the
trajectory due to the sum of Gaussian features. The
second and third term enforce some cost for not being
at the goals state at time tN and having a non-zero
velocity at that time. Lastly, the fourth term enforces
a cost on the inputs. Note that in this simulation the
constants C1, C2 and C3 are known, and we will only
be estimating the weights β.

Using the discussed dynamic equations and cost
function, we then found a single optimal trajec-
tory, which is shown in Fig. 1. To do so, we
also utilized the code provided in “http://www-
clmc.usc.edu/Resources/Software”. Moreover, we
sampled 50 trajectories, in order to construct a prob-
ability distribution over all trajectories. These tra-
jectories were sampled by running 50 trajectory roll-
outs around the expert-demonstrated trajectory. (One
can use techniques in (Ijspeert et al., 2003) to obtain
a policy parameterized by θ describing the expert-
demonstrated trajectory, and subsequently use the pa-
rameter θ∗ + εt to generate sampled trajectories.)

We applied our proposed algorithm to recover the cost
function using the nominal demonstrated trajectory
and the 50 sampled trajectories. Fig. 2 demonstrates
the recovered cost function, and the best candidate
trajectory with respect to the final estimated cost
function. The iterative improvement in estimation is
demonstrated in Fig. 3, which plots the excess cost
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Figure 2. The recovered cost function and the best candi-
date sample trajectory τ̂∗tend .

of the best candidate trajectory versus the number of
iterations. The set of all 50 sampled trajectories are
included in Fig 4.
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Figure 3. Plot of ∆G
t = β∗Tφ(τ̂∗t ) − β∗Tφ(τ∗)

versus the number of iterations t, where τ̂∗t =

arg minτ∈Ωt\{τ∗} β̂
T

t φ(τ).

6. Discussion and Future Work

We proposed an algorithm for inverse reinforcement
learning in a framework where the cost function was
a weighted linear combination of some known basis
functions, and where the input cost was inversely pro-
portional to the noise variance. We have shown using
simulations that this approach improves the estimates
of the cost function iteratively. These results should be
considered preliminary. A formal comparison between
our approach and existing IRL approaches in litera-
ture, and a rigorous evaluation of the performance of
the algorithm are topics of future work.
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Figure 4. All sampled trajectories.
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